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Abstract. Image processing in photogrammetry is commonly used
for scene reconstruction. Although two-dimensional applications
can be solved using isolated images, reconstruction of three-dimen-
sional scenes usually requires the use of multiple images simultane-
ously. Epipolar image rectification is a common technique for this
purpose. It typically requires internal orientation parameters and,
therefore, knowledge of camera calibration and relative orientation
parameters between images. A reparameterization of the fundamen-
tal matrix through a completely geometric algorithm of seven
parameters that enables the epipolar image rectification of a photo-
grammetric stereo pair without introducing any orientation parameters
and without premarking ground control points is presented. The algo-
rithm enables the generation of different stereoscopic models with a
single photogrammetric pair from unknown cameras, scanned from a
book, or frames from video sequences. Stereoscopic models with no
parallaxes have been obtained with a standard deviation of
<0.5 pixels. © 2013 SPIE and IS&T [DOI: 10.1117/1.JEI.22.4
.043021]

1 Introduction
The use of photogrammetry has become increasingly
common for a variety of technical applications, such as civil
engineering, architecture, and robotics. The reason for this
increase in popularity is that photographic images provide
complete information about the object being studied, thereby
complementing its metric capability. From this point of view,
two main routes have been developed for its use: single

images and sets of images. Isolated images are ideally suited
for two-dimensional (2-D) applications, whereas multiple
series of images are necessary for the reconstruction of
three-dimensional (3-D) images and scenes.

The accurate reconstruction of the 3-D scene structure
from two different projections and the estimation of the cam-
era scene geometry is of paramount importance for many
computer vision tasks.1 A stereo pair consists of two images
of the same rigid scene with purely horizontal parallax taken
from two different viewpoints, which are related by the
so-called epipolar transformation, also called epipolar
geometry.2 Thus, epipolar geometry from stereo images is
commonly used for multiple-image 3-D scene depth
reconstruction3 in which all of the available image frames
are considered simultaneously.4 The epipolar geometry is
completely characterized by the fundamental matrix,5 where
most of the information about the camera-scene geometry is
encapsulated. Estimating the fundamental matrix has been
an objective of research for many years and continues to
be a challenging task in current computer vision systems.
Hartley6 explores the relationship between two images of a
stereoscopic scene through projective geometry using the
fundamental matrix by minimizing the deformation of the
original images. Mallon and Whelan7 used the Jacobian
transformation of the fundamental matrix to study the mini-
mum deformation of the original images to be rectified.
Zhang8 presented an introduction to epipolar geometry, a
complete review of the current techniques for estimating
the fundamental matrix and its uncertainty, and a new speci-
fication for the fundamental matrix that is valid for both the
perspective and affine cameras based on a measurement that
is obtained through sampling the whole visible 3-D space.
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Zhang and Loop9 analyzed all possible cases, where epipolar
image rectification could fail due to the epipoles located at
the infinity. Seitz10 presents a theory of stereo image forma-
tion that enables complete classification and modeling of all
possible stereo views through the concept of the quadratic
view. Toward this goal, the notion of epipolar geometry
has been generalized to apply to multiperspective images
and, in recent years, to linear pushbroom images that result
from different processes with perspective images11 or space-
borne linear array scanner scenes, which are used increas-
ingly often.12

The basic problem of recovering the 3-D structure of a
scene from a set of images is the correspondence search.13

For a single point in one of the images, its correspondences
in the other images must be detected for the 3-D recon-
struction. Depending on the algorithm, two or more point
correspondences, as well as the camera geometry, are
used to estimate the depth of that point.14 Several approaches
use the epipolar constraint to establish correspondences
between two perspective images,15 where the cost for a single
match is computed from a large number of pixels rather than
from only two pixels, as in traditional stereo pairs.16 An epi-
polar plane image (EPI) is a 2-D spatiotemporal image usu-
ally obtained from a dense image sequence that is rectified so
that each scene point is projected to the same row for all of
the frames. Matousek and Hlavác17 presented the idea of how
to use the set of EPIs for seeking correspondences. The well-
organized structure of EPIs enables all of the image data
from a sequence to be employed directly in computation.
This approach works well when the data are processed in
accordance with the strict assumptions of Lambertian surfa-
ces and accurately rectified sequences. Criminisi et al.18

described an approach for automatically recovering 3-D
layers from extended multiview sequences by analyzing the
data in the entire EPI volume. The approach is based on
decomposing the EPI volume into a set of EPI tubes,
each of which represents a coherent subvolume that corre-
sponds to a coherent portion of 3-D space. The EPI tubes
are the basis for a complete 3-D layered sprite representation
and for novel techniques to separate diffuse and specular
components in static scenes.

