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F. Javier Fuenmayor

Received: date / Accepted: date

Abstract Mineralized collagen fibrils have been usually analyzed like a two

phase composite material where crystals are considered as platelets that con-

stitute the reinforcement phase. Different models have been used to describe

the elastic behavior of the material. In this work, it is shown that, when

Halpin-Tsai equations are applied to estimate elastic constants from typical

constituent properties, not all crystal dimensions yield a model that satisfy

thermodynamic restrictions. We provide the ranges of platelet dimensions that

lead to positive definite stiffness matrices. On the other hand, a finite element
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model of a mineralized collagen fibril unit cell under periodic boundary condi-

tions is analyzed. By applying six canonical load cases, homogenized stiffness

matrices are numerically calculated. Results show a monoclinic behavior of

the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also

considered where crystals rotate in adjacent layers of a lamella. The stiffness

matrix of each layer is calculated applying Lekhnitskii transformations and

a new finite element model under periodic boundary conditions is analyzed

to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell

of lamellar bone. Results are compared with the rule-of-mixtures showing in

general good agreement.

Keywords Mineralized collagen fibril · Lamellar bone · Cortical bone · Finite

elements · Periodic boundary conditions · Homogenized stiffness matrix

1 INTRODUCTION

When cortical bone matures, its first woven structure becomes a parallel fibred

bone and finally a lamellar bone (Cowin, 2001). The main unit of lamellar bone

is the lamella of about 3-7 µm thick (Rho et al., 1998). A lamella is composed

of mineralized collagen fibrils embedded in a mineralized extra-fibrilar matrix.

It is well known that the collagen fibrils orientation pattern in the lamella is

an important feature because mechanical properties depend on bone structure

at the very small scale. In 1906, Gebhardt observed that collagen fibrils are

unidirectionally oriented in each lamella, changing suddenly their orientation

between adjacent lamella. Later, Ascenzi and Bonucci (Ascenzi and Bonucci,
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1967, 1968) held the idea of an unidirectional collagen fibril orientation in each

lamella, basing their results on polarized light microscopy (PLM) images of

secondary osteons. Subsequently, Wagner and Weiner (1992) also suggested

a unidirectional fibril orientation in each lamella. These authors calculated

elastic constants of an individual lamella by using several composite mate-

rial models (Padawer and Beecher, 1970; Lusis et al., 1973; Halpin, 1984).

It seems that the first investigators who analyzed a lamella as a two-phase

composite material were Currey (1962) and Bondfield and Li (1967). More

recent investigations consider a lamella as a layered structure where a colla-

gen fibril orientation pattern exists (Giraud-Guille, 1988; Akiva et al., 1998;

Weiner et al., 1999; Wagermaier et al., 2006). The orientation of collagen fibrils

changes in successive layers. Reisinger et al. (2011) develop a detailed anal-

ysis of elastic properties of the microstructure using a finite element model

in which the elastic constants of lamellar bone have been calculated using

homogenization theories in a previous work (Reisinger et al., 2010). These au-

thors analyze several collagen fibril orientation patterns. They conclude that

the model proposed by Weiner et al. (1999), based on a 5-layered structure

in an individual lamella, is in good agreement with experimental results. In

the work of Mart́ınez-Reina et al. (2011), a complete analytical model of the

lamellar bone is developed to calculate elastic properties of bone.

At a smaller scale, mineralized collagen fibrils are the basic building block

of the lamellae (Weiner and Wagner, 1998). Collagen type I and carbonate ap-

atite crystals are the basic constituents of mineralized collagen fibrils. Several
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works have been developed to calculate elastic constants of mineralized colla-

gen fibrils. In Reisinger et al. (2010), homogenization theory of Mori Tanaka

is used to estimate elastic properties of mineralized collagen fibrils. However,

they suppose that the crystals are spheroidal and randomly distributed. Yuan

et al. (2011) calculate the elastic modulus of mineralized collagen fibrils by

finite elements supposing a concentric arrangement of minerals around fibril

axes. In the work of Mart́ınez-Reina et al. (2011), elastic constants of miner-

alized collagen fibrils are also estimated considering water presence.

In this work, we provide estimations of the 3D stiffness matrices and elastic

constants both at the mineralized collagen fibril scale and at the lamellar scale

using numerical finite element models. The first numerical model is based on a

representative unit cell of a mineralized collagen fibril, composed of a collagen

matrix and apatite crystals arranged as staggered platelets. The results at

the fibril level are then used at the lamellar scale, performing a second finite

element model for the lamellar bone. In this case, the representative unit cell

consists of five layers in which the fibrils are arranged in different directions

with respect to the osteon axis. In this model, the rotation of the platelets

within the fibrils is also taken into account. It is shown that this rotation

angle has an important influence on the elastic behavior, which in general is

highly anisotropic.

