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Abstract 

A multi-objective optimization method is presented for membrane structures to answer the 

question “which shape is optimal” directly. Multi-objective Genetic Algorithm is applied to 

solve the Pareto set, which includes all solutions with different weights and can be provided 

designers to select with regard to their specific objectives and liking. And the applications 

on conical membrane structures are carried out. The results demonstrate that the proposed 

method is effective and accurate. 
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1. Introduction 

Membrane structure is a kind of tension structure, the performance of which is highly 

dependent on its shape and prestress. At present, the methods of form finding and load 

analysis for membrane structures have been well developed. However, it is still a difficult 

work to select optimal shapes efficiently from millions of available ones. To get better 

performance of structure, a number of shapes with different combinations of parameters, 

have to be tried and modified for many times relying much on the experience of designers. 

Such an empirical procedure is feasible for small size structures however inadequate to 

medium or large size structures. It not only leads to the unnecessarily cost in time and 

finance but also failures of structures. For instance, at least three membrane structures with 

medium to large size collapse in Brazil during the year of 2005 because of lack of 

conscious analysis( Pauleti et al [1]). Optimization of membrane structures is an efficient 

method to deal with this problem, which is expected to answer the question “which shape is 

optimal” directly. 

In the recent past,  the optimization problem of membrane structures has been studied by 

some researchers. Sindel and Nour_Baranger [2] optimized membrane structures taking 
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maximum stiffness as objective and choosing structure parameters such as pretension, 

height-to-span ratio as optimization variables. Maximum stiffness is described by the sum 

of node displacements. The Conjugate Gradient Method is adopted to solve this problem. 

Uetani and Fujii [3] proposed an objective to get a specified shape with respect to stress 

ratio in two directions. Derivative is calculated to solve this problem. In Qian et al. [4], the 

membrane structure is optimized by minimizing strain energy for maximum stiffness. In 

conclusion, the above literature survey indicates that most of researches focused on single 

objective optimization of structures. But the real-world design of a membrane structure is 

actually governed by multiple requirements, which are often conflicting and should be 

treated simultaneously to obtain a desired compromise. San et al. [5] considered the 

multiple optimization objectives of membrane structure and used the weighting method to 

change the several objectives into a single one; the big trouble of this method is how to 

determine the weighting coefficients, which affects the results of optimization severely. 

Sometimes it happens that the decision maker is not able to assign priorities to the 

objectives and optimizations have to be carried out for many times with different weighting 

factors. 

Therefore, in this paper a multi-objective optimization method based on Pareto Multi-

objective Genetic Algorithm is proposed for design of membrane structures. Help is 

supposed to be provided to the designers by presenting set of Pareto optimal solutions. 

They can pick up that solution out of this set with regard to the specific objectives and 

liking. 

2. Multi-objective Genetic Algorithm  

As discussed above, optimization of membrane structures are generally multi-objective, 

which can be formulated as:  
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Where, X is optimization variable vector; if is ith objective function; ),2,1)(( JjXg j L=， ),2,1)(( KkXhk L=  are constraint functions. 

Much different form single-objective problem, it is difficult to optimize all objective 

functions simultaneously when they are in trade-off relationship. To be more clear, the 

Pareto optimal solution is introduced here. 

For multi-objective optimization problems there is not a single solution, but a set of non-

dominated solutions which is called Pareto set, which is sketched in Figure 1. A solution 

belongs to Pareto set if and only if there does not exist another solution that is no worse in 

all objectives and is strictly better in at least one objective (Deb [6]). In the present study, 

the global Pareto set is focused on, in which no assumption about the relative importance of 

different objective criteria is made a priori. To obtain the whole Pareto set directly, Genetic 

Algorithms (GAs) are considered one of the most powerful methods. 
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objective space

Pareto

 

Figure 1: A two objective search space and the corresponding Pareto set 

GAs are stochastic search techniques based on the mechanism of natural selection and 

natural genetics, and do not need a differentiable function to solve problems.  Different 

from traditional optimization algorithms, GAs focus on a population of solutions instead of 

a single one, which is the main reason that GAs are efficient to solve the whole Pareto set. 