Many of these stereo techniques require the knowledge of
internal orientation (IO) parameters (camera calibration). For
uncalibrated cases, the epipolar geometry is the only infor-
mation that can be derived from point matches. Some authors
consider epipolar geometry to be a type of stereo calibration,
called weak calibration.19,20 Hartley et al.21 present an
approach that uses the essential matrix defined by
Longuet-Higgins for stereo reconstruction and avoids the
need for camera calibration. That general method relies
strongly on techniques of the projective geometry, in
which a configuration of points may be subject to projective
transformations in both 2-D image space and 3-D object
space without changing the projective configuration of the
points. Hartley and Gupta22 further develop projective geom-
etry applications, applying calibration-free methods to the
stereo problem, using the essential matrix and ground-
control points or some other constraints to reconstruct the
absolute configuration of the scene. A quasi-Euclidean meth-
odology developed by Fusiello and Irsara23 can be used when
the calibration information is unknown and exhibits suffi-
cient accuracy for most applications. Wexler et al.24

determined the epipolar geometry of a photogrammetric
stereo pair using only measures, without known parameters
for the camera, by analyzing pixel intensity values for pairs
of images obtained with stereo cameras with fixed configu-
rations and aggregating information from multiple pairs to
create a dense map of epipolar curves. This approach
does not model the 3-D geometric configuration of the cam-
eras, but learns the shape of the epipolar curves by accumu-
lating matching evidence over multiple image pairs.
Therefore, any optical configuration can be used, but the
technique requires tens to hundreds of images to obtain a
representative calibration.

This manuscript shows a reparameterization of the funda-
mental matrix through a completely geometric algorithm
based on homology that requires no knowledge of any ori-
entation parameter or the use of multiple images (sequence)
or their radiometric properties. IO parameters (focal length
and camera center) will not be needed (radial distortion
will be removed before the process by applying the method
of straight lines25 although other well known methods, such
as plumb lines,26 direct linear transformation,27 and others,28

could also be applied). Likewise, relative orientation param-
eters (rotations of each image and vector components
between the optical centers) and external orientation data
(ground control points) are not necessary. Stereoscopic mod-
els can be obtained using only a stereo pair obtained from a
camera with unknown parameters or through scanned images
obtained with an unknown camera from a textbook or
through video frames. Only homologous marking points
in the two images are used through a geometric algorithm
based on the determination of seven parameters (while the
fundamental matrix has nine parameters and requires two
restrictions) derived from the homology between the epipolar
lines in the two images.

2 Epipolar Image Rectification without Orientation
Parameters

2.1 Algorithm of Epipolar Image Rectification
The epipolar geometry between images of a stereo pair is
essentially the geometry of the intersection of the image
planes with the “pencil of epipolar planes” (planes contain-
ing the baseline).29 The baseline (vector defined by the line
joining the two optical centers, O1 and O2) intersects each
image plane at the left epipole (C1) and the right epipole
(C2), respectively [so, an epipole is the image in one view
of the camera center of the other view, and it is also the van-
ishing point of the baseline (translation) direction].

Any point PðX; Y; ZÞ in the object space will be
impressed on both images [passing through the optical cen-
ters leading to a point p1 ðx1; y1Þ in the left image and a point
p2 ðx2; y2Þ in the right image] and will define an epipolar
plane that intersects the image planes in corresponding epi-
polar lines (e1 and e2), defining a correspondence between
them. The correspondence established between epipolar
lines (not for image planes) consists of a homology30 or cen-
tral collineation.31 As the position of P varies, a pencil of
epipolar planes, called an epipolar pencil, is generated.
Each pair of epipolar lines generated by an epipolar pencil
intersects at a point I on the axis of homology (line intersec-
tion defined by extending the image planes) (Fig. 1).

According to the above, the homologous epipolar line of
any epipolar line on an image is constructed by joining its
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intersection point I on the axis of homology with the epipole
of the other image (Cj), such that a point pj on an epipolar
line has its homolog on the homologous epipolar line.

In either of the two image coordinate systems and main-
taining the same value of the t parameter for the same point,
the axis of homology can be parameterized according to
Eq. (1):

xðIÞj ¼ ajtþ bj; yðIÞj ¼ a 0
jtþ b 0

j; (1)

where ½xðIÞj ; yðIÞj � are the coordinates of any point I on the axis
of homology projected onto one of the two images, ðaj; bjÞ
are the coefficients of the line in parametric form for the
x-coordinate, ða 0

j; b
0
jÞ are the coefficients of the line in para-

metric form for the y coordinate, and t is the parameter defin-
ing the position of a point on the axis of a pair of
epipolar lines.