In this study, the reinforcement phase is modelled as platelets distributed

in a staggered arrangement in the axial direction of the fibril and in parallel

layers in the transverse direction of the fibril. To the authors’ knowledge, a 3D
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finite element model of this type has not yet been reported in the literature.

In addition, we show that Halpin-Tsai equations cannot be used for all the

dimensions of apatite crystals measured experimentally by Rubin et al. (2003),

because the thermodynamic restrictions are not fulfilled in all cases for typical

constituent properties found in the literature. We have carried out a detailed

analysis for the different aspect ratios, providing crystal dimension ranges that

satisfy these restrictions when Halpin-Tsai equations are used.

The article is organized as follows. In Section 2, the elastic constants of

mineralized collagen fibrils are reviewed in the context of composite mate-

rial models and Halpin-Tsai equations are summarized. When the mineralized

collagen fibril direction changes, Lekhnitskii transformations are used to cal-

culate the elastic constants in the osteon axes directions (Akiva et al., 1998).

The thermodynamic restrictions are included in order to ensure that the or-

thotropic stiffness matrix is positive definite. In Section 3 a finite element

model of a mineralized collagen fibril unit cell subjected to periodic boundary

conditions (PBCs) is detailed to calculate the homogenized stiffness matrix by

applying six canonical load cases. In Section 4, we review the fibril orientation

pattern of a 5-layer lamellar structure proposed by Weiner et al. (1999) and

we present the corresponding finite element model under PBCs for the lamel-

lar unit cell. Results are detailed in Section 5. It is found that a monoclinic

homogenized 3D stiffness matrix for mineralized collagen fibrils is obtained

in contrast to previous proposals that yield orthotropic behavior. Next, the

anisotropic homogenized 3D stiffness matrix of lamellar bone is calculated
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and the elastic constants are compared with the ones obtained using the rule-

of-mixtures. Finally, the most important conclusions of this work are discussed

in Section 6.

2 ELASTIC CONSTANTS OF MINERALIZED COLLAGEN

FIBRILS

2.1 Analytical model based on Halpin-Tsai and Lekhnitskii transformation

The bibliography about elastic properties of platelet or ribbon reinforced com-

posites is scarce. In the works of Wagner and Weiner (1992) and Akiva et al.

(1998) different models are explained in detail. According to Halpin and Tsai,

the following equations are used to calculate certain elastic constants (Halpin,

1984):

p̄

pm
=

(1 + ζηVf )

(1− ηVf )
; η =

(pf/pm − 1)

(pf/pm + ζ)
(1)

where p̄ is the composite property (E11, E22, G12, G23, ν12, ν23), pf and pm

are the constituent properties, i.e. the reinforcement and matrix properties, re-

spectively, Vf is the volume fraction of platelet reinforcement and ζ represents

a factor function of the geometry of the reinforcement, packing geometry and

loading conditions. Subscripts 1, 2, 3 are the directions of the local orientated

coordinate system shown in Fig. 1. The volume fraction of platelet reinforce-

ment Vf is given by:
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Fig. 1 (a) Crystal dimensions L,W , T and the principal axis of the crystal, c. (b) Schematic

staggered crystal arrangement, showing the definition of the local orientated coordinate

system (1, 2, 3). dL, dW and dT are the distances between adjacent crystals

Vf =
LWT

(L+ dL)(W + dW )(T + dT )
(2)

where L is the platelet length, W is the platelet width, T is its thickness

and dL, dW and dT are the longitudinal, transverse in-plane and transverse

out-of-plane distances between platelets, respectively, see Fig. 1.

Halpin did not provide expressions to calculate ζ for the out-of-plane

Young’s modulus, E33, shear modulus, G31, and Poisson’s ratio, ν31, so in

this work, it is assumed that ζE33 = 2T/(L+W ), ζG31 = ζG23 and ζν31 = ζν23

following Akiva et al. (1998).

In this context, the elastic compliance matrix Sl for an orthotropic ma-

terial expressed in an orientated coordinate system (1, 2, 3), see Fig. 1, can

be calculated (Gibson, 1994) and, therefore, the orthotropic stiffness matrix

Cl =
(
Sl
)−1

. Superscript l denotes the local coordinate system.
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Fig. 2 Schematic representation of the two possible rotations ψ1 and ψ2 considered. Coor-

dinate system 1, 2, 3 is solidary with the mineralized collagen fibril
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Fig. 3 Coordinate system scheme: cylindrical coordinate system (r, θ, z) is used as a global

coordinate system and a local auxiliary coordinate system (x, y, z) is defined at any point,

being (x, y, z) coincident with (θ, z, r) respectively
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Table 1 Cosines of the angles that the local auxiliary directions (x, y, z) form with respect

to the local orientated directions (1, 2, 3)

1 2 3

x α1 β1 γ1

y α2 β2 γ2

z α3 β3 γ3

α1 = cos(ψ1) β1 = sin(ψ1) cos(ψ2) γ1 = − sin(ψ1) sin(ψ2)

α2 = − sin(ψ1) β2 = cos(ψ1) cos(ψ2) γ2 = − cos(ψ1) sin(ψ2)

α3 = 0 β3 = sin(ψ2) γ3 = cos(ψ2)

In addition, Fig. 2 shows two possible rotations of the crystals. First, the

crystal can rotate an angle ψ1 about the radial axis. Second, the apatite crystal

can rotate an angle ψ2 about its own axis, c. The principal axis of the crys-

tals, c which is coincident with axis 1, always remains parallel to the lamella

tangential plane.