The process of GA is initialized with a randomly generated group of trial solutions, i.e., the 

initial population. For each trial solution in a population, the relevant objective functions 

are evaluated and a fitness value is obtained to reflect its relative merit standing in the 

current population. Based on these fitness values, GAs perform a series of operations of 

selection, crossover, and mutation to create a new offspring generation. The GA process 

continues until prescribed stopping criteria are satisfied. In previous researches, Single-

objective Genetic Algorithms (SGAs) have been introduce a lot (San [5], Gen [7]). 

Accordingly, this paper focuses on the characteristics of Multi-objective Genetic 

Algorithms (MGAs) different  from SGAs, which include two aspects: the evaluation of 

fitness and the requirement of diversity.  

1) Evaluation of fitness in MGA 

In this study the evaluation of fitness is based on non-domination ranking which depend on 

the locality of solutions in objective function space (Carlos Fonseca and Peter Flemming, 

1993). In this method, a design is denoted rank-1 if it is Pareto-optimal in the generation. 

For other designs, if the number of its domination solutions is p, its rank is defined as: 

rank=1+p (as Figure 2). It is obvious that the designs with smaller rank numbers have 

higher fitness. The fitness function is obtained by interpolation by the rank number from 0 

to 1. 

 

Figure 2: Diagrammatic sketch of ranking for a two-objective optimization 
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2) Maintenance of diversity in MGA 

MGAs have higher requirement in maintaining diversity of individuals than SGAs because 

of the aim to guarantee uniform distribution of Pareto solutions. An efficient approach is 

the use of niche sharing technique (Goldberg, 1989), where assessment of each individual 

solution is also depended on its immediate neighbors. Fitness sharing consists in the 

reduction of the fitness of an individual proportionally to the number of nearby individuals. 

The shared fitness if ′ of the  i-th individual is given by 

i

i
i

m

f
f =′                                                            (1) 

where if is the original fitness of the i-th individual and im is the niche count： 
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im is the niche count that takes into account the whole population in relation to the i-th 

individual, degrading the fitness of this individual according to the nearness of the others. 

Variables � and ijd are, respectively, the population size and the distance between 

individuals i and j . The function that quantifies this proximity is the following: 
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Where shareσ
is niche radius, which is generally defined by empirical formulas or trial 

methods. 

3. Examples  

3.1 Structure models 

In this section, the proposed multi-objective method is applied to optimize conical 

membrane structures, which have simple shapes and have been used a lot . However, it is 

still not clear which shapes are optimal.  For example, the “Centro Cultural CBI” in Brasil 

(( Pauleti et al [1]), which is a kind of conical  type collapse because of unreasonable 

design. 

Here consider a single conical membrane structure supported by a frame. The boundary 

shape and the layout of cables are as illustrated in Figure 3, in which dimensions of plan is 

denoted as aa×  and height of conical is denoted as H . In addition, conical structures  are 

generally combined to form more complex shapes, such as double conical structures(shown 

in Figure 4). The structure has a rectangle plan with the dimensions of aa×2 and is 
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symmetrical with respect to x and y axis. The mast rings are located eccentrically. The 

eccentric distance is denoted as e , where bae −= 2/ . If 0>e , the mast ring is close to 

the out boundary; if 0<e , the mast ring is close to the center point o . 

