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Abstract— Experimental results on multi-wavelength 

conversion based on optical comb generation for optical 

switching and multicast applications are presented. All the 

newly generated channels showed good performance with 

clear and open eye diagrams. 
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I. INTRODUCTION 

Optical multi-wavelength converter (MWC) is an 
attractive technology for WDM networks since it allows 
simultaneous conversion of incoming data without the 
necessity of multiple O-E-O transponders. It can be used 
to route and switch wavelengths, reduces the blocking 
probability of WDM networks, increases their 
transparency, and enables dynamic wavelength 
assignment and allocation capability [1]. Moreover, MWC 
facilitates new applications, such as optical multicast and 
optical switching. Several approaches for MWC have 
been reported in the literature as those based on four-wave 
mixing (FWM), cross-gain modulation (XGM), cross-
absorption modulation (XAM), and cross-phase 
modulation (XPM). However, they present some 
disadvantages: FWM is limited by its low conversion 
efficiency, wavelength inflexibility and polarization 
dependence; XGM requires high input optical signal; 
XAM suffers from large insertion loss of electro-
absorption modulators, and XPM-based MWC is strongly 
influenced by the in-band high-order FWM products [2]. 
In this paper, optical-comb-based MWC for optical 
switching and multicast is proposed and experimentally 
validated. Generating the multiple copies of the incoming 
signal via an optical comb has the following advantages: 
a) total transparency to the incoming wavelength, b) 
uniform optical power levels of all multicast channels, c) 
wide wavelength conversion range under some optical 
comb generation schemes, and d) low optical power 
requirements. The experimental results showed that the 
quality of newly generated signals was slightly degraded 
in comparison with back-to-back configuration. 

II. OPERATING PRINCIPLE 

The conventional technique for multi-wavelength 
generation based on an optical comb is achieved by using 
an electro-optic phase modulator (PM), whose operating 
principle is as follows. When a CW light of angular 
frequency w0 is phase modulated by a sinusoidal signal of 
frequency fm, the modulated light field, Eout, is given by:  
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where Ein is the input signal, Δθ is the modulation index 
and Jq (.) denotes the qth-order Bessel function. This 
phase modulation leads to a frequency modulation of the 
optical signal which results in the generation of new 
optical frequencies spaced symmetrically around w0 with a 
separation equal to a multiple of fm. Fig. 1 shows the 
response of the E/O phase modulator when introducing a 
CW light and a sinusoidal signal through the RF port of 
the PM. As it can be seen, an optical comb is generated.  

Although electro-optic methods are a very promising 

solution for optical comb generation, they do not show 

flat spectral response as the intensity of each frequency 

component is governed by Bessel functions, as shown in 

Fig. 1 [3]. In the literature some techniques have solved 

this problem by using a two-stage modulator, where a 

phase modulator and a Mach-Zehnder modulator (MZM) 

are cascaded in tandem, or by using a conventional 

single-stage MZM [4-5]. By using these configurations 

an optical frequency comb with excellent spectral flatness 

can be generated.  

To validate the capability of replicating the incoming 

data placed at a specific wavelength into multiple 

wavelengths, the experimental setup shown in Fig. 2 was 

used. The output signal from a laser was encoded with 

231-1 pseudorandom binary sequence (PRBS) by an 

intensity modulator to form the 1.25 Gb/s nonreturn-to-

zero (NRZ) data signal, and then was phase modulated by 

a sinusoidal signal of fm= 10 GHz.  

An optical spectrum analyzer (OSA) monitored the 

output spectrum. As illustrated in Fig. 2, the spectrum 

obtained at the output of the phase modulator is 

composed of new wavelengths transporting the input 

modulated data. It should be noted that the data bitrate 

can be increased as the new optical wavelengths 

generated by the optical comb are orthogonal so that they 

may overlap in a similar way to orthogonal frequency-

division multiplexing (OFDM) systems [6].  
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Figure 1. Generation of an optical comb using a phase modulator. 
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Figure 2. Experimental setup for validating multi-wavelength 

conversion of incoming data. 

Moreover, higher frequency spacing can be achieved by 
increasing fm.  

The MWC operation was validated at 1.25 Gbit/s and 
10-GHz spacing as a proof of concept. These values were 
imposed by the available experimental equipment. 

A number of desirable optical network functionalities, 
such as transparent data multicast, can be enabled by 
using the optical-comb-based MWC. The implementation 
of multicast can be easily introduced into the optical 
switch using passive waveguides such as arrayed 
waveguide gratings (AWGs). To improve the flexibility of 
the system, we propose to perform the MWC based on 
optical comb followed by a select stage, where one or 
many wavelengths can be selected, as shown in Fig. 3.a. 
Concretely, this select block is implemented with FBG-
based (Fiber Bragg Gratings) optical filters, as it will be 
explained in the next section. Additionally, MWC can also 
be used for optical switching in which only one 
wavelength is selected by a fast tunable filter (Fig. 3.b). In 
the literature there are some proposals for tunable optical 
filtering in the range of nanoseconds or even picoseconds 
[7-8].  