On the other hand, a cylindrical coordinate system associated with the

osteon, (r, θ, z) is defined, see Fig. 3. In addition, a local auxiliary coordinate

system (x, y, z) at any point can be defined, whose axes can be identified with

the directions θ, z, r, respectively of the cylindrical coordinate system at that

point. The compliance matrix of a mineralized fibril expressed in the local

auxiliary coordinate system (x, y, z), can be calculated using the Lekhnitskii

transformation (Lekhnitskii, 1963). Table 1 defines the cosines of the angles

between the two coordinate systems. In this work, the expressions proposed

by Akiva et al. (1998) are used. The stiffness matrix of a mineralized collagen

fibril, with a general orientation in the osteon or global coordinate system

(r, θ, z), Cg , will present a full form.
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2.2 Thermodynamic restrictions

In order to fulfill thermodynamic principles, the compliance and stiffness ma-

trices have to be positive definite, see e.g. Gurtin (1972). Hence, this condition

implies that the elastic constants of the stiffness matrix have to verify some re-

lations. Lempriere (1968) expressed these relations for an orthotropic material

as follows:

E11, E22, E33, G23, G31, G12 > 0 (3)

|ν21| <
(
E22

E11

)0.5

|ν12| <
(
E11

E22

)0.5

(4)

|ν13| <
(
E11

E33

)0.5

|ν31| <
(
E33

E11

)0.5

(5)

|ν23| <
(
E22

E33

)0.5

|ν32| <
(
E33

E22

)0.5

(6)

1− ν21ν12 − ν13ν31 − ν32ν23 − 2ν12ν31ν23 > 0 (7)

1− ν13ν31 > 0 (8)

1− ν21ν12 > 0 (9)

1− ν32ν23 > 0 (10)

ν21ν32ν13<

1−ν221
(
E11

E22

)
−ν232

(
E22

E33

)
−ν213

(
E33

E11

)
2

<
1

2
(11)

In the technical note of Cowin and van Buskirk (1986) these thermody-

namic restrictions are summarized and they were used to verify the elastic

constants of bone obtained by Ashman et al. (1984) through ultrasound tech-

niques.
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3 MINERALIZED COLLAGEN FIBRIL: UNIT CELL FINITE

ELEMENT MODEL

3.1 Unit cell under periodic boundary conditions

A unit cell model can be used to estimate the behavior of an heterogeneous

material (Suquet, 1987; Hohe, 2003; Pahr and Rammerstofer, 2006). If peri-

odic boundary conditions are considered, the response of the unit cell will be

representative of the whole structure. Following Reisinger et al. (2011), peri-

odic boundary conditions must fulfill two conditions: the stress field must be

periodic, σ+
ij = σ−

ij , and the deformed shape of opposite sides of the unit cell

must be identical. This way, a strain-periodic displacement field is attained.

Six independent unitary strain fields are applied in order to obtain the

corresponding column i of the stiffness matrix, C:,i.

The Lamé-Hooke constitutive equation, is given by:

σ = Cϵ (12)

where σ = (σxx σyy σzz τyz τzx τxy)
T
is the stress vector, C is the stiffness

matrix and ϵ = (ϵxx ϵyy ϵzz γyz γzx γxy)
T
is the strain vector imposed, i.e.:

Load case 1: ϵ1 = (1 0 0 0 0 0)
T
, then C:,1 = σ1 ...

Load case 6: ϵ6 = (0 0 0 0 0 1)
T
, then C:,6 = σ6

where σi is the equilibrium stress vector corresponding to the strain field ϵi.

Stress components are obtained from the finite element results.
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In order to apply periodic boundary conditions to ensure that the hexahe-

dron analyzed is a representative volume of the entire domain, displacement

gradients along the corresponding external surface must be equal. In this work,

equations proposed by Hohe (2003) are used. In addition, it is necessary to

fully constrain the model to avoid rigid solid motions and, therefore, the cen-

tral node of the finite element model is constrained.

The analysis has been performed with the finite element commercial code

AnsysTM. The equation set has been applied with the command Constraint

Equation. A macro has been developed to apply constraint equations due to

the large number of constraints.

