Document downloaded from:

http://hdl.handle.net/10251/82819

This paper must be cited as:

Bermudez Garzon, DF.; Gomez Requena, C.; Gbmez Requena, ME.; L6pez Rodriguez, PJ.;
Duato Marin, JF. (2016). A Family of Fault-Tolerant Efficient Indirect Topologies. IEEE
Transactions on Parallel and Distributed Systems. 27(4):927-940.
doi:10.1109/TPDS.2015.2430863.

The final publication is available at

http://ieeexplore.ieee.org/document/7103363/

Copyright |nstitute of Electrical and Electronics Engineers (IEEE)

Additional Information

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

A Family of Fault-Tolerant Efficient Indirect
Topologies

D. Bermadez Garzoén, C. Gomez, M.E. Gomez, P. Lopez and J. Duato
Universitat Politecnica de Valéncia, Valencia, Spain

Abstract —On the one hand, performance and fault-tolerance of interconnection networks are key design issues for high performance
computing (HPC) systems. On the other hand, cost should be also considered. Indirect topologies are often chosen in the design of
HPC systems. Among them, the most commonly used topology is the fat-tree. In this work, we focus on getting the maximum benefits
from the network resources by designing a simple indirect topology with very good performance and fault-tolerance properties, while
keeping the hardware cost as low as possible. To do that, we propose some extensions to the fat-tree topology to take full advantage of
the hardware resources consumed by the topology. In particular, we propose three new topologies with different properties in terms of
cost, performance and fault-tolerance. All of them are able to achieve a similar or better performance results than the fat-tree, providing
also a good level of fault-tolerance and, contrary to most of the available topologies, these proposals are able to tolerate also faults in

the links that connect to end nodes.

Index Terms —Regular Indirect Topologies, Fat-Trees, Adaptive and Deterministic Routing, RUFT, Fault—Tolerance.

1 INTRODUCTION

OWADAYS, large parallel computers have been or
Nare being built with thousands of nodes [1]. In
such large systems, performance, fault-tolerance, and
cost of the interconnection network play key roles in the
whole system design. The required levels of computing
power can only be reached by increasing the number
of nodes that compose them. As the system grows also
does the amount of network resources and therefore
the probability of a network fault. As the availability of
these systems is a concern, fault-tolerance mechanisms
are often implemented based on increasing the network
resources and its cost.

The fat-tree, which is a bidirectional multistage indi-
rect topology, is one of the most widely used topologies
in large machines (see the Top500 list [1]) since it pro-
vides good performance and fault-tolerance levels, but
it may have a high hardware cost. The RUFT topology
(Reduced Unidirectional Fat Tree) [2] is a unidirectio-
nal Multistage Interconnection Network (MIN) that was
proposed as a simpler alternative topology with a lower
cost than the fat-tree. RUFT obtains similar performance
results with much less hardware cost (approximately
half of the fat-tree one). The weakest point of RUFT is
that it does not offer any fault-tolerance support.

In this work we focus on devising new MIN topologies
that improve the performance, fault-tolerance, and/or
cost with respect to common MINSs, by organizing the
hardware resources differently and keeping the hard-
ware cost as low as possible. Additionally, these topolo-
gies, contrary to other ones, are able to cope with faults
in the links that connect the computing nodes to the
network. Taking the RUFT topology as a starting point,
and keeping a lower or similar hardware cost to the fat-
tree topology, we propose several MINs with different
cost, performance, and fault-tolerance. The goal is to
obtain MIN topologies with good performance, fault-

tolerance, and with a relative low hardware cost. First,
a straightforward topology is proposed, referred to as
RUFT-PL. It duplicates in parallel the links in RUFT
to have a similar hardware cost to that of the fat-tree
topology. This topology is able to double the RUFT
and fat-tree performance and also provides some fault-
tolerance. Another proposal, referred to as FI-RUFT,
increases the fault-tolerance degree of RUFT-PL that only
tolerates one fault in the injection, network, and ejection
links, by doubling injection and ejection and providing
as much disjoint paths as possible.

This proposal has two variants referred to as FT-RUFT-
212 and FT-RUFT-222. The first one only duplicates the
links in the injection and in the ejection, keeping the
network links as in RUFT, providing fault-tolerance and
increasing the performance at the cost of some few extra
links with respect to RUFT. The second one is a topology
that doubles the network links as RUFT-PL does, but
using the same strategy of FT-RUFT-212 to connect the
injection and ejection links, increasing in this way the
fault-tolerance. FT-RUFT-222 provides a high degree of
fault-tolerance and up to 2x the performance offered by
the fat-tree topology at a similar hardware cost.

The rest of the paper is organized as follows. Section 2
summarizes some related work, and Section 3 provides
background on the fat-tree and RUFT topologies. Section
4 describes the three new fault-tolerant topologies, ana-
lyzing them in Section 5. Finally, some conclusions and
future work are drawn.

2 RELATED WORK

A large amount of literature has been devoted to provide
fault-tolerance in MINs [3]-[23]. The fault-tolerance in
these designs are mainly based on using additional
hardware. To provide fault-tolerance, researches propose
three hardware alternatives: 1) replicate the entire net-
work 2) add extra stages, and/or 3) adding chaining

links. For example, the authors of CSMIN [3] introduce
a new interconnection model to improve the Gamma
Network [4], obtaining only two disjoint paths, thus
tolerating a single fault. In CGIN [5], the network uses
an excessive interconnection hardware, tolerating only a
single fault. The PCGIN [6] adds one link to the switches
of the first stage to generate two disjoint paths between
any source—destination pair.

Other strategies such as 3DON [7] and 3DGIM [8] use
extra hardware to get three disjoint paths, just tolerating
two faults in the network. Another major problem of
these latter topologies is that in order to increase the
fault-tolerance in the network, the source has to send two
identical packets to the destination along two different
paths, causing more packet contention and degrading
network performance. In [9], the authors propose adding
an extra subnetwork (group of switches) which is used
only to provide redundancy and not to connect the pro-
cessing nodes, highly increasing the cost of the network.
Other strategies such as those proposed in [10]-[13] also
make use of additional hardware in terms of switches
and links to increase the number of alternative paths,
either by adding more links between the switches of the
same stage, more links between stages, creating extra
stages, or even full additional networks.

The work proposed in [14] uses two parallel fat-
trees with crossover links between the switches at the
same position of each network to provide dynamic fault-
tolerance, but at a high hardware cost. In [15], the
authors use several parallel MINs to create redundancy
without any interconnecting link between them, also
increasing the hardware cost of the network. In [16] the
authors analyze the fault-tolerance properties of MIN
topologies without additional redundancy. In [17] the
authors introduce a fault-tolerant routing methodology
that sacrifices a certain number of healthy nodes in order
to use no more than two virtual channels, and to reduce
the routing time. In [18], different methods are analyzed
to provide multiple paths in MINs, and the authors
describe methods for fault identification and network
reconfiguration. They found that to achieve a good
computational performance it is necessary to eliminate
nodes with poor connectivity in order to maintain high
network throughput.

Other works, as described in [21], propose a simply
and novel re-design of the links of the fat-tree topology
to reduce the number of affected paths when a failure
is detected in the network. However, as the original
fat-tree, its topology does not support failures in the
switches of the first stage. In [22], the authors propose an
improvement to the IASEN topology [24] to increase the
fault-tolerance level, obtaining up to 12 paths for each
pair of nodes. However, the problem with this proposal
is that the intermediate stage could become a bottleneck
if one or more switches fails.