Equation (1) may be formulated in parametric form for
both images, joining the point I with each epipole Cj,
which can be described by the following expression:

xðIÞj − xj

yðIÞj − yj
¼ xj − xCj

yj − yCj

; (2)

where ðxj; yjÞ are the coordinates of any point on one epi-
polar line (in left or right image) and ðxCj

; yCj
Þ are the coor-

dinates of the corresponding epipole (in left or right image).
Substituting Eq. (1) into Eq. (2), we find that the value of

t, the ratio of the differences between abscissas and ordi-
nates, is constant and results in a line

t ¼ ðb 0
j − yCj

Þxj þ ðxCj
− bjÞyj þ ðbjyCj

− b 0
jxCj

Þ
−a 0

jxj þ ajyj þ ða 0
jxCj

− ajyCj
Þ : (3)

This equation relates the value of t directly with the coor-
dinates of each epipole Cj, with the coefficients of the equa-
tion of the axis of homology ðaj; bj; a 0

j; b
0
jÞ and with the

coordinates of any point on the epipolar line pjðxj; yjÞ
that intersects the axis of homology at the point defined
by such a value of t.

By choosing a t value, we are choosing a single point on
the image plane (located on the axis of homology).
Therefore, choosing any point on one image plane, we are
subsequently choosing a single t value (corresponding to
the intersection point of the line defined by this point and
the corresponding epipole with the axis of homology).
Applying this fact to the stereo pair, taking any point
p1ðx1; y1Þ from the left image and p2ðx2; y2Þ from the
right image and taking into account that both equations

have the same value of t, we obtain an equation that contains
12 unknowns and relates the coordinates of a point from the
left image with a right image line and vice versa:

A1x1 þ B1y1 þ C1

A 0
1x1 þ B 0

1y1 þ C 0
1

¼ t ¼ A2x2 þ B2y2 þ C2

A 0
2x2 þ B 0

2y2 þ C 0
2

; (4)

where, Aj ¼ ðb 0
j − yCjÞ, Bj ¼ ðxCj − bjÞ, Cj ¼ ðbjyCj−

b 0
jxcjÞ, A 0

j ¼ −a 0
j, B

0
j ¼ aj, and C 0

j ¼ ða 0
jxCj − ajyCjÞ.

Specifying j ¼ 1 for the left image and j ¼ 2 for the right
image, we find that A1, B1, C1, A 0

1, B
0
1, C

0
1 are the unknowns

that result from the development of Eq. (3) for the left image
plane, and A2, B2, C2, A 0

2, B
0
2, C

0
2 are the unknowns resulting

from the development of Eq. (3) for the right image.
Equation (4) is expressed for a value of t that contains 12

unknowns but only 7 are independent, so it must be simpli-
fied. The left term of Eq. (4), which corresponds to the left
image, can be greatly simplified by subtracting B1∕B 0

1 to
eliminate the term B1 (coefficient of y1), inverting the result-
ing equation and subtracting A 0

1∕½A1 − ðB1∕B 0
1ÞA 0

1� to elimi-
nate the term A 0

1 and then dividing the numerator by B 0
1 and

the denominator by ½C1 − ðB1∕B 0
1ÞC 0

1�. In addition, applying
these reductions to the right term of the equation (which cor-
responds to the right image) and reducing to unity the inde-
pendent term of its denominator, we finally obtain:

y1 þ CR1

A 0
R1x1 þ 1

¼ t 0 ¼ AR2x2 þ BR2y2 þ CR2

A 0
R2x2 þ B 0

R2y2 þ 1
; (5)

where A 0
R1 ¼ ðA 0

1B1 − A1B 0
1Þ∕ðC 0

1B1 − C1B 0
1Þ, CR1 ¼

ðA 0
1C1 − A1C 0

1Þ∕ðA 0
1B1 − A1B 0

1Þ, AR2 ¼ CR1A 0
R2 − ðC1A 0

2−
C 0
1A2Þ∕ðB1C 0

2 − B 0
1C2Þ, BR2 ¼ CR1B 0

R2 − ðC1B 0
2 − C 0

1B2Þ∕
ðB1C 0

2 − B 0
1C2Þ, CR2 ¼ CR1½1 − ðC1C 0

2 − C 0
1C2Þ∕ðB1C 0

2−
B 0
1C2Þ�, A 0

R2 ¼ ðB1A 0
2 − B 0

1A2Þ∕ðB1C 0
2 − B 0

1C2Þ, B 0
R2 ¼ðB1B 0

2 − B 0
1B2Þ∕ðB1C 0

2 − B 0
1C2Þ, AR1 ¼ B 0

R1 ¼ 0, and
BR1 ¼ C 0

R1 ¼ C 0
R2 ¼ 1.