3.2 Mineralized collagen fibrils

Mineralized collagen fibrils are the building blocks of the lamellae. One of the

principal constituents of the fibril is collagen type I arranged in the triple-

helical molecule. Collagen molecules are staggered in the axial direction of

the fibril by a periodic distance of D = 67 nm, as commonly accepted in the

literature, and the length of the collagen molecule is approximately 4.4D =

294.8 nm (Rho et al., 1998; Orgel et al., 2001).

The crystals are the other principal component of the mineralized collagen

fibrils. They are platelet-shaped and a wide range of dimensions has been

reported in the literature: 15-150 nm in length, 10-80 nm in width and 2-

7 nm in thickness (Rubin et al., 2003). Distance between the platelets is of

the same order as the crystal thickness, between 2 and 4.5 nm and volume
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fraction between 30% and 48% (Lowenstam et al., 1989). There exist other

non-collagenous proteins but their volume fraction is lower than 10% (Yuan

et al., 2011).

It seems clear that mineral platelets follow a staggered arrangement in the

axial direction of the collagen fibril (Hassenkam et al., 2004; Jäger and Fratz,

2000; Orgel et al., 2001; Rubin et al., 2003). However, the arrangement pat-

tern of mineral platelets in the radial (or transverse) direction of the fibril

is still not well known (Yuan et al., 2011). For many investigators, crystals

organization in mineralized collagen fibrils is considered as a structure of par-

allel layers that traverse the fibril (Weiner et al., 1999; Landis et al., 1996;

Erts et al., 1994; Weiner and Wagner, 1998). Nevertheless, Yuan et al. (2011)

consider that the crystal arrangement in parallel layers inside the fibril is only

true at a small scale. At a large scale, collagen molecules are assembled in a

concentric pattern (Hulmes et al., 1995) so the mineral platelets will grow in

a concentric arrangement (Jäger and Fratz, 2000) in the fibril. The staggered

mineral arrangement has been widely reviewed by Ji and Gao (2004). In sev-

eral works (Zuo and Wei, 2007; Zhang et al., 2010), the mechanical properties

of bone-like hierarchical materials, based on a staggered mineral arrangement,

are studied. In the recent work of Bar-On and Wagner (2012) an analytical

expression for the effective modulus along the stagger direction is formulated,

although a different basic unit cell is considered. In the work here presented,

mineral platelets are supposed to be arranged in parallel layers that traverse
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the fibril following Rho et al. (1998), Weiner and Wagner (1998) and Weiner

et al. (1999).

3.3 Finite element model

In our finite element model of a mineralized collagen fibril, mineral crystals

are modelled as platelets of dimensions L ×W × T . A periodic solid model

of the staggered pattern that crystals follow in axial direction can be seen in

Fig. 4 for three volume fraction values (Vf = 0.1, Vf = 0.3 and Vf = 0.45). In

order to perform the analysis, a unit cell a×b×c has been modelled fixing the

boundaries compatible with geometrical periodicity. The 3D model has been

meshed with linear solid hexahedra. In Fig. 5 a detail of the numerical model

is shown.

Because there are many variables that could be considered for a given

volume fraction, in this work some of them are fixed, as frequent values, T = 5

nm, W = 30 nm and the space between crystals dW = dT = 2 nm. The

distance between crystals in the longitudinal axis, dL, is calculated as dL =

4.4D − L because the periodical unit in this direction must be equal to the

molecule length. Therefore, L is calculated through Eq. (2) for every volume

fraction. Note that a periodical model in transverse direction takes place for

each five molecules in the longitudinal direction. Considering these crystal

dimensions and their periodic arrangement, the dimensions of the hexahedral

representative volume shown in Fig. 4 are a = 4.4D = 294.8 nm, b = 32 nm

and c = 154 nm.
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Although Vf = 0.1 is not a usual volume fraction in bone, it is considered

here to evaluate the influence of collagen compliance on the mineralized colla-

gen fibril stiffness when no mineral gaps occur. In the case of Vf = 0.45, the

crystal length L tends to be very large.

Certainly, mineral crystals not only nucleate at gaps of collagen molecules

but they are also deposited along the molecule length. These crystals together

with non-collagenous proteins form the extra-fibrillar matrix where fibrils are

embedded. In this work the presence of the mineralized extra-fibrillar matrix is

not explicitly considered but the mineral volume fraction in the fibril, Vf = 0.3,

can be used as a representative value of the total mineral content in both fibril

and extra-fibrillar matrix (Reisinger et al., 2011).

4 LAMELLAR BONE: ELASTIC CONSTANTS AND UNIT

CELL FINITE ELEMENT MODEL

4.1 Fibril orientation pattern

In this work, the fibril orientation pattern proposed by Weiner et al. (1999)

is considered. These authors base their study on several TEM and SEM mi-

crographies arriving at the conclusion that a lamellar unit is an asymmetric

structure formed by five sub-layers in which fibrils change their orientation.