In [23], fault-tolerance in MINs is provided by in-
creasing the total number of switches in the network,
besides of requiring a high number of multiplexers and
demultiplexers to connect all processing nodes to the
network. On the other hand, this proposal only relies

on networks with 2 x 2 switches, being not suitable for
networks with switches of higher arity.

Finally, in Bidirectional MINs (BMINSs), other approa-
ches different to replication have been proposed, since
unlike Unidirectional MINs (UMINs), BMINs provide
alternative paths between source-destination pairs. For
example, in [19], the authors propose a fault-tolerant
routing mechanism that makes use of the alternative
paths available in a fat-tree when faults are detected.

Opposite to these aforementioned approaches, with a
moderate increase on the hardware cost, our proposals
allow UMINs 1) to tolerate faults and 2) to enhance
network performance in the absence of faults.

3 BACKGROUND
3.1 Fat-Tree Topology

The fat-tree topology is based on a complete tree that
thickens near the root. Switch arity increases as we go
nearer to the root, which makes its implementation un-
feasible. Hence, some alternative implementations have
been proposed in order to use switches with fixed arity.
In particular, the k-ary n-tree [25] is a parametric family
of regular multistage topologies. The number of stages
is n and k is the arity or the number of links of a
switch that connects to the previous or to the next
stage (i.e., the switch degree is 2k). A k-ary n-tree is
able to connect N = k™ processing nodes using nk" !
switches. Each processing node is represented as a n-
tuple {0,1,....,k — 1}", and each switch is defined as
a pair (s,0), where s is the stage where the switch
is located at, s € {0..n — 1}, and o is a (n — 1)-tuple
{0,1,...,k — 1}~ ! which identifies the switch inside the
stage. Two switches (s, 0,,—2,...,01,00) and (s’,0),_,, ...
,0},00) are connected by an edge if s’ = s+1 and o, = 0}
for all i # s. On the other hand, there is an edge between
the switch (0,0,-2,...,01,00) and the processing node
Dn—1, - P1, Do if 0; = Pi+1 for all i € {n— 2,...,1, O} This
edge is labeled with py. In what follows, we will assume
that descending links are labeled from 0 to & — 1, and
ascending links from k to 2k — 1.

3.1.1 Adaptive Routing in Fat-trees

In k-ary n-trees, minimal routing between a source-
destination pair can be accomplished by sending packets
upwards from the source to any of their nearest common
ancestors and then from there downwards to the desti-
nation. When crossing stages in the upwards direction,
several paths are possible, thus providing adaptive rou-
ting. In fact, each switch can select any of its k£ up output
ports. Once a nearest common ancestor has been rea-
ched, the packet is turned around and sent downwards.
The stage up to which the packet must be forwarded
is obtained by comparing the source and destination
components beginning from the most significant one.
The first pair of components that differs indicates the
last stage to forward up the packet. Once in that stage,
the descending path is deterministic. At each stage, the
descending link to choose is indicated by the component
corresponding to that stage in the destination n-tuple.

0 4 0 4

L T~

(a) Requested ports
in the upwards direc-
tion from port 0.

(b) Requested ports
in the downwards
direction from port 4.

Fig. 1: Ports that can be requested in a 4-ary n-tree using
adaptive routing.

Switch complexity of fat-trees can be easily computed
considering that each switch has k bidirectional input
and output ports, leading to 2k x 2k = 4k? switching ele-
ments. However, this rationale does not account for the
actual requirements of switching activity of the routing
algorithm. As can be observed, in the upwards subpath,
at each switch, the k input ports can forward packets
through either any of the up k output ports if the packet
continues in its upwards subpath, or any of its down
output ports if the packet starts its downwards subpath.
On the other hand, in the downwards subpath, there are
k input ports that can only request £ down output ports,
since once a packet has started its downwards subpath,
the packet must continue going downwards. Figures la
and 1b show theoutput ports that can be requested in
the upwards and downwards directions, respectively, in
the switches of a 4-ary n-tree.

A common way of implementing switches is by using
as many multiplexers as the number of required output
ports. Each multiplexer has a number of inputs equal
to the number of input ports that can request the corre-
sponding output port. In the switch we are considering
(Figure 1), ports in the upwards direction require &
multiplexers with k inputs each one or a k x k = k?
complexity. On the other hand, ports in the downwards
direction require k£ multiplexers with 2k inputs each one
or a k x 2k = 2k? complexity. Total switch complexity
can be easily obtained as the sum of the upwards and
downwards directions complexities, leading to a switch
complexity of 3k? switching elements.

3.1.2 Deterministic Routing in Fat-trees (DESTRO)

Contrary to the previously presented routing algorithm,
DESTRO [26] is deterministic, that is, in both subpaths
there is only one path for each source-destination pair.
This algorithm not only obtains good results but also it
is able to highly reduce the switch complexity. The high
performance achived is due to the appropriate selection
of packet upwards subpaths which distributes destina-
tions in a very effective way to highly reduce the Head-
of-Line (HoL) blocking effect. As stated above, the packet
downwards subpaths are determined by the upwards
subpath followed by the packet and, with DESTRO, the
interferences among different destinations in the packet
downwards subpaths are completely eliminated. All the
packets destined to a particular node are kept inside the
same sub-tree (See Figure 2), and have a unique and
exclusive down path. This is performed by using the

Switeh 1d—=-0. 00

246 Link2 4

0 (000

1 (00—) N
N4 2
J
4
0,01 040 Lo 201
b
2 ..:’ 3 *
157 B 9
3 (on)e— 3 N

0,10 0.2.6 110 2,10
4 (100} 2

5
6
2.11
\|
3

3

5 (10—

3
[
o 024 Ll
6 . < 5

7 (111}

7 7

Fig. 2: Deterministic routing in a 2-ary 3-tree.

destination identifier to select one of the multiple availa-
ble upwards subpaths. In DESTRO, the output port for
routing a packet in a particular switch is given both by
the destination identifier and the stage where the switch
is located. In particular, it considers the component of
the packet destination corresponding to that stage (i.e.,
a switch located at stage s considers the s component
of the destination identifier, that is p,). Therefore, at the
switch (s, 0n—2,...,01, 00), the selected output port for a
packet with destination p,_1, ..., p1, po Will be k + p;.

Figure 2 shows the destination node distribution in
the ascending and descending links of a 2-ary 3-tree
using DESTRO. In the first stage, the least significant
component of the packet destination identifier (the least
significant bit in this example) is used to select the ascen-
ding output port. At the second stage, the destinations
of all packets that reach a given switch have the same
least significant component. Hence, the component to
consider in the selection of the up output port in this
stage is the next one in the destination address. For
instance, switch 4 is only reached by packets destined
to nodes 0, 2, 4, and 6. These nodes have the same least
significant component, which is 0. Among them, only
packets destined to nodes 4 ((100)) and 6 ({110)) must
be forwarded upwards. Packets destined to node 4 will
select the first up link, and packets destined to node 6
the another one. Following this mechanism in all the
upwards stages, finally, packets destined to a particular
destination reach the same switch at the last stage and
have a unique down subpath. Figure 2 highlights all the
paths to node 7 and how all of them share the same
downwards subpath.