Equation (5) establishes the same correspondence as the
fundamental matrix29 does through x 0TFx ¼ 0. According to
the described algorithm, the reparameterization of the funda-
mental matrix particularized only for seven coefficients
results in Eq. (6). As can be seen, it is not necessary to
solve it as the third row results from linear combination
of the first and the second one:

ð x2 y2 1 Þ ·

0
B@

A 0
R1AR2 −A 0

R2 −A 0
R2CR1 þ AR2

A 0
R1BR2 −B 0

R2 BR2 − B 0
R2CR1

A 0
R1CR2 −1 CR2 − CR1

1
CA

·

0
B@

x1
y1
1

1
CA ¼ 0: (6)

The system has a unique solution for the seven coeffi-
cients through seven pairs of homologous points.
However, if we have a larger number of measured points,
then the calculation is performed by least squares adjustment
(establishing a system of linear equations that facilitates ana-
lyzing the accuracy and locating unsuitable points by reli-
ability tests).

Epipolar image rectification implies that epipolar pairs of
lines obtain the same y coordinate. To accomplish this goal,
we will apply a projective transformation to the original

P 

O1 O2

 C1 C2

p1  p2

     Baseline 

Right image planeenalpegamitfeL

I 

 Axis of homology 

Left epipolar line (e1) 
 Right epipolar line (e2) 

Left image Right image 

Fig. 1 Definition of homology in a photogrammetric stereo pair.
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images so that each point in the rectified image has the value
of t 0 as ordinate, maintaining the abscissa value to be
compatible with its projective transformation. Thus, epipolar
lines in both images have necessarily the same height. The
calculation of the rectified images by the developed transfor-
mation is performed by calculating each pixel of the image,
first generating the environment in which the image is gener-
ated by calculating the coordinates of its corners (to establish
the framework beyond which there should be no image). The
corner coordinates in the left rectified image [Eq. (7)] are
obtained by replacing the coordinates of the original corners
of the left image in Eq. (5), resulting in ðxi; yiÞ. Similarly, the
right corner coordinates [Eq. (8)] are obtained by substituting
the coordinates of the original corners of the right image in
Eq. (5), resulting in ðxd; ydÞ using the corresponding term
in each case.

xi ¼ x1
A 0
R1x1 þ 1

yi ¼ y1 þ CR1

A 0
R1x1 þ 1

; (7)

xd ¼ x2
A 0
R2x2 þ B 0

R2y2 þ 1
yd ¼ AR2x2 þ BR2y2 þ CR2

A 0
R2x2 þ B 0

R2y2 þ 1
:

(8)

For both cases, the abscissa must keep the denominator of
the ordinate to maintain the projectivity.

Proposed homological Eqs. (7) and (8) applied to original
images results in Eqs. (9) and (10) for the left and the right
ones:

 xi

yi

1

!
≈

0
B@ 1 0 0

0 1 CR1

A
0
R1 0 1

1
CA ·

 x1
y1
1

!
; (9)

 xd

yd

1

!
≈

0
B@ 1 0 0

AR2 BR2 CR2

A
0
R2 B

0
R2 1

1
CA ·

 x2
y2
1

!
: (10)

So, the condition for the epipolar rectification F ¼
HT

LFRHR is fulfilled.25

2.2 Calculation of the Epipoles and the Axis
of Homology

The homologic transformation results are well defined by the
epipole of each image plane and the axis of homology. The
coordinates of each epipole can be obtained easily by devel-
oping Eq. (4) in its classical form:

yi ¼ xi
tA 0

i − Ai

Bi − tB 0
i
þ tC 0

i − Ci

Bi − tB 0
i
¼ mðxi − xCi

Þ þ yCi
; (11)

where

m ¼ tA 0
i − Ai

Bi − tB 0
i

xCi
¼ B 0

iCi − BiC 0
i

BiA 0
i − B 0

i Ai

yCi
¼ A 0

iCi − AiC 0
i

AiB 0
i − A 0

iBi
.

The coordinates of the epipoles do not depend on t, which
implies that all epipolar lines of each image plane pass
through each one of them. If we consider that all the epipolar
lines of Eq. (4) must comply with the foregoing, we have the
equations of the epipole in terms of the parameters such that
all epipolar lines have the same epipole and are distinguished
by their different slopes, which depend on t.

With respect to the axis of homology, it cannot be deter-
mined unequivocally. In accordance with Eq. (8), the equa-
tion of an epipolar line for the right image, obtained by
applying any rotation ϑ2 results in Eq. (12):

½ðA 0
R2ðλ2x2 þ μ2y2Þ þ B 0

R2ð−μ2x2 þ λ2y2Þ þ 1�t 0
¼ AR2ðλ2x2 þ μ2y2Þ þ BR2ð−μ2x2 þ λ2y2Þ þ CR2; (12)

where x 0
2 ¼ λ2x2 þ μ2y2 is the x coordinate and y 0

2 ¼ λ2y2 −
μ2x2 is the y coordinate, for any point on the epipolar line
rotated ϑ2, with ½λ22 þ μ22�1∕2 ¼ 1 and tan ϑ2 ¼ λ2∕μ2.