These authors infer from several studies that the variation of the sublayer

thickness is directly related to the strength capabilities of the bone.
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Fig. 4 (a) Staggered arrangement of crystals in the mineralized collagen fibril (proportions

are preserved) for different volume fractions. Boundaries of the unit cell (a × b × c) are

marked. D is the periodic distance equal to 67 nm
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Fig. 5 Solid model and detail of the finite element model of mineralized collagen fibril,

Vf = 0.3
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In the work of Weiner et al. (1999), the successive sublayers forming a

lamellar unit are rotated approximately 30◦ between them (see Fig. 6). In

the sublayer at 0◦ (sublayer 1 in Fig. 6), the crystal layer is parallel to the

boundary plane of the lamellar unit. Here the c-axes (which are parallel to the

local orientated axis 1) of the crystals are transversely arranged with respect

to the longitudinal osteon axis. This sublayer corresponds to the thin layer

and its about 0.4 µm thick (Akiva et al., 1998). In the successive sublayers the

c-axes of the crystals rotate an angle ψ1=(30◦, 60◦, 90◦, 120◦). The rotation

angle ψ2 (the crystal rotation around its own c-axis) is not well known (Akiva

et al., 1998). Second and third sublayers constitute a transition zone of about

0.4 µm in thickness. In the work of Akiva et al. (1998), the fourth and fifth

layers are named thick and back-flip layers and are about 1.8 µm and 0.6 µm

thick respectively. This pattern can be seen as a rotated plywood structure.

The recent work of Faingold et al. (2012) presents a nanoindentation study

of individual osteon lamella in order to understand the microstructural ar-

rangement of the mineralized collagen fibrils and the hydroxiapatite platelet

orientation. They conclude that lamellae exhibit different behavior, from the

inner to the outer in the osteonal radial direction, especially the first lamella

(the closest to the Havers’ canal). Their results are in agreement with the ro-

tated plywood arrangement of the mineralized fibrils. In the study of Rezkinov

et al. (2013) a different structure of lamellar bone is presented. These authors

analyze the circumferential lamellar bone located in the periosteal region of
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rat tibia. They conclude that there are three kinds of sub-layers having one of

them a rotated plywood structure.

4.2 Analytical model based on the rule-of-mixtures

Once the elastic constants of the sublayers forming a lamellar unit are deter-

mined, a first approximation to the elastic constants of lamellar bone can be

obtained using the rule-of-mixtures (Wagner and Weiner, 1992; Akiva et al.,

1998) as follows:

Dlam =
1

T
(T1D1 + T2D2 + T3D3 + T4D4 + T5D5) (13)

where Ti is the thickness of the sublayer i and T is the lamellar unit thickness,

T =
∑
Ti, with i = 1...6. Dlam is the elastic property of the lamella and Di is

the corresponding elastic property of each sublayer.

4.3 Finite element model

In this case, the unit cell is divided into five volumes corresponding to the

five sublayers described in Section 4.1. The stiffness matrix of each sublayer

has previously been calculated using the finite element model of a mineralized

collagen fibril as described in Section 3 and the Lekhnitskii transformation

(Section 2.1), to consider the mineralized collagen fibrils rotations, ψ1 and ψ2

(see Fig. 2). The variables in the model are: the angle that the c-axis rotates

between sublayers, ψ1=(0◦, 30◦, 60◦, 90◦, 120◦), and the angle that the crystal
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rotates about its own axis ψ2. The angle ψ2 is 0◦ from the first to the third

sublayers and several combinations of ψ2 are considered for the fourth and

the fifth sublayers, i.e.: (0◦, 0◦), (50◦, 90◦), (70◦, 90◦), (70◦, 30◦), respectively.

Sublayer thicknesses are assumed to be t = (0.4, 0.2, 0.2, 1.8, 0.6) µm (Akiva

et al., 1998).

In Fig. 6, the finite element model is shown together with a schematic il-

lustration of how mineralized collagen fibrils change their orientation in the

successive five sublayers. Volumes corresponding to each sublayer are num-

bered from 1 to 5. Note that sublayer 1 is divided into two portions in the

model in order to satisfy a continuum periodical stress field.

Following the same procedure described in Section 3, periodic boundary

conditions and six independent unitary strain fields are applied. Then, the

anisotropic stiffness matrix of the lamellar unit can be calculated.