By using DESTRO, the switch complexity can be
highly reduced. The upwards switching activity is the
same as in the fat-tree topology with adaptive routing.
That is, each input port in the upwards subpath can
request either any of the up output port, or any of the
down output ports. However, in the down subpath, each
link, input port and output port is used exclusively by
packets sent to a unique destination. As a consequence,
a given input port will always request the same output
port, since all the packets that arrive to a particular
input port, in their downwards subpath, are destined
to the same node and are always forwarded to the same
output port. This allows a noticeable reduction in switch

0 (o0 0246 0.4

2 .—'\ 0,2,4.6

3 (on 1357

1357 2,6

1.5
\\ 9
3,7

0246 0,4

4 (100

5 (101 1357 2,6
1,5
\ 3.7

Fig. 3: A RUFT derived from the 2-ary 3-tree using
DESTRO.

=<
6 .—\ G246

13,57

7 (11

complexity. Using multiplexers to implement switches,
ports in the upwards direction require k& multiplexers,
each with k inputs, or a k x k = k2 complexity, and
ports in the downwards direction require £ multiplexers
with & + 1 inputs (the £ upwards ports plus the unique
downwards one) or k x (k + 1) = k® + k switching
elements. Therefore the required switch complexity by
DESTRO is 2k? + k.

3.2 RUFT

The RUFT topology [2] is a simplification of the fat-tree
topology obtained by taking advantage of the nice pro-
perties of DESTRO. In particular, since there is no swit-
ching activity in the downwards subpath, the switches
are simplified by making them unidirectional. Therefore,
the whole downwards subpaths are transformed in links
that connect the last stage to the processing nodes (see
Figure 3). Notice also that, as the topology is unidirectio-
nal, there is not chance to start the downwards subpath
before reaching the last stage and, therefore, the paths
are longer since all the packets must reach the last stage,
contrary to the fat-tree topology where depending on the
source—destination pair, different number of stages must
be traversed.

Using RUFT, the switch complexity corresponds to the
switch complexity of a unidirectional switch of & input
ports and k output ports, where any of the k input ports
can request any of the k output ports, so the switch
complexity is k*. As it can be seen, the switch complexity
has been reduced more than twice when comparing it
with DESTRO and three times when comparing with the
fat-tree with adaptive routing.

4 THE PROPOSAL

As aforementioned, RUFT is a topology evolved from the
fat-tree topology using DESTRO as routing algorithm.
RUFT reduces the hardware cost compared to the fat-
tree topology, maintaining a similar performance [2].
However, the weakest point of RUFT is that it does
not provide fault-tolerance neither at injection/ejection
links nor in the network links. Therefore, despite offering
a good performance-cost tradeoff, the topology only
provides a single path between each source destination
pair.

To solve the lack of fault-tolerance of the RUFT topo-
logy, in this paper, we enhance this topology by adding
some extra links. This results in a family of topolo-
gies that increases fault-tolerance and performance with
respect to RUFT, but also with respect to the fat-tree
topology, while having a hardware cost similar or lower
than that of the fat-tree.

In particular, we propose three enhancements to RUFT.
The first proposal, which is very straightforward, is
referred to as RUFT-PL (RUFT with Parallel Links), and
is based on duplicating the injection/ejection and the
network links, also distributing the network traffic in a
balanced manner to reduce the HoL blocking effect bet-
ween these dual links. The second proposal, FI-RUFT-
212, provides fault-tolerance by duplicating just the links
that connect from/to end nodes and connecting them in
a strategic way which entails a very small increase in
hardware cost. FTI-RUFT-212 uses the same amount of
links as the RUFT topology, and the same connection
pattern among switches. The last approach, FI-RUFT-
222, strongly improves the fault-tolerance of RUFT-PL
and the performance of FI-RUFI-212, by combining
them.

The idea of duplicating injection and ejection links is
not new. For instance, the Black Widow [27] uses four
injection links, where the ports of each node have been
reduced to half of the bandwidth to keep a low-cost de-
sign. Our proposal could use three or more links, but we
propose to use only two links because we are interested
in keeping the hardware cost as low as possible.

4.1 RUFT with Parallel Links

RUFT with Parallel Links (RUFT-PL) uses the same
number of switches as the fat-tree and RUFT topologies,
but RUFT-PL has the same number of switch ports as the
fat-tree. Our proposal pursues to implement the RUFT
topology but with a similar hardware cost to the fat-tree
topology. As fat-tree switches have bidirectional ports,
RUFT-PL switches can double the number of unidirec-
tional ports of RUFT switches, leading to 2k input ports
and 2k output ports. We propose to use the available
k additional ports to have two parallel links connecting
each pair of switches of the original RUFT topology (see
Figure 4 for an example). The parallel links provide fault-
tolerance and additional routing flexibility that can be
exploited in several ways.

4.1.1 Parallel link selection

As we can see in Figure 4, each processing node is
connected to the network through two links. To provide
fault-tolerance in this point, packet injection is dynami-
cally distributed, i.e., through the link that connects with
the switch port with most free buffer.

From there, at a given switch, the pair of output
channels (i.e. output ports) to be used is given by the
destination component corresponding to the stage of the
switch (as in RUFT and DESTRO). Figure 4 shows how
the destination nodes are distributed among the output
parallel links of switches, for a topology with £ = 2 and
n = 3. However, to select which parallel channel will be

used, we could consider two different criteria: 1) select
the link corresponding to the least significant bit of the
next destination component, or 2) select the link with
most free buffer.

The former approach isolates different destinations
between both parallel links. In this way, the remaining
HoL blocking that still appears in the upwards subpaths
of the RUFT topology could be reduced even more.
Moreover, this scheme simplifies even more the switch.
Each input port of a switch can only request the k output
channels associated to k/2 output ports, and the imple-
mentation just requires k& multiplexers with 2k inputs,
which leads to a switch complexity of k x 2k = 2k%. The
drawback of this scheme is that it implies a static selec-
tion which does not allow implementing fault-tolerance.
In addition, when the network is suffering some non-
uniform traffic patterns, some links are unused.

On the other hand, by applying a dynamic selection
function to perform the routing, we can increase up to
two the number of paths for each source-destination
pair, thus tolerating a single fault at the network. There-
fore, we can always use both parallel channels per port
regardless of what kind of traffic is used. However, in
this case, switch complexity is a little higher since each
input channel can ask for any of the up output ports,
so the switch complexity is 2k x 2k = 4k? switching ele-
ments. On the other hand, as stated, the fault-tolerance
in the network is increased.

As we can see, at the last stage, the end nodes are also
connected to two parallel links. At this point, again, the
output port with most free buffer is selected.

0246 0.4

1,357
X

13.5.7

0 (000

=3
:’_‘7

Fig. 4: A 2-ary 3-tree using RUFT-PL.

4.2 FT-RUFT-212

In this section, we present an alternative approach
to provide fault-tolerance and increase performance of
RUFT. The key point of this new proposal relies in the
processing node connection to the network, that has been
selected in a manner that allows achieving the most
disjoint paths. Processing nodes can use two alternative
paths through two different switches of the first stage.
In particular, each node is connected to two different
switches in such a way that each switch belongs to a
different sub-tree in the network and provides comple-
tely disjoint paths for each source-destination pair and,
therefore, fault-tolerance in the network in addition to
tolerating also one fault in the injection.

Moreover, destination nodes have also dual connec-
tions in the last stage, which increases up to 4 the
number of alternative paths for each source-destination
pair. Destination nodes are connected also strategically in
such a way that the alternative paths are also as disjoint
as possible. This proposal is referred to as FI-RUFT-212
to indicate that it is a fault-tolerance variant of the RUFT
topology in which there are 2 links connecting the source
nodes to the network, only 1 link connecting the switches
in the network, and destinations are connected to the
network by 2 links. Notice that the switches of the first
and last stages are asymmetrical with 2k x k and k x 2k
ports, respectively.