The optimal solutions of single conical and double conical membrane structure both will be 

obtained. The material properties are shown in Table1 

bridge cables

rigid boundaries

mast ring

 

 

Figure 3: Sketch of single conical membrane structures 
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cable
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Fig.4 Sketch of double conical membrane structures 

Table1 Material properties 

Membrane  Cable 

Extensional 

Rigidity 

(Ext,Eyt) 

Shear 

rigidity  

(Gxyt) 

Poisson’s 

Ratio 

( µ ) 

Thickness 

(t) 

Tensile 

rigidity 

(EA) 

1200.0 

kN/m 

120.0  

kN/m 
0.2 1mm 6.28×10

4
kN 
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3.2. Optimization model 

3.2.1. Optimization Variables 

In engineering applications, optimization variables are generally the spatial control node 

positions of the design model and prestress which define shapes of membrane structures. 

For clear expression, they are defined as dimensionless parameters. The spatial control 

node positions of conical membrane structures are represented as height-to-span ratio:  

 

L

H
=λ                                                           (4) 

Where, H and aL 2= are height and span of structures, respectively. 

and the location of central masts, which is for double conical:  

a

e

×
=

5.0
δ

                                                    (5) 

Distribution of prestress is described by two functions, which respectively express the 

prestress distribution of membrane surface and the ratio of cable pretension to membrane 

stress. As most membrane structures are designed as uniform stress structures, i.e. the 

prestress of membrane and pretension of cables are constant, the distribution of prestress 

can be described only by the prestress density ratio of cable to membrane. The prestress 

density of cable is expressed as 

lTCp =                                                       (6) 

Where, T and l are respectively pretension and length of cables. 
The prestress density of membrane is denoted as 

tSTM p *σ==                                         (7) 

Where, σ and t  are respectively prestress and thickness of membrane； pM represents 

the pretension per unite width. 

Consequently, the prestress density ratio of membrane structures is obtained as following 

p

p

M

C
=γ                                                               (8) 

3.2.2. Optimization Objectives 

Optimization objectives play key roles in an optimization problem, which represent the 

evaluation criteria of a structure and affect the optimization results directly. In this example, 

shapes of membrane structures are discussed to be evaluated in three aspects, deformation, 

stress as well as reaction, and three corresponding objective functions are proposed to 

describe these performances.  

1）Objective1: Maximization of stiffness 
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Different from traditional structures, deformation is main response of membrane structures 

against external loads. The strain induced in membrane is usually larger than that in 

traditional structure elements by several orders of magnitude. Consequently, the designing 

of membrane structures is usually oriented by stiffness rather than strength. A lack of 

stiffness will result in a lot of problems such as wrinkling, fluttering and water 

accumulation, which are apt to decrease the safety of structures dramatically. Therefore, 

large stiffness is always an important objective of shape design of membrane structures. 

Here, the objective function for stiffness is represented by strain energy, which is defined as 

the energy stored in structure via elastic deformation. Maximization of stiffness is realized 

by minimizing strain energy, which is written as 

CabMem UUf +=1min                                                 （9） 

Where, MemU  and cabU  are respectively the strain energy induced in membrane and 

cables by applied loads.  

2) Objective2: Maximum uniformity of stress under loads 

Stress is also important in describing structural performance, including its magnitude and 

distribution under external loads. However, magnitude of stress is not supposed to be 

considered in the process of shape optimization because the maximum stress is mainly 

controlled by the level of prestress instead of the shape for membrane structures. On the 

other hand, the distribution of stress mainly depends on the shape of structures. And it is 

generally desired to be as uniform as possible in order to ensure materials strength utilized 

sufficiently and avoid tearing caused by stress concentration (localized high stresses). 

Therefore, maximum uniformity of stress under loads is put forward as an objective in this 

paper. And stress fluctuation coefficient is proposed to evaluate the uniformity degree of 

stress. The maximum uniformity of stress means minimum fluctuation coefficient: 

)(/)(min 2 σσ EDf =                                              （10） 
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in which iσ is maximum principle stress of the ith membrane element，m is the total 

number of membrane elements. 