5 RESULTS

5.1 Range of mineral aspect ratios compatible with thermodynamic

restrictions using Halpin-Tsai equations

As mentioned above a wide range of crystal platelets dimensions can be found

in the bibliography: L = 15 − 150 nm, W = 10 − 80 nm and T = 2 − 7 nm

(Rubin et al. 2003). When Halpin-Tsai equations are used to estimate theoret-

ically elastic constants of a mineralized collagen fibril for typical constituent

properties (Wagner and Weiner, 1992; Akiva et al., 1998), one should pay at-
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Fig. 6 Finite element model of a representative unit lamellar cell and schematic illustration

of the five sublayers proposed by Weiner et al. (1999)

tention to the values of crystal aspect ratios, L/T and W/T , because not all

the possible crystal aspect ratios verify the thermodynamical restriction sum-

marized in Section 2.2. In what follows a detailed study of the influence of the

aspect ratios on the elastic constants is presented for Halpin-Tsai equations,

and the range of aspect ratios that fulfill the thermodynamic restrictions is

provided. This study has been performed using the collagen and apatite elastic

properties provided by Akiva et al. (1998), i.e. Ecol = 1.5GPa, Eap = 114GPa,

νcol = 0.38, νap = 0.3. These values are similar to those found in other works,

e.g. Mart́ınez-Reina et al. (2011). In addition, we also consider a volume frac-

tion of 0.5 as in Akiva et al. (1998).
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Fig. 7 Thermodynamic restriction corresponding to Eq.(5) as a function of aspect ratios

L/T and W/T . Constituent properties from Akiva et al. (1998)

Results for Eq. (5) are presented in Fig. 7 as one example of thermodynamic

restriction that is not satisfied for all aspect ratios when Halpin-Tsai equations

are considered.

Fig. 8 is a results summary of the dimension ranges that fulfill the ther-

modynamic restrictions. Combinations of aspect ratios that are not given in

the ranges of Rubin et al. (2003) and this is indicated in the table by “out of

range values”.

It can be observed that only a small range of values satisfy simultaneously

all thermodynamic restrictions when Halpin-Tsai equations are used. There-

fore, these equations must be used with caution for the constituent properties

given above.
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Fig. 8 Results summary for all thermodynamic restrictions when Halpin-Tsai equations

are applied. LT = L/T and WT =W/T . Constituent properties from Akiva et al. (1998)

5.2 Mineralized collagen fibril. Monoclinic homogenized stiffness matrix

We have calculated numerically the homogenized stiffness matrix of a min-

eralized collagen fibril using the finite element model described in Section 3.

In order to perform comparisons with the recent models of Reisinger et al.

(2011) in Section 6, collagen and mineral phases are assumed to be elastic

isotropic as provided by these authors with Young’s modulus Ecol = 5 GPa

(Cusak and Miller, 1979), Eap = 110.5 GPa (Yao et al., 2007), and Poisson’s

ratios νcol = 0.3 and νap = 0.28 (Yao et al., 2007). As expected, results show

a monoclinic behavior of the material because the staggered crystal pattern

shows only one symmetry plane. The 3D homogenized stiffness matrix Cfib of
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the mineralized collagen fibril for the case of Vf = 0.3 is:

Cfib=



31.790 7.008 4.115 0 1.066 0

25.050 3.666 0 0.162 0

9.706 0 0.001 0

2.789 0 0.219

sym 2.888 0

7.745



GPa (14)

Considering the local orientated coordinate system (1, 2, 3) shown in Fig. 1(b),

the elastic constants for Vf = 0.3, can be calculated: Efib
11 = 28.42 GPa,

Efib
22 = 22.67 GPa, Efib

33 = 8.84 GPa, νfib12 = 0.228, νfib23 = 0.301, νfib31 = 0.105,

Gfib
12 = 7.73 GPa, Gfib

23 = 2.78 GPa, Gfib
31 = 2.85 GPa.

Similar analysis have been performed for other volume fractions. For Vf =

0.1, the Young’s modulus in the longitudinal direction of the fibril is Efib
11 = 9.1

GPa whereas it increases to 43.87 GPa for Vf = 0.45.

Fig. 9 shows a deformed shape detail of the mineralized collagen fibril unit

cell for each unitary strain field load case for the case Vf = 0.3.

The above results correspond to the local orientated coordinate system, as

in Fig.1(b). For other values of ψ1, ψ2 the compliance matrix of the mineral-

ized collagen fibril is calculated in the global coordinate system, Sg , applying

Lekhnitskii transformation for each sublayer of lamellar structure. In Figs. 10-

11 it is shown the variation of Young’s moduli of the fibril in the local auxiliary

directions for a volume fraction Vf = 0.3.
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Fig. 9 Deformed shape detail of each unitary strain field, applied to calculate homogenized

stiffness matrix of a mineralized collagen fibril, Vf = 0.3

Fig. 10 represents the variation of Young’s modulus in x and y when angle

ψ1 takes values from 0◦ to 90◦. In this case and since ψ2 = 0◦, the Young’s

modulus Efib
zz is coincident with Efib

33 and remains with a constant value equal

to 8.84 GPa. Note that Efib
yy first decreases being its minimum value 20.54 GPa

at about ψ1 = 40◦. Efib
xx shows a complementary trend with respect to Efib

yy

being its minimum value at ψ1 = 50◦.