P: Primary Link S: Secondary Link

0 4 8

>< / -
—1

<

Fig. 5: A 2-ary 3-tree FI-RUFT-212.

Figure 5 shows the connections in a 2-ary 3-tree FT-
RUFT-212. Every node is connected to the network
through two links. The one that connects it to the same
switch as RUFT will be referred to as the primary link
(shown in blue in the figure), and it is obtained by
dividing the node identifier by the arity of the network
(node_id/k), by 2 in this example. The alternative link
that connects every node to the network will be referred
to as the secondary link (shown in red in the figure).
This alternative link is connected to a different switch. In
particular, it is connected to the same switch as the node
with the same identifier but inverting its most significant
bit (i.e., (000) — (100)). In the figure, the alternative link
connects node 0 to switch 2, where node 4 is connected
through its primary link. Following this criteria, we
ensure to have double injection to two points of the
network that provide two completely disjoint paths.

As stated, each node is also connected to two different
switches of the last stage. This provides fault-tolerance
at the ejection and additional fault-tolerance in the net-
work by increasing the number of alternative paths. In
particular, we connect each node to the switch where it
is connected in RUFT (through the primary link, shown
in blue in the figure) and, additionally, to the switch
that connects to the node obtained by inverting its least
significant bit (i.e., node 0 (000) is connected to switch
8 as in RUFT and additionally to switch 9, where node
1 (001) is connected through its primary link), which is
referred to as the secondary link (shown in red in the
figure). In this way, we obtain four alternative paths in
the network, that is, two different paths per injection
port.

4.2.1 Dual packet injection and ejection

As stated above, each node has two different injection
links. In order to provide fault-tolerance and boost
performance, the injection of packets is done through
the link that connects with the switch port with more
available space to allocate the packet. In this way, we
can distribute the traffic load into two different network
segments. If the two possible injection switch ports have
the same buffer space, one of them is randomly selected.
If there is a fault in the path to a destination through
one of the injection links of a source node, the traffic to
that destination will be forwarded through the other still
healthy link.

Each switch in the last stage in this new topology
has two ejection links. The double ejection allows to
reach a given destination through the same path as in
RUFT (i.e., through the primary ejection link) but also
through the path that allows reaching the node with the
LSB (least significant bit) inverted in RUFT (i.e., through
the secondary ejection link). For example, to forward a
packet to node 0 through the secondary ejection link, it
must be routed as if its destination were node 1. The
decision about which path is followed (the primary or
the secondary one) is taken at the first stage, depending
on the selected output port. In absence of faults, any
selection function could be applied. However, to support
faults, a dynamic selection function based on network
status should be used. In this paper, we choose the
ejection link in the first stage depending on the available
space at the output ports buffers. The one with most free
available slots is selected.

Although the way routing is performed in the first
stage is changed with respect to RUFT, this is not the case
of the rest of the switches of the network, which select
the output port according to the remaining components
of the packet destination (which are the same for both
destinations, the original and the alternate one). When
the packet reaches the last stage, it is forwarded either
to the node connected by the primary or the secondary
link, according to the least significant component of the
destination.

4.2.2 Disjoint paths in the network

With the dual injection and ejection described above,
we provide four different paths in the network for each
source-destination pair, which are as disjoint as possible.
This does not only allows fault-tolerance but also impro-
ves network performance, as analyzed in Section 5. As an
example, Figure 6 shows the different paths that a packet
could follow from source node 0 to destination node 7.
In the absence of faults and following the mechanism
previously described, the injection will be done through
any of the injection links (red or blue links). At stage
1, depending on the utilization of the switch output
buffers, the packet will either use the primary path (blue
path) or the secondary path (red path). In case of faults
in the network, injection or ejection links, the packet can
be forwarded through any of the non-faulty available
paths.

—
m—

/ -

—= !
—>0
1 \ ?
5

>
m—y

——
—7 6

53

3 I
\;*'6 7

Fig. 6: Paths provided by FT-RUFI-212 from node 0 to
node 7.

4.3 FT-RUFT-222

This section proposes a topology that combines the
double injection and ejection of FI-RUFI-212 with the
parallel network links as in RUFT-PL. As a result, sym-
metric and identical switches are used in all stages.
This topology combines the performance benefits from
RUFT-PL and the fault-tolerance from FT-RUFT-212. This
topology is referred to as FI-RUFI-222 to indicate that
it is a fault-tolerant variant of RUFT, that uses 2 links
to connect the processing nodes to the network, 2 links
for the switch interconnection, and 2 links to connect the
last stage switches to the processing nodes. FT-RUFT-222
has double injection and ejection links as FI-RUFT-212,
but all the switches in the network are 2k x 2k (as in
the fat-tree and RUFT-PL topologies). This new topology,
as shown in Section 5, achieves good performance and
increases the fault-tolerance with respect to the previous
ones. Figure 7 shows an example of this new topology,
a 2-ary 3-tree FT-RUFT-222.

——
m—

7 11

Fig. 7: A 2-ary 3-tree using FI-RUFT-222.

The greatest advantage offered by this topology is
that, by having dual connection between all switches
and the FT-RUFT-212 injection/ejection, we can increase
the number of tolerated faults. As we have seen, FI-
RUFT-212 offers four paths in the network, provided by
the double injection/ejection. Now, FT-RUFT-222, thanks
to the parallel network links, offers up to four paths
per injection port, i.e., eight alternative paths in total,
tolerating so up to seven faults in the network links.

On the other hand, in absence of faults, having parallel
network links allows us to boost the number of paths in
the routing algorithm to further increase performance.
The strategy to inject traffic in the network is the same

as the ones used by FI-RUFT-212. Also, to distribute
the traffic at the first stage we use the same criterion
used in FI-RUFT-212 (i.e., selecting the output port with
most buffer space) with the advantage that, in this new
topology, we have four possible paths to send packets
for each source—destination pair, thanks to the parallel
links. From the second stage up to the last stage there is
only an available pair of ports in each switch, which are
also selected considering the output port buffer space
availability. At the last stage, there is only one available
port to deliver the packet.

Figure 8 shows all the available paths that a packet
may follow from source node 0 and destination node 7.

0

——
1

35 4

— L
. =
\ 9

L.
L 4

) —3>2

——>

7

3

2

*’67

Fig. 8: Paths provided by FT-RUFT-222 from node 0 to
node 7.

5 EVALUATION

In this section, we evaluate the fault-tolerance, perfor-
mance and cost of the three topologies proposed in this
paper, comparing them against RUFT and the fat-tree
topology with adaptive routing. The fat-tree is only eva-
luated with adaptive routing because is the one that can
provide fault-tolerance. Anyway;, a fat-tree with DESTRO
obtains roughly the same performance as a fat-tree with
adaptive routing.

Network performance is evaluated both without any
fault in the network links and the performance degrada-
tion with faults in the network links.

Performance degradation of the proposed topologies
is evaluated including a set of faults in the network
links. For this analysis, we have considered a static fault
model. In this model, once a fault is detected, the system
activity is stopped, appropriate actions to handle the
fault are taken, and then, the system activity is resumed.
Notice that RUFT’s performance degradation is not eva-
luated given that this topology does not support any
fault.