By normalizing Eq. (12) for x2 ¼ 0 and reducing it to its
canonical form y ¼ ðR∕t 0 þ SÞ þQ, we obtain the value of

x

y

Fig. 2 Geometric meaning of the coefficients of the left image.

h

y

x

Fig. 3 Geometric meaning of the coefficients of the right image.
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S for the right image according to the following
Eq. (13):

Sd ¼ −
μ2AR2 þ λ2BR2

μ2A 0
R2 þ λ2B 0

R2
: (13)

Using the same procedure, we obtain the value of S for the
left image by applying a rotation ϑ1 to the left epipolar line
[Eq. (7)] as a function of λ1, μ1, according to the following
Eq. (14):

Si ¼ −
λ1

μ1A 0
R1

: (14)

The lengths in both images are preserved if the value
of S is the same. Thus, by equating Eqs. (13) and (14),
we obtain the value of ϑ1 and ϑ2 according to the following
Eq. (15):

tan ϑ1 ¼ A 0
R1

AR2 þ BR2 tan ϑ2
A 0
R2 þ B 0

R2 tan ϑ2

tan ϑ2 ¼
A 0
R2 tan ϑ1 − AR2A 0

R1

A 0
R1BR2 − B 0

R2 tan ϑ1
. (15)

This result shows that it is not possible to determine the
real axis because it is always mathematically possible to cal-
culate an axis for the left image for which the rotation (ϑ1)
corresponds to another chosen rotation for the right image
(ϑ2) and vice versa.

2.3 Meaning of the Coefficients
According to Eq. (5), both the left and right image planes can
be studied separately and the two sides of the equation can be
equated to determine the parameter t 0. For the left image
plane, the numerator becomes null for y1 ¼ −CR1 (corre-
sponding to a line parallel to the x axis), whereas the denom-
inator becomes null for x1 ¼ −1∕A 0

R1 (corresponding to a
line parallel to the y axis). Thus, the point of intersection of
both lines is the only point where t 0 is undefined. Taking into
account that each value of t 0 corresponds to an epipolar line
and that they all intersect at the epipole (where the infinite
epipolar lines pass by), the point ð−1∕A 0

R1;−CR1Þ must be
the left epipole (Fig. 2).

The intersection of any epipolar line passing through
ðx1; y1Þ with the y axis results in t 0 ¼ y1 þ CR1 because
the denominator of Eq. (5) becomes unitary. Taking into
account that t 0 becomes null for y1 ¼ −CR1, the value of
t 0 for the epipolar line corresponds to the segment defined
by both points in the y axis.

Applying the same procedure on the right side of Eq. (5),
we obtain the coefficients of the right image plane. The
numerator becomes null for AR2x2 þ BR2y2 þ CR2 ¼ 0,
whereas the denominator becomes null for A 0

R2x2þ
B 0
R2y2 þ 1 ¼ 0. Thus, at the intersection of both lines, we

will locate the right epipole (Fig. 3).
According to the expression that determines the distance

from one point to a line, it is easy to observe that Eq. (5)

Anaglyph 

 P (X P,Y P,ZP)

h 

X 

Z 

D 

  i(xai,yai)   d(xad,yad) 

Left eye   Right eye 

Anaglyph 

P (X P,Y P,ZP)

h 

Y 

Z 

                i(xai,yai)-d(xad,yad) 

Left eye – Right eye    

(a) (b)

Fig. 4 Properties of stereoscopic vision. (a) XZ vision plane. (b) YZ vision plane.

Table 1 Photo-coordinates of the homologous points measured in
the original images to calculate the epipolar image rectification.

Left image Right image

Point x1 (pixel) y1 (pixel) x2 (pixel) y2 (pixel)

1 143 1517 182 1492

2 658 1533 702 1525

3 930 1434 980 1436

4 1493 1247 1565 1267

5 104 923 161 898

6 822 906 873 903

7 97 464 168 440

8 875 362 940 361

9 1068 470 1096 474

10 1348 466 1378 478

11 1389 1143 1400 1158

12 1046 204 1075 207
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corresponds to a proportionality of distances between the
point and the defined lines. Therefore, the value of t 0 must
be the ratio of these distances. Just as in the left image plane,
the magnitude t 0 was defined geometrically on the y axis; in
the right image plane, it will be defined by a perpendicular
line that cancels the numerator so that the height h is the
value of t 0. The position of that perpendicular line obviously
corresponds to A 0

R2x2 þ B 0
R2y2 þ 1 ¼ 1.