The trends for Poisson ratios and shear moduli are summarized next. The

Poisson ratio that shows a greater variation with ψ1 is ν
fib
xy , being its maximum

value 0.346 at ψ1 = 40◦ and its minimum value 0.182 at ψ1 = 90◦. νfibyz and

νfibzx present more uniform values being νfibyz /ν
fib
zx = [2.8 − 2.3] indicating a
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high anisotropic behavior. Shear moduli Gfib
yz and Gfib

zx remain almost constant

about 2.8 GPa. The maximum value is reached by Gfib
xy : 10.5 GPa at ψ1 = 45◦.

The Young’s modulus of the mineralized collagen fibril as a function of the

angle ψ2 is shown in Fig. 11. Since ψ1 = 0, the Young’s modulus in x direction

is constant, Efib
xx = 28.42 GPa and is coincident with Efib

11 . Note that Efib
zz first

decreases with ψ2 reaching the minimum value of 7.74 GPa at about ψ2 = 35◦.

As expected, Efib
yy shows a complementary trend with respect to Efib

zz , being

its minimum at about ψ2 = 55◦.

Poisson ratios and shear moduli variations with the angle ψ2 have also

been evaluated. The Poisson ratio νfibxy does not vary much with ψ2, taking

values between 0.228 and 0.238. The greatest variation attained to νfibyz from

a maximum value of 0.493 at about ψ2 = 35◦ to a minimum value of 0.117 at

ψ2 = 90◦. The variation of νfibzx with the angle ψ2 is similar to that shown with

the angle ψ1. All shear moduli vary widely with ψ2. G
fib
xy and Gfib

zx show the

same maximum value (7.73 GPa) at ψ2 = 0◦ and 90◦ respectively, showing also

a symmetrical trend with respect to each other. Gfib
yz is maximum at ψ2 = 45◦

with 5.4 GPa.

5.3 5-layered lamella structure. Anisotropic homogenized stiffness matrix

Results show an anisotropic behavior of lamellar bone with a stiffness matrix

with non-zero entries. The stiffness matrix Clam has been calculated for dif-

ferent combinations of ψ2 for the fourth and fifth layers and volume fraction

Vf = 0.3. The stiffness matrix of lamellar bone, considering ψL4
2 = 70◦ and
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ψL5
2 = 30◦, is:

Clam =



15.650 5.810 4.887 −0.256 −0.560 −0.237

28.960 5.061 0.194 −0.372 −0.169

13.830 0.272 −1.816 0.266

4.765 −0.063 0.967

sym 3.776 −0.053

5.541



GPa (15)

Table 2 summarizes the elastic constants in the osteon coordinate system

for several combinations of the angle ψ2 of the fourth and fifth layers (super-

scripts L4 and L5 respectively).

It is important to note that the elastic constants are very influenced by

ψ2. Each elastic constant with superscript RM is obtained through rule-of-

mixtures, Eq. (13). Results are expressed in the global osteon coordinate sys-

tem, see Fig. 3. By comparing the rule-of-mixtures values with the ones calcu-

lated numerically, one can conclude that the rule-of-mixtures can be applied to

obtain a preliminary estimation of the elastic constant properties. In general,

both results obtained by finite element analysis and the rule-of-mixtures are

in good agreement.

With the intention of quantify the influence of ψ2 on the anisotropy of

lamellar bone, Young’s moduli have been calculated through the rule-of-mixtures

as a function of of ψL4
2 (see Fig. 12). The influence of the fourth layer is ex-

pected to be greater than the fifth layer because it is the thickest, and hence in
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Table 2 Elastic constants of lamellar bone using finite element analysis. Values with super-

script RM are obtained using the rule-of-mixtures. Units of the Young’s moduli and shear

moduli are in GPa

ψL4
2 = 0◦ ψL4

2 = 50◦ ψL4
2 = 70◦ ψL4

2 = 70◦

ψL5
2 = 0◦ ψL5

2 = 90◦ ψL5
2 = 90◦ ψL5

2 = 30◦

Err 8.85 10.45 13.35 11.18

ERM
rr 8.84 11.35 14.46 11.67

Eθθ 23.04 12.50 12.62 13.29

ERM
θθ 22.91 12.18 12.32 13.05

Ezz 26.04 25.31 25.33 25.91

ERM
zz 25.82 23.85 23.85 25.02

νrθ 0.114 0.286 0.256 0.255

νRM
rθ 0.114 0.351 0.330 0.331

νθz 0.221 0.156 0.163 0.148

νRM
θz 0.226 0.175 0.182 0.150

νzr 0.316 0.251 0.236 0.274

νRM
zr 0.314 0.247 0.228 0.279

Grθ 2.81 4.05 3.30 3.53

GRM
rθ 2.80 4.32 3.31 3.44

Gθz 8.40 5.59 5.15 5.34

GRM
θz 8.32 5.15 4.71 5.03

Gzr 2.84 4.28 4.83 4.58

GRM
zr 2.83 4.20 5.28 5.50

these analysis, ψL5
2 has been fixed to 30◦. As can be seen, the anisotropic be-

havior decreases when ψL4
2 is large. For the analyzed case, ERM

rr = ERM
θθ = 13.1

GPa at ψL4
2 = 75◦, while ERM

zz remains constant as 25.02 GPa.
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Fig. 12 Influence of ψL4
2 on Young’s moduli of lamellar bone calculated through the rule-

of-mixtures. Note that ψL5
2 = 30◦ is fixed in order to analyze the influence of the thickest

layer.