5.1 Evaluation Methodology

To obtain the results of this section, two different tools
have been developed, one for measuring the fault-
tolerance of the network and the another one for per-
formance analysis. For the fault-tolerance analysis, we
have developed a tool that injects faults in the net-
work and, for each fault combination, it calculates the
number of paths still available between each source—
destination pair in order to obtain the fault-tolerance

Timing Parameters Cycles
1

Crossbar
Fly 1
Link 1
Long Fly

Fly = stages + 1
Routing 4

Other Parameters Units
Virtual Channels 1
Buffer Size 2 Packets

TABLE 1: General parameters used in the simulations.

degree of the topology. If the topology is able to provide
at least one non-faulty path between every source and
every destination for that combination of faults, then the
combination of faults is tolerated. If there is at least a
source—destination pair that does not have an available
path for a fault combination, then the fault combination
will not be tolerated. To analyze a high number of fault
combinations and, for each combination, to check all
source—destination pairs and all paths in the network,
a high computation power is required. The tool has
been implemented and run on a GPU coprocessor. For a
network and a given number of faults, we tested all the
possible fault combinations in the network, with a limit
of 1 million of fault combinations in the largest networks
due to the required execution time of the tool.

For performance evaluation, a detailed event-driven
simulator that models several indirect virtual cut-
through networks have been used. The basic timing
configuration for the simulated networks is shown in
Table 1. The “Long Fly” parameter specified in the table
is the time to traverse the link from the last stage to the
end nodes (this only applies for RUFT-like networks). In
the fat-tree, packets are adaptively routed (with the FTA
routing algorithm, see Section 3.1.1) and in RUFT, RUFT-
PL, FI-RUFT-212, and FI-RUFT-222 packets are routed
in a deterministic way as in RUFT (see Section 3.2) [2],
with the variations presented in Section 4.

Several synthetic traffic patterns have been conside-
red: uniform, hot-spot, complement, and perfect shuffle.
Uniform is the most widely used traffic pattern, where
each node randomly sends packets to all other nodes
with the same probability for each one. Hot-spot traffic is
also evaluated to model those cases where a considerable
amount of the traffic is targeted to a specific endpoint. In
this paper, we send 15% of overall traffic to a randomly
selected hot-spot node. Complement traffic is a specific
traffic pattern that stresses MIN topologies where each
node sends traffic only to the destination that is obtained
by inverting the bits of the source node (for instance,
node 3 (011) will only send messages to node 4 (100)).
In this way, packets are forced to always reach the
switches of the last stage of the network. Shuffle traffic
is characterized by sending messages to a destination
node whose bits correspond to the bits of the source but
rotating to the left 1 bit (for example, node 3 (011) will
only send messages to node 6 (110)).

To evaluate the degradation of network performance
in presence of faults, each topology has been simulated
by injecting several faults in the network. These faults
are static and permanent, and remain constant throug-

hout the entire evaluation.

The evaluation of the fat-tree topology has been
performed using Flexible Interval Routing (FIR) with
multiple exclusion intervals, to avoid victim nodes, as
described in [19].

For each simulated number of faults and network,
50 fault combinations have been randomly selected to
finally calculate the average throughput and get the ave-
rage degradation of performance.Each fault combination
considered in the performance evaluation is tolerated
by the evaluated topologies, that is, there exist at least
a path between each source-destination pair that has
not been affected by any fault. Although only faults in
the links are considered, a switch fault can be easily
modelled as if all its links had failed.

5.2 Fault-tolerance Evaluation

For the fault-tolerance evaluation we show three
different analysis. First, the maximum number of faults
tolerated by each topology is shown in Table 2. For that
number of faults, all the fault combinations are tolerated,
which means that all the source-destination pairs are
able to communicate for all the combinations of that
number of faults. The second analysis (Figure 9) shows
the percentage of non-tolerated fault combinations
for each number of faults and each topology. The
third analysis presents an alternative point of view
by showing the percentage of source-destination pairs
(Figure 10) that are able to communicate for each
topology as the number of faults is increased.

Table 2 presents the maximum number of tolerated
faults for each topology and several different arities.
The table considers faults in both network and injec-
tion/ejection links. As it can be seen, RUFT cannot
tolerate any fault, FTA can tolerate as many faults as
the arity minus 1 in the network and none in the
injection/ejection, RUFT-PL can tolerate 1 fault in the
network and 1 fault in the injection/ejection links, FT-
RUFT-212 can tolerate 3 network link faults and 1 fault
in the injection/ejection links, and FI-RUFT-222 tolerates
up to 7 network link faults and 1 fault in the injec-
tion/ejection links. In addition, FT-RUFI-212 and FT-
RUFT-222, thanks to the disjoint injection/ejection, can
also cope with faulty switches, i.e., where all its links
have failed. RUFT-PL is not able to tolerate switch faults
because all the alternative paths use the same switches.
FTA does not tolerate faults in the first stage switches.

Arity | FTA | RUFT | RUFI-PL | FI-RUFT-212 | FI-RUFT-222
2 1/0 0/0 1/1 3/1 7/1
4 3/0 0/0 1/1 3/1 7/1
8 7/0 0/0 1/1 3/1 7/1
16 15/0 0/0 1/1 3/1 7/1

TABLE 2: Number of tolerated link faults at network
links (left) and injection/ejection links (right).

Figure 9 presents the percentage of non-tolerated fault
combinations at network links for three network sizes
when increasing the number of faults in the network.

Network sizes analyzed have been chosen to see the
effects of changing the arity of the switches and the
number of stages in the network. First, notice that RUFT
does not tolerate any fault because this topology only
provides one path for each source-destination pair, so,
if this path has a fault, it cannot be avoided. Although
RUFT-PL has the same number of links as FTA!, the
former only supports 1 fault since the parallel link can be
used when a link fails, but there are no more alternative
paths. When the arity is k = 4 (see Figure 9a), FTA tolera-
tes a higher number of fault combinations than FI-RUFT-
212. Although both tolerate the same absolute number
of faults, FTA can route packets through more paths in
the network than RUFI-212 and, as a consequence, it
tolerates a higher percentage of fault combinations.

Concerning FT-RUFT-222, it is able to tolerate a con-
siderably higher number of fault combinations than the
other topologies. Thanks to the parallel network links
and the disjoint injection/ejection scheme, it provides
eight paths in the network for each source—destination
pair, tolerating up to seven faults and also many more
fault combinations for more than seven faults. For in-
stance, in Figure 9a, FI-RUFT-222 can tolerate almost all
combinations for up to 50 faults, and no other topology
can tolerate any fault combination for such a number of
faults. As we can see in Figures 9b and 9c, as the switch
arity increases, the percentage of non tolerated fault
combinations decreases considerably, being FI-RUFT-
222 the topology that provides the best behavior against
a high number of faults, but, in both scenarios, FTA
also considerably increases its percentage of tolerated
fault combinations. The key point here is that, when
injection and ejection links are considered, neither FTA
nor RUFT tolerate any fault, while both RUFT-PL and
FT-RUFT variants are able to tolerate one fault in these
links. For this analysis, only network links have been
considered. The reason why the injection/ejection links
are not evaluated is because FTA does not support any
fault in these edges.

As an alternative point of view, Figure 10 shows the
percentage of source—destination pairs that are able to
communicate in each topology for different number of
faults at network links. Instead of showing which com-
binations are non-tolerated, we show how many paths
are still connected for fault combinations of that number
of faults. As it can be seen, FT-RUFT-212 obtains better
results than RUFT, communicating a high percentage of
source—destination pairs by adding just a few links in the
injection/ejection edge. On the other hand, the number
of source—destination pairs that can keep communicating
with RUFT-PL is higher than FI-RUFT-212, thanks to the
parallel links in the interconnection between switches.
Even so, FT-RUFT-222 offers better results than FTA
despite using the same amount of network resources.
In particular, it can cope with a relatively high number
of faults while still keeping a high percentage of source-

1. Remember that FTA uses bidirectional links whereas RUFT-like
topologies implement unidirectional links. Thus, FTA doubles the
number of links with respect to RUFT-like topologies, and it has the
same number of links that the RUFT tolopogies with double links in
the network.