Finally, there are two situations where improper positions
of the epipoles can be obtained. The first case will occur
when the value of the x coordinate or y coordinate of any
of the epipoles is null. In this case, the epipole will be exactly
on the edge of the image (which is not possible in normal
shooting). The second case will occur when the value of
the x coordinate or y coordinate of any of the epipoles is
infinite. The solution is immediately solved through a single
rotation, so that the image is necessarily parallel to the
baseline.

2.4 Properties of Stereoscopic Vision
It is interesting to analyze the possible transformations that
can be applied to the stereoscopic view of the model con-
structed by the coefficients of the generated algorithm.
Such a model must be analyzed in a coordinate system
with the origin placed at the left eye, with the X axis passing
through both eyes, the Z axis perpendicular to the direction
of the stereoscopic model, and the Y axis in the direction of
the direct trihedral (Fig. 4). By studying the similar triangles
generated by a point on the stereoscopic model P [with
projections on the anaglyph that result in iðxai; yaÞ and
dðxad; yaÞ] in Fig. 4(a), we obtain the coordinates
(XP; ZP). By performing the same procedure on the point
P in Fig. 4(b) (both points are superimposed because they
have the same Y coordinate), we obtain the coordinate
YP. The spatial position of point P of the stereoscopic
model is given by

XP ¼ xaiD
D − ðxad − xaiÞ

YP ¼ yaD
D − ðxad − xaiÞ

ZP ¼ hD
D − ðxad − xaiÞ

; (16)

where iðxai; yaÞ are coordinates of P on the left image of the
anaglyph, dðxad; yaÞ are coordinates of P on the right
image of the anaglyph, PðXP; YP; ZPÞ is spatial coordinate

Fig. 5 Original images with epipolar lines of the measured points.

Table 2 Coefficients of transformation.

Coefficient Value

AR2 −1.903772 × 10−3

BR2 1.012251

CR2 5548.018985

A 0
R2 3.177330 × 10−6

B 0
R2 1.260175 × 10−6

A 0
R1 −1.392718 × 10−6

C 0
R2 5522

Table 3 Coordinates of the epipoles.

Left image Right image

Point xC1 (pixel) yC1 (pixel) xC2 (pixel) yC2 (pixel)

Epipole 718020 −5522 6140772 6068
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of P on the stereoscopic model, and D is the interpupillary
distance.

The spatial coordinates of any point are affected by the
same homothetic factor with respect to the left image of
the anaglyph as a function of the interpupillary distance,
the distance from which the anaglyph is observed and the
overlapping of the images that generate it.

The proposed Eqs. (7) and (8) provide the coordinates of
the images that will be used for the construction of the ana-
glyph (xi; yi) and (xd; yd). If we change the anaglyph using a
linear transformation for one or both images, we obtain a
new anaglyph with a different stereoscopic “appearance.”
Let us modify the X coordinate and/or the Y coordinate
of the points on the right image of the anaglyph.

The original Eq. (4) is reduced to Eq. (5) by reducing
from 12 coefficients to 7. A linear transformation for Y in
both images of type Y ¼ ðatþ bÞ∕ðctþ aÞ makes possible

to obtain reduced coefficients to get the original Eq. (4).
Thus, if b ¼ c ¼ 0, then Y ¼ t as in Eqs. (7) and (8), but
if only c ¼ 0 then a homothetic and translation factor is
obtained for the Y coordinate. Finally if c is not null, we
obtain a perspective effect for the Y coordinate. The trans-
formation for the X coordinate in both images will be com-
patible in any case, maintaining the denominator as X ¼
ðmxþ nyþ sÞ∕ðctþ 1Þ, respectively.

In this case, if c ¼ 0, then there is no perspective effect on
the image. It is worth noting that the modification of the X
coordinate of the points of either the right or the left image
would require the same process, which is indicated by
X ¼ ð1þmÞx1 þ ð1þ nÞy1 þ s. The linear transformation
on X causes three effects by varying the value of m, n, or
s. A variation of s results in the translation of the X coordi-
nate of the right frame, which directly increases the value of
ðxad − xaiÞ by that amount and introduces a homothetic fac-
tor fsx ¼ ð1þ sÞ∕½D − ðxad − xaiÞ� for each of the coordi-
nates of P in Eq. (16). This homothetic factor scales and
enlarges the stereoscopic model. A variation of m results
in the translation of the X coordinate, which linearly
increases the value of ðxad − xaiÞ and introduces a variable
homothetic factor fmx ¼ ð1þmxÞ∕½D − ðxad − xaiÞ� for
each of the coordinates of P in Eq. (16). The homothetic fac-
tor scales the stereoscopic model in the direction of the Z
axis linearly with X. This fact implies a rotation in the X
coordinate by a value of α ¼ arctanfðmÞ∕½D − ðxad−
xaiÞ�g. A variation of n results in the translation of the X
coordinate, which also linearly increases the value of
ðxad − xaiÞ, thereby introducing a variable homothetic factor
fnx ¼ ð1þ nyÞ∕½D − ðxad − xaiÞ� to each of the coordinates
of P in Eq. (16). This change maintains the Y coordinate of
the stereoscopic model linearly in the direction of the Z axis.