Apart from the applications mentioned above, optical-
comb-based MWC enables wavelength reuse in different 
lightpaths, eases wavelength contention and packet 
buffering issues, reduce node blocking probabilities, 
facilitates dynamic network wavelength assignments, and 
provides new ways for optical protection.  
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Figure 3. Main applications for the optical-comb-based flexible MWC: 
a) optical multicast; b) optical switching . i, k: integer [0 … n]. 

It can also be used for microwave optical filter 
implementations or optical frequency division 
multiplexing techniques. Moreover, in [9] a novel 
spectrum-efficient elastic path network based on the 
concept of optical-comb-based MWC has been proposed. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

Fig. 4 shows the experimental setup for the data multicast 

demonstration, where flexible multi-wavelength 

conversion was achieved by using an optical comb. The 

non return to zero (NRZ) data signal was generated by 

externally modulating a tunable CW laser source tuned to 

1550.17 nm and sent to a 10-GHz PM. The sinusoidal 

modulation frequency was set to 10 GHz obtaining new 

wavelengths placed symmetrically around 1550.17 nm 

with 10-GHz spacing. It should be noted that with a 

single-stage MZM and increasing fm an optical comb with 

higher frequency spacing can be easily created [5]. After 

MWC, the generated channels were then filtered to prove 

the multicast operation for 4 channels. These 4 channels 

(0, 1, 2, 3) were routed to the select block after being 

amplified. The select block was comprised of two FBG-

based optical filters and two optical switches to allow 

total flexibility in the choice of the output wavelength and 

port. Fast switching speed can be achieved by using 

electro-optic switches [10]. The FBG-A grating 

performed a coarse filtering to split up 0 and 1 from 2 

and 3 (IN 1, IN 2: insets of Fig. 4), obtaining a ~30-dB 

rejection ratio. After the first filtering stage, an optical 

switch was used to select either IN 1 or IN 2 (Out 1). This 

signal was then sent to another grating, FBG-B, which 

performed a fine filtering to select only one output 

wavelength (Fig. 5). To this end, the FBG-B was 

composed of two cascaded gratings with 10-GHz 

bandwidth and centred at 0 and 3, respectively. Finally, 

the signals coming from the FBG-B were sent to a second 

optical switch for flexible routing to the desired output 

port. An example of operation is as follows. If the 

reflected signal of the FBG-A (IN 1) is routed to Out 1 

and sent to the FBG-B, 0 is obtained at IN 3 and 1 at IN 

4 ports (Fig. 5.a, Fig. 5.b). Otherwise, if the signal 

passing through the FBG-A (IN 2) is routed to Out 1, 2 

is obtained at IN 3 and 3 at IN 4 ports (Fig. 5.c, Fig. 

5.d).   
To check the quality of these multicast signals, we 

measured the bit-error-rate (BER). Every channel was 
extracted and sent to a photoreceiver. The obtained BER 
curves are reported in Fig. 6. As it can be seen, all 



channels exhibited a limited penalty (2.5 dB in the worst 
case at BER= 10-9). This penalty was mostly caused by the 
characteristics of the fabricated filters used since the 
measured channel was not perfectly filtered and thus a 
slight interference from adjacent channels appeared. 
Indeed the channels that suffered most from this effect 

were those ones having lowest difference between the 
pass and rejected bands (Channels placed at 0 and 3).  
All the channels showed clear and open eye diagrams for 
BER values lower than 10-9, as shown in the inset of Fig. 6 
(Lambda 0). 
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Figure 4.Experimental setup of MWC based on optical comb for performing data multicast.  
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Figure 5. Optical spectrum at the system output: a) and b) when  IN 1 is redirected to the Out 1; c) and d) when IN 2 is sent to Out 1. 
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Figure 6. BER performance of one-to-four multi-wavelength conversion 

compared with the back-to-back configuration. 

IV. CONCLUSIONS 

Optical-comb-based MWC can be suitable for several 
applications in next generation networks, such as optical 
multicast. In this paper, optical multicast of an NRZ signal 
at 1.25 Gbit/s was experimentally demonstrated. By using 
an optical comb, the input signal was transferred into 
multiple wavelengths transparently. To increase the 
flexibility of the system the generated signals were sent to 
a select block responsible of selecting one or many output 
wavelengths and of routing them to a specific output port. 
All the multicast channels showed good performance and 
clear eye diagrams. 
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