100
90
80
70
60
50
40
30
20

Non Tolerated Fault Combinations (%)
g
Non Tolerated Fault Combinations (%)

100 - .
90
80
70
60
50
40
30
20

Non Tolerated Fault Combinations (%)

0 - % % %

o

50 100 150
Number of Faults

200 250 0 50

150
Number of Faults

200 250 300 350 0 50 100 150 200 250

Number of Faults

300 350

[@FTA ©RUFT RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 | [@FTA ©RUFT

RUFT-PL

A FT-RUFT-212 XFT-RUFT-222 | [@FTA ©RUFT RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 |

(a) 4-ary 3-tree.

(b) 8-ary 3-tree.

(c) 16-ary 2-tree.

Fig. 9: Percentage of non-tolerated fault combinations at network links for different network sizes.

Successful Paths (%)
Successful Paths (%)
2

,,,,,
% ®©

100

80
70
60
50
40
30

Successful Paths (%)

20

0 50

100 150
Number of Faults

200 250 0 50 100

150
Number of Faults

200 250 300 350 0 50 100 150 200 250

Number of Faults

300 350

[@FTA ©RUFT RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 | [@FTA ©RUFT

RUFT-PL

A FT-RUFT-212 XFT-RUFT-222 | [@FTA ©RUFT RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 |

(a) 4-ary 3-tree.

(b) 8-ary 3-tree.

(c) 16-ary 2-tree.

Fig. 10: Percentage of source—destination paths that can communicate for different network sizes and number of

faults at network links.

destination paths even when there are more than 350
faults in the network.

5.3 Performance Evaluation

Several network sizes were analyzed, from 64 to 4096
nodes, with different topology arities. For the sake of
shortness, results for the largest networks will only be
shown for the uniform traffic pattern. Concerning packet
size, although we evaluated 8B, 128B, 256B, and 1024B-
packets, for the sake of shortness, for uniform traffic we
will show results for 8B and 128B; and for the other
traffic patterns only for 128B, since similar conclusions
can be drawn with all packet sizes.

In Figures 11, 12, 13, and 14, we compare the per-
formance achieved by FTA, RUFT, RUFI-PL, FI-RUFT-
212, and FT-RUFT-222 for uniform, hot-spot, comple-
ment, and shuffle traffic patterns, respectively. As can
be seen in Figure 11, for uniform trafficc, RUFT-PL
is able to achieve more than 2x the performance of
FTA, RUFT, and FT-RUFT-212. However, FT-RUFT-212
increases the RUFT performance by only adding some
injection and ejection links, while also providing fault-
tolerance. On the other hand, although this topology
uses less hardware resources than the fat-tree, it is able to
outperform it. Concerning FT-RUFT-222, with a similar
hardware cost to fat-tree, this topology is able to obtain
more throughput than FTA, RUFT, and FT-RUFT-212,
in addition to provide a high fault-tolerance degree as
shown in Section 5.2. As it can be seen, the differences
among the studied topologies are consistent through all

network sizes, and the packet size does not influence the
respective behavior of each topology, thus, from now on,
we only show results for a packet size of 128B.

For hot-spot traffic (see Figure 12), all proposed to-
pologies are able to outperform FTA and RUFT thanks
to the double injection/ejection that allows to isolate the
concentration of traffic, reducing the HoL blocking effect
and allowing the topologies to get a higher performance.

For the complement traffic pattern (see Figure 13),
each source sends packets to a single destination and
RUFT-PL achieves the highest performance, taking into
account that every source—destination pair has a unique
path and, thanks to the parallel links and the dynamic
port selection, packets are distributed between them,
outperforming the other topologies. Likewise, RUFT also
has an exclusive path for every source-destination pair,
so that, HoL blocking does not exist and it is possible
to get a good performance. On the other hand, as FI-
RUFT-212 uses dual injection/ejection and FT-RUFT-222
uses dual links in the whole network, the distribution of
packets in the network is different to RUFI, modifying
the effective traffic pattern. However, FT-RUFT-222 still
improves performance over RUFT thanks to the dual
links.

Concerning the shuffle traffic pattern, any of the three
proposals are able to outperform FTA and RUFT to-
pologies, being FI-RUFI-222 the one that uses all the
hardware resources and adaptivity of the provided paths
in the most effective way.

10

100.000 100.000

10.000

10.000

1.000

1.000

100

Av. Message Latency (Cycles) - (Log)
8
Av. Message Latency (Cycles) - (Log)

100.000

10.000
1.000
100

Av. Message Latency (Cycles) - (Log)

01 02 03 04 05 06 07 08 01 02
Traffic (Flits/Cycle/Node)

Traﬂié (Flits/Cycle/Node)

04 05 06 07 08 01 02 03 04 05 06 07 08
Traffic (Flits/Cycle/Node)

SFTA @ RUFT RUFT-PL AFT-RUFT-212 X FT-RUFT-222 I ‘OFFA ®RUFT

RUFT-PL

AFT-RUFT-212 XFT-RUFT-222 | [@FTA ®RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 |

(a) 4-ary 3-tree, PS 8B.

(b) 8-ary 3-tree, PS 8B.

(c) 16-ary 3-tree, PS 8B.

100.000 100.000

10.000

10.000

1.000

1.000

100

Av. Message Latency (Cycles) - (Log)

> j
o
®

Av. Message Latency (Cycles) - (Log)

100

100.000
10.000
1.000

100

Av. Message Latency (Cycles) - (Log)

0 02 04 0 X 12 14 0 02 04 06 08 1 12 14 02 2 14
Traffic (Flits/Cycle/Node) Traffic (Flits/Cycle/Node) Traﬂlc (Fllls/CycIe/Node)
[@FTA ®RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 | [@FTA ®RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 | [@FTA ®RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 |

(d) 4-ary 3-tree, PS 128B.

(e) 8-ary 3-tree, PS 128B.

(f) 16-ary 3-tree, PS 128B.

Fig. 11: Packet latency from generation versus accepted traffic for different network sizes with uniform traffic and

a packet size (PS) of 8B and 128B.

1.000

o

Av. Message Latency (Cycles) - (Log)
=

o

&

o

3 , 0,15 0,18
Traffic (Flits/Cycle/Node)

SFTA @®RUFT RUFT-PL AFT-RUFT-212 XFT-RUFT-222 I

(a) 4-ary 3-tree.

1.000

-

Av. Message Latency (Cycles) - (Log)

Av. Message Latency (Cycles) - (Log)

)

05 0,01 0,015 0,02 0,023
Traffic (Flits/Cycle/Node)

[eFTA ®RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 |

(b) 8-ary 3-tree.

Fig. 12: Packet latency from generation versus accepted
traffic for different network sizes with a packet size of
128B and hotspot traffic (15%).

5.4 Performance Degradation

The performance degradation analysis is performed to
obtain the behavior of the topology in the presence
of faults at network links. For this analysis, we have

100.000
10.000
1.000

100

Av. Message Latency (Cycles) - (Log)

Trafhc (Fllls/CycIe/Node)

[@FTA @ RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 |

(a) 4-ary 3-tree.