Table 4 Photo-coordinates of the homologous points in the rectified images. Residual parallax is generated in the stereoscopic model.

Epipolar rectification (left image) Epipolar rectification (right image) Stereoscopic model

Point x1 (pixel) y1 (pixel) t 0 x2 (pixel) y2 (pixel) t 0 Residual parallax

1 143.5 1510.9 7041.0 185.8 1511.1 7041.2 −0.2

2 658.9 1532.2 7062.4 707.0 1531.7 7061.9 þ0.5

3 931.2 1435.8 6965.8 981.8 1436.1 6966.1 −0.3

4 1496.6 1253.3 6783.1 1559.1 1253.4 6783.2 −0.1

5 104.6 916.9 6446.3 147.3 917.1 6446.5 −0.1

6 823.4 906.3 6435.7 859.4 906.1 6435.5 þ0.2

7 97.7 458.0 5986.9 141.2 457.8 5986.6 þ0.3

8 876.5 363.0 5891.8 911.2 363.2 5892.0 −0.2

9 1070.0 472.3 6001.2 1070.0 472.7 6001.6 −0.4

10 1351.4 471.2 6000.1 1351.4 470.7 5999.6 þ0.5

11 1392.0 1148.7 6678.4 1392.0 1148.8 6678.5 −0.1

12 1047.9 205.8 5734.4 1041.6 205.9 5734.5 −0.1

Table 5 Photo-coordinates of the corners of rectified images.

Left image Right image

Corner x1 (pixel) y1 (pixel) x2 (pixel) y2 (pixel)

Upper left 0.0 2352.8 28.1 2384.2

Upper right 1656.6 2371.2 1675.9 2340.4

Lower left 0.0 −6.1 −40.8 19.9

Lower right 1656.6 6.1 1611.2 −11.8

Journal of Electronic Imaging 043021-7 Oct–Dec 2013/Vol. 22(4)

Herráez et al.: Epipolar image rectification through geometric algorithms. . .



In this case, there is a rotation by a value of
β ¼ arctanfðnÞ∕½D − ðxad − xaiÞ�g. Thus, by choosing the
appropriate values of m, n, and s, we can zoom in or out
on the displayed stereoscopic model and rotate it in both
longitudinal and transverse directions.

However, it is not possible to apply a transformation of
this type to the Y coordinate of the right frame [Eq. (8)]
because if the X coordinate is modified for various values
of m such that m ≠ 0, then we get different values for Y
that depend on the effect of cancellation of the parallax
and hence stereoscopic vision. The linear transformation
that is applicable is therefore of the type Y ¼
ð1þ nÞyþ s, if applied to both images simultaneously. A

variation of s will translate the observed stereoscopic
model in the direction of the Y axis, and a variation of n
will scale the model by introducing a homothetic factor
with a value that is given by fny ¼ ð1þ nÞ.

Finally, it is possible to apply a projective transformation
making c not null, obtaining a perspective effect in the Y
coordinate. By applying transformations on the X coordi-
nate, we get homothetic and translation factors and rotation
effects. By applying transformations on the Y coordinate, we
get homothetic and translation factors and a perspective
effect.

3 Results
To verify the validity of the algorithm, several images have
been taken with a semimetric camera Rolleiflex 6008
Integral 2 with Phase One db20p 16 mp digital back (its
parameters are not shown as they will not be used). The
original images have a size of 1653 × 2362 pixels. The
measurement of photo-coordinates has been performed
using commercial software for image processing (with the
origin of the coordinates at the lower left corner). The meas-
urement of 12 homologous points (Table 1) in two images
(Fig. 5) has been made, generating a system of 12 equations
with seven unknowns according to Eq. (5) and then calcu-
lating the corners of the rectified images according to
Eqs. (7) and (8).

The final results for the seven coefficients have a standard
deviation of 0.45 pixels (Table 2). The coordinates of the
respective epipoles are shown in Table 3.

The rectified coordinates of the 12 homologous points
with their corresponding values of t 0 show residual paral-
laxes better than 0.5 pixels (Table 4), which demonstrates
that the generated stereoscopic model is correct and free
from parallaxes.