3) Objective3: Minimization of reactions under load 

Conical membrane structures are usually anchored in foundations or other structures. It is 

obvious that large reactions will increase the difficulty and cost of construction. Different 

from traditional structures, the reaction of each support is not only related to the spans of 

each structure unit but also heavily affected by pretension of cables. That is to say, reaction 
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can be modified by changing the pretension of cables even in the case where the spans are 

specified. Thus it is practical to select minimization of reaction as an objective. Here the 

maximum value of all reaction is given as objective function: 

max

222

max3 )(min iziyix RRRRf ++==                     （11）  

Where, iziyix RRR ,, are reactions at the ith support in x,y,z directon, respectively. 

3.3. Optimization Results 

First, a single conical structure with respect to ma 15=  and mk�ST /0.2=  is optimized 

and the Pareto set is obtained, which presents a clear tradeoff among the three objective 

functions with all kinds of weights (Figure 5a). The optimization variables of Pareto 

solutions are also plotted in Figure5b and the optimal relationship between λ and γ  is 

derived 

   70.057.3 −= λγ   ( 68.030.0 ≤≤ λ )                                (12) 

The above formula can guide designers to obtain Pareto solutions. And the final structure 

which meets the specified demand of design can be easily and effectively selected from 

Pareto set. 
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Figure5 Multi-objective optimization results conical membrane structure （ ma 15= ， mk�ST /0.2= ） 

Subsequently, the single conical membrane structures with the various span of L=21m and 

L=25.4m, and various prestress of membrane of mk�ST /5.2=  are respectively optimized 

in the proposed method. The similar results are obtained. It is demonstrated that the 

optimization solution is independent on the span and stress level. 

In order to demonstrate the advantages of the proposed multi-objective optimization, the 

solutions of the single-objective optimization that respectively minimize strain energy, 

stress fluctuation coefficient and reaction, are indicated for comparison, denoted as SO1, 

70.057.3 −= λγ
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SO2 and SO3, which of course are included in Pareto set. The objective functions of SO1, 

SO2 and SO3 and other Pareto solutions are shown in Figure6. Apparently, when the 

structure is optimized only considering one index, other performance indexes are probably 

sacrificed. For instance, the SO1 obtain the minimum strain energy, however results in too 

large reaction. Whereas, the shapes with good tradeoff, such as the shapes with respect 

to 45.035.0 ≤≤ λ , all objective functions of which are at a good level, are totally omitted, 

which are usually more acceptable for practical design. In contrast, multi-objective 

optimization enables designers to select the final design by actively compromising all 

objectives in a preferred manner. 
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Figure 6 Objective functions of Pareto solutions 

In the same way, the optimal solutions of double conical membrane structures are obtained. 

The optimalδ  : 33.00.0 ≤≤ δ  

The optimal λ : )4.147.0()7.024.0( δλδ +<<+  

The optimalγ : 70.057.3 −= λγ  

The optimization result is in good agreement with mechanical characteristics of double 

conical membrane structures. It is observed that a double conical membrane structure 

actually consists of two cones and a saddle which is located between two cones. With the 

fixed height and prestress, the saddle has larger curvature than conical structures. The 

saddle covers larger space with respect to 0>δ  than 0<δ . Therefore the structures with 

0>δ  is optimal. In addition, because the conical parts are vulnerable sections, the 

optimal relationship of the double conical membrane structure is oriented by the behavior 

of conical structure. Accordingly, the optimal relationship between height-to-span ratio and 

prestress density ratio is similar with the single conical structures (Eq. (12)). Similarly to 

example of single conical membrane structures, this optimization also shows a good 

tradeoff among three objectives. 

4. Conclusions 

A multi-objective optimization method is presented for membrane structures to answer the 

question “which shape is optimal” directly. Multi-objective Genetic Algorithm is applied to 

solve the Pareto set, which includes all solutions with different weights and can be provided 
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designers to select with regard to their specific objectives and liking. And the applications 

on conical membrane structures are carried out. The results demonstrate that the proposed 

method is effective and accurate. 
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