100.000
10.000
1.000

100

Trafhc (Fllls/CycIe/Node)

[@FTA @ RUFT RUFT-PL___ AFT-RUFT-212 XFT-RUFT-222 |

(b) 8-ary 3-tree.

Fig. 13: Packet latency from generation versus accepted
traffic for different network sizes with a packet size of
128B and complement traffic.

evaluated the proposed topologies under the same traffic
patterns, as in the previous evaluation, analyzing several
network sizes. Regarding packet size, only results for
128B will be shown.

Figure 15 shows the results for the performance degra-

100.000

10.000

1.000

Av. Message Latency (Cycles) - (Log)

100

0 0.2 04 0,6 08 1 1,2
Traffic (Flits/Cycle/Node)

‘OFFA @ RUFT RUFT-PL AFT-RUFT-212 X FT-RUFT-222 I

(a) 4-ary 3-tree.

100.000

10.000

1.000

100

Av. Message Latency (Cycles) - (Log)

0 02 12

04 0,6 08 1
Traffic (Flits/Cycle/Node)

‘OFFA @ RUFT RUFT-PL AFT-RUFT-212 X FT-RUFT-222 I

(b) 8-ary 3-tree.

Fig. 14: Packet latency from generation versus accepted
traffic for different network sizes with a packet size of
128B and shulffle traffic.

dation of RUFT-PL, FT-RUFT-212, FT-RUFT-222 and FTA
under uniform traffic. As it can be seen, RUFT-PL is the
topology which obtains the best throughput; however, as
faults are introduced in the network, its performance de-
gradation becomes more noticeable because the topology
is not able to cope with the traffic with a reduced number
of paths per source-destination pair, increasing the HoL
blocking effect in those points where there is only one
available interconnection link to forward the traffic due
to faults. Moreover, the relative performance degrada-
tion with FI-RUFT-212 is lower than in RUFT-PL thanks
to the dual injection/ejection and an appropriate routing,
taking advantage of the still useful links. Concerning
FTA, we can see that the performance degradation is
very similar to FT-RUFT-212 despite using more links
and a greater switch complexity, especially when the
number of stages in the network increases.

Finally, FT-RUFT-222 achieves a very low performance
degradation despite having a high number of faults in
the network links.

For the hot-spot traffic (Figure 16), RUFT-PL and FT-
RUFT-222 are able to keep the traffic as uniform as
possible thanks to the dual links and to the double
injection/ejection that allows balancing the traffic bet-
ween them. Although FT-RUFT-212 also has dual in-
jection/ejection, the performance degradation is higher
when the number of network links is small (Figure 16a),
but as the number of links increases, the topology is less
affected by the failures (Figure 16b) and the performance
degradation is minimal. Concerning FTA, the topology
has a low performance degradation, thanks to the num-
ber of paths that provides the adaptive routing, however,

11

Topology Switch complexity

FTA 3k2

RUFT k2

RUFT-PL 4k2

FT-RUFT-212 | k? (interm. stages) | 2k? (first and last stages)
FT-RUFT-222 4k

TABLE 3: Switch complexity comparison.

its initial throughput is very low compared to the other
proposals.

On the other hand, for the complement traffic pattern,
in RUFT-PL, each source-destination pair has a unique
path with two available links to route the packets. For
this reason the topology can reach a very high per-
formance. In small networks (Figure 17a), the perfor-
mance degradation is high, because as links fail, the
number of paths in the network decreases. However, as
in other traffic patterns, as the network becomes larger
(Figure 17b), the performance degradation is lower. FI-
RUFT-212 and FT-RUFT-222, thanks to the dual injec-
tion/ejection, are able to exploit the different paths to
keep the performance as uniform as possible, while
in FTA the degradation is worse because of the HoL
blocking effect generated by the routing algorithm.

For the shuffle traffic (see Figure 18), FT-RUFT-222
suffers the worst degradation. However, is able to keep
the network performance, even, over the other topolo-
gies, despite the high number of failures in the network.
Concerning the FTA, it also suffers from performance de-
gradation, and its throughput without faults is very low
compared to the other proposals. FT-RUFI-212 achieves,
in this case, not only a better performance than FTA, but
also its behavior is similar or better than RUFT-PL.

Overall, the three proposals provides fault-tolerance
to the interconnection network with a moderate perfor-
mance degradation in presence of faults, being FI-RUFT-
222, thanks to the high availability of paths, the one that
offers the best results.

5.5 Cost Evaluation

To analyze and compare the hardware cost of each
topology proposed in this paper, we have considered
the most outstanding elements in the network design:
the number of unidirectional links and the number of
switching elements. The later involves the number of
switches and its degree.

Table 3 summarizes switch complexity for all the ana-
lyzed topologies measured as the number of switching
elements required at the switch to connect the input
and output ports. As we can see, the switch complexity
of FT-RUFT-212 depends on the stage of the switch,
since first and last stages switches have a complexity
of 2k? (remember that they are asymmetric) while the
intermediate stages switches have a complexity of k2.

In RUFT-PL and FT-RUFT-222, if we considered a sta-
tic selection of the parallel links based on the destination
identifier, as described in Section 4.3, then the switch has
2k? switching elements. However, with a more general
policy and, most important, to tolerate network link
faults, transitions between the parallel links are required,

12

1.3 1.3
1,2 1,2
1.1 1.1

1
0,9
08

1.3
1,2
1.1

@ @ @
° ° °
o o o
£ £ z 4
0 0 0
2 o9 2 2 o9
2 o8 3 S o8
Qe Q Qe
@ 07 @ 07 @ 07
i oo L o6 T 06
o 05 © 05 © 05
£ £ £
£ 04 £ 04 £ M‘mﬁq::Q:
I I I
F 03 F 03 F 03
02 02 02
0 10 20 30 40 50 0 20 60 80 100 0 20 40 60 80 100
Number of Failures Number of Failures Number of Failures
[oFTA RUFT-PL & FT-RUFT-212 XFT-RUFT-222 | [oFTA RUFT-PL & FT-RUFT-212 XFT-RUFT-222 | [oFTA RUFT-PL AFT-RUFT-212 XFT-RUFT-222 |
(a) 4-ary 3-tree. (b) 4-ary 4-tree. (c) 4-ary 5-tree.
13 13 13
o 12 2 12 o 12
8 11 8 11 8 11
2 Z Z
0 0 0
2 o9 L o9 2 o9
2 08 2 o8 2 o8
Qe Qe Qe
@ 07 @ 07 @ 07
i o L o6 T 06
g0 g0 LR s e
£ £ £ At 4
5 04 S 04 S 04 *
I I I
F 03 F 03 F 03
02 02 02
0 5 10 15 20 25 30 0 20 40 60 80 100 0 20 40 60 80 100
Number of Failures Number of Failures Number of Failures
[oFTA RUFT-PL___ & FT-RUFT-212 XFT-RUFT-222 | [oFTA RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 | [oFTA RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 |

(d) 8-ary 2-tree.

(e) 8-ary 3-tree.

(f) 8-ary 4-tree.

Fig. 15: Performance degradation with faults for different network sizes with uniform traffic and a packet size of

128B.

0,17

0,16 X—x
0,15
0,14
0,13
0,12
0,11
0.1

0,09
0,08
0,07

Traffic (Flits/Cycles/Node)

0,06
0 10 20 30 40 50
Number of Failures
SFTA RUFT-PL___ & FT-RUFT-212 XFT-RUFT-222 |
(a) 4-ary 3-tree.
0,024
5 0028
§ ooz
S oo
3 002
2 0,019
S 0018
O 0017
2 o016
L 0015
o 0,014
£ 0013
E 0012
0,011
0,01 \ AAAAAAAAA
0 20 4 60 80 100
Number of Failures
SFTA RUFT-PL & FT-RUFT-212 X FT-RUFT-222 I

(b) 8-ary 3-tree.