The corners of the rectified images calculated by Eqs. (7)
and (8) with the obtained coefficient values (Table 2) are
shown in Table 5 and correspond to Fig. 6, which displays
the rectified images.

Fig. 6 Left and right epipolar image rectification.

Fig. 7 : Stereoscopic model.
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For stereoscopic model generation, digital photogram-
metric stations base the epipolar image rectification on a
calculation system through coplanarity algorithms, using
camera calibration parameters (focal length, camera center,. . . )
and the vector components between the projection centers
and the image rotations. For the proposed system [Eq. (5)],
it is only necessary to enter the photo-coordinates of at least
seven homologous points, providing the seven transforma-
tion coefficients. So that the epipolar image rectification
is calculated using the corners of both images through
Eqs. (7) and (8) and finally obtaining the stereoscopic
model (Fig. 7) by placing each rectified image (filtered
with complementary colors) according to calculated coordi-
nates (Table 5).

As demonstrated in Sec. 2.4, it is possible to stretch or
compress the image horizontally by applying linear transfor-
mations to one or both images through homothetic factors

maintaining the correct formation of the stereoscopic
model or changing the stereoscopic perspective by rotating
the model because the epipolar lines are not altered.
However, any modification of the images in the vertical
direction will lead to the loss of epipolarization properties
by moving epipoles, which causes loss of stereoscopy.

Accordingly, it is possible to select points so that the val-
ues of m, n, and s cause an estimated effect on the perspec-
tive. This procedure facilitates the possibility of rectifying
the images that give rise to the anaglyph on a defined plane
of interest. By varying the properties of the stereoscopic
vision of the stereoscopic model, we can generate different
stereoscopic models based on the same photogrammetric
stereo pair (Fig. 8).

Fig. 8 Stereoscopic models obtained by varying properties of stereoscopic vision from a single stereo pair.

Fig. 9 Close-range photogrammetry. Fig. 10 Aerial photogrammetry.
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As can be seen in Fig. 8, the first model obtained provides
opposing parallaxes at the top and bottom of the palm tree,
which implies a shift forward in the top of the model to the X
axis (m ¼ 0.08033, n ¼ −1.03919, and s ¼ −67.42). In the
second model, the monument and palm tree remain parallel
vertical to the plane of the anaglyph though at different
depths (m ¼ 0.00569, n ¼ −0.96911, and s ¼ −83.73).
The third model reduces the relative depths of the palm
tree and the monument, causing a substantial shift parallel
to the Y axis (m ¼ −0.00483, n ¼ −0.97040, and s ¼
−41.37). The parameters m, n, and s indicated in each
case result from eliminating the parallax for the three points
that define the front plane of the observer (points 3, 7, and 11
for the first model, points 1, 3, and 7 for the second, and
points 9, 10, and 11 for the third).

Other examples applied to close-range photogrammetry
(Fig. 9) or aerial photogrammetry (Fig. 10) can be seen.

4 Conclusions
Coplanarity algorithms, on which digital photogrammetric
stations base stereoscopic model generation (based on the
use of calibrated cameras with known IO parameters),
involve the calculation of epipolar planes that intersect
both images in epipolar lines. Therefore, it is obvious that
the use of epipolar lines as a mathematical model should
serve the same purpose.

The algorithm we developed for the epipolar image rec-
tification of a photogrammetric pair can be considered as a
reparameterization of the fundamental matrix. It seems to be
optimal because it provides the same results as the applica-
tion of collinearity and coplanarity without using any cali-
bration or orientation parameters and without premarking
ground control points. This process enables the generation
of stereoscopic models even from scanned images or
video frames with only seven homologous points (although
it is advisable to measure a greater number of points for reli-
ability tests). This article shows this process manually in
order to verify the algorithm validity. However, algorithms
work with measurements obtained from matching processes
as well.

The epipolar image rectification is quickly and easily cal-
culated through just seven independent coefficients. The
geometric algorithm is able to calculate the transformation
even in cases where the axis or epipoles turn out to be
improper (the denominators of the algorithm tend to zero
or where the y coordinate of epipoles is infinite). How-
ever, this problem can be solved by applying rotations to
the images in the iterative process (getting the epipoles at
infinity in x axis).

At the same time, it is undesirable to select a point that is
near the line determined by any of the two denominators. In
any case, through reliability tests, the least square process is
capable of locating optimal equations as a function of the
distribution of the homologous points, meaning that these
situations are avoidable.

Finally, the algorithm displays great versatility in the
interpretation and transformation of its coefficients. For in-
stance, stereoscopic images can even be generated with just
five coefficients that are scaled by different homothetic fac-
tors. Thus, several perspectives of anaglyphs can be gener-
ated by applying transformations to the coefficients such that

the images can be rectified with respect to a selected plane
within the scene.
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