Fig. 13 shows the deformed shape of the 5-layered lamellar structure unit

cell for the volume fraction Vf = 0.3. It has been checked that all stress

components and deformed shapes of the unit cell are equal at opposite sides.

6 DISCUSSION AND CONCLUSIONS

As a result of the previous analysis, it can be concluded that careful attention

must be paid if Halpin-Tsai equations are used to estimate the elastic constants

of the mineralized collagen fibril. This is because not all possible dimensions

of the crystal included in the ranges reported by (Rubin et al., 2003), lead

to a positive definite stiffness matrix when using Halpin-Tsai equations with

typical constituent properties, as those provided by Akiva et al. (1998).
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Fig. 13 Deformed shape detail of each unitary strain field, applied to calculate the homog-

enized stiffness matrix of lamellar bone. Vf = 0.3

A staggered arrangement of crystals is assumed in the fibril axial direction

and parallel layers of crystals are considered in the fibril transverse direction.

This model at sub-micro scale is based on the observation of previous investi-

gators (Section 3.2). In this work, a monoclinic homogenized stiffness matrix

of mineralized collagen fibril has been obtained numerically.

Elastic constants for a mineralized collagen fibril calculated in this work

are not directly comparable with the ones obtained by Akiva et al. (1998).

In the present work, other crystal dimensions and distance between crystals

are considered and no assumption about material behavior is made. Akiva

et al. (1998) use several theoretical models including Halpin-Tsai equations
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despite the aspect ratios calculated with their crystal dimensions correspond

to a non-positive definite stiffness matrix.

In this work, the 5-layer lamellar structure proposed by Weiner et al. (1999)

has been also considered because it is in good agreement with the experimental

results, following Reisinger et al. (2011). Since fibrils rotate in adjacent layers,

the stiffness matrix exhibits an anisotropic behavior whose constants have been

calculated.

The elastic constants of lamellar bone calculated in this work can be com-

pared with values reported in the literature (see Table 3). Elastic constants

for cortical bone of Cowin (1) are cited in Franzoso and Zysset (2009) and

are summarized in this work. Yoon and Cowin (2008b) (2) and more recently

Mart́ınez-Reina et al. (2011) (3) use a complete analytical multiscale model

where water content and porosity effects are included. Franzoso and Zysset

(2009) (4) use nanoindentation techniques and Reisinger et al. (2011) (5) con-

sider finite element models for different fibril patterns and homogenization

theories to estimate fibril array elastic constants. Reisinger et al. (2011) as-

sumed that crystals are spheroidal and randomly distributed in the collagen.

This differs from the staggered arrangement of the crystal like platelets as-

sumed in this work. The results of this work are given in column (6). These

results correspond to the rotation angle ψ2 = 70◦ and 30◦ for the sublayers

fourth and fifth respectively. It can be seen that our results are in the range

of reported values.
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Table 3 (1) Cowin (2001), (2) Yoon and Cowin (2008b), (3) Mart́ınez-Reina et al. (2011),

(4) Franzoso and Zysset (2009), (5) Reisinger et al. (2011), (6) this work, considering

rotation angles ψL4
2 = 70◦ and ψL5

2 = 30◦. Units of Young’s moduli and shear moduli are

in GPa

(1) (2) (3) (4) (5) (6)

Err 12.5 16.9 17.2 9.17± 0.63 16.3 11.18

Eθθ 13 19.0 19.7 17.28± 1.89 17.5 13.29

Ezz 21 22.3 22.0 24.66± 2.71 24.0 25.91

νrθ 0.42 0.248± 0.012 0.255

νθz 0.21 0.286± 0.024 0.148

νzr 0.33 0.557± 0.022 0.274

Grθ 4.45 4.69± 0.37 3.53

Gθz 5.3 7.68± 0.53 5.34

Gzr 5.8 5.61± 0.47 4.58

The homogenized stiffness matrix of lamellar bone is calculated using an

analogous scheme as for mineralized collagen fibrils. Limitations of this model

are the absence of water content, porosity and the extra-fibrilar matrix is also

not considered. Future works could take into account these factors. In this

work, a high influence of rotation angles ψ1 and ψ2 on the elastic constants

estimation of lamellar bone has also been shown.

This study makes it possible to calculate the 3D stiffness matrix of the

lamellar bone using the proposed numerical model, considering different rota-

tion angles of the crystals in successive layers and different layer thicknesses.

This contribution can be of interest for further 3D osteonal analysis.
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