Fig. 16: Performance degradation with faults for different
network sizes with hot-spot traffic (15%) and a packet
size of 128B.

leading to 4k switching elements. As expected, the
topologies that have a higher switch degree (FTA, RUFT-
PL, and FT-RUFT-222) are the ones that require more
switching elements. RUFT is the cheapest one but it is
also the one that provides the worst performance and

1,2
1
08

Traffic (Flits/Cycles/Node)

06
04
0 10 20 30 40 50
Number of Failures
SFTA RUFT-PL & FT-RUFT-212 X FT-RUFT-222 I

(a) 4-ary 3-tree.

18
1.7
1,6
15
1,4
1,3

1,2
11

1
0,9

Traffic (Flits/Cycles/Node)

08
07
06
0 20 40 60 80 100
Number of Failures
SFTA RUFT-PL & FT-RUFT-212 X FT-RUFT-222 I

(b) 8-ary 3-tree.

Fig. 17: Performance degradation with faults for different
network sizes with complement traffic and a packet size
of 128B.

fault-tolerance results (no fault-tolerance is provided).
Table 4 shows the number of links and switching
elements required by each topology for two different
network sizes. Notice that, the Links column of Table
4, besides of the network links, also considers the injec-

1.2
@ 11
K
2 1
8 oo
S o8
3o
8 07
K o6
o
£ 05
o
= 04
03
0 10 20 30 40 50
Number of Failures
[@FTA RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 |
(a) 4-ary 3-tree.
1.2
@ 11
K
2 1
8 oo
S o8
3o
8 07
£ o W‘
o
£ 05
o
= 04
03

0 20 60 80 100

40
Number of Failures

[@FTA RUFT-PL___ A FT-RUFT-212 XFT-RUFT-222 |

(b) 8-ary 3-tree.

Fig. 18: Performance degradation with faults for different
network sizes with shuffle traffic and a packet size of
128B.

Topology Links' | Switching Network Base
Elements Throughput® | Latency’

T FTA 384 2304 0.55 161
£ | RUFT 256 768 0.51 156
‘; RUFT-PL 512 3072 1.24 152
5| FT-RUFT-212 384 1280 0.60 154
< | FT-RUFT-222 512 3072 1.10 153
3| FTA 3072 36864 0.48 162
£ | RUFT 2048 12288 0.45 159
c; RUFT-PL 4096 49152 1.16 153
5| FTI-RUFT-212 3072 20480 0.55 156
o | FT-RUFT-222 4096 49152 1.03 154

! Number of unidirectional links used by each topology.
2 Network throughput is measured in flits/cycle/node.
3 Network latency is measured in cycles.

TABLE 4: Performance-Cost for different network
sizes, uniform traffic and a packet size of 128B.

tion/ejection links. To perform a cost-performance com-
parison, we have also shown some performance results
for the uniform traffic pattern. As already stated, RUFT
uses the least number of links and the least number of
switching elements (less than half the resources of the
fat-tree and less resources than the other topologies).
However, RUFT provides the worst throughput and does
not provide any fault-tolerance (see Table 2). Moreover,
FT-RUFT-212 increases the network throughput and pro-
vides fault-tolerance (it supports 3 network faults, see
Table 2), while the number of required switch elements
remains lower than the fat-tree one. Notice that, the
number of links in the system is the same as the fat-
tree, for networks with three stages, but as the number
of stages increases, the number of required links will be
lower in FT-RUFT-212. Finally, RUFT-PL and FI-RUFT-
222 require some extra links and 33% more switching

13

elements than FTA, but the throughput achieved is
nearly twice the one offered by the other topologies
and also obtains the lowest latency. However, when
considering fault-tolerance, FI-RUFT-222 is definitively
the best choice, as it is able to support up to 7 network
faults versus 1 fault of RUFT-PL (see Table 2).

6 CONCLUSIONS

This work presents three MIN topologies which offer
good throughput and fault-tolerance levels. These topo-
logies are derived from the RUFT topology. They are
referred to as RUFT-PL, FT-RUFT-212, and FT-RUFT-222.

Each topology has been evaluated under different tra-
ffic patterns and different packets sizes. Although RUFT-
PL offers the best performance, it only tolerates one
fault, and it does not support switch faults. FI-RUFT-
212 does not only provide fault-tolerance to RUFT but
also increases the network performance with a minimal
hardware increase. This topology is a good alternative to
the FTA, given that provides a good fault-tolerance level
and a similar/better performance that the previous one,
but with a lower design cost.

FT-RUFT-222 is a topology derived from RUFT-PL and
FT-RUFT-212 that combines the best properties of both
proposals, allowing the topology to achieve up to twice
the fat-tree network performance and a very high level
of fault-tolerance (it tolerates 7 faults in the network
links and 1 fault in the injection/ejection links with 100%
probability and a large number of fault combinations
with a very high probability). In addition, both, FT-
RUFT-212 and FI-RUFT-222 are able to deal with failures
of switches in the network. In contrast, FTA does not
support failures in the switches of the first stage. Finally,
the three new topologies proposed in this paper are able
to tolerate faults in the injection and ejection links.

As future work, we are working on developing a
routing mechanism that can take advantage of the fault-
tolerance provided by the topologies.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economia y Competitividad (MINECO) and by FEDER
funds under Grant TIN2012-38341-C04-01.

REFERENCES

[1] Top 500 supercomputers sites. http://www.top500.org.

[2] C.Gomegz, F. Gilabert, M.E. Gomez, P. Lopez, and J. Duato. RUFT:
Simplifying the Fat-Tree Topology. In Parallel and Distributed
Systems, 2008. 14th IEEE Intl. Conf. on, 2008.

[3] CW. Chen and C.P. Chung. Designing A Disjoint Paths Inter-
connection Network with Fault Tolerance and Collision Solving.
The Journal of Supercomputing, 34(1):63-80, 2005.

[4] D.S. Parker and C.S. Raghavendra. The Gamma Network. Com-
puters, IEEE Trans. on, 1984.

[5] PJ. Chuang. CGIN: A Fault Tolerant Modified Gamma Inter-
connection Network. Parallel and Distributed Systems, IEEE Trans.
on, 1996.

[6] CW. Chen, N.P. Lu, TE Chen, and C.P. Chung. Fault-tolerant
Gamma Interconnection Networks by Chaining. Computers and
Digital Techniques, IEE Proc., 2000.

[71 R.Rastogi, Nitin, and D. Chauhan. 3-Disjoint Paths Fault-tolerant
Omega Multi-stage Interconnection Network with Reachable Sets
and Coloring Scheme. In Computer Modelling and Simulation
(UKSim), 2011 UkSim 13th Intl. Conf. on, 2011.

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

R. Rastogi, R. Verma, Nitin, and D. Chauhan. 3-Disjoint Paths
Fault-tolerant Multi-stage Interconnection Networks. In Advances
in Computing and Communications, volume 190 of Communications
in Computer and Information Science. 2011.

S. Wei and G. Lee. Extra Group Network: a cost-effective
fault-tolerant multistage interconnection network. In Computer
Architecture, 1988. Conf. Proceedings. 15th Annual Intl. Symp. on,
1988.

S. Konstantinidou. The Selective Extra-Stage Butterfly. Computer
Design: VLSI in Computers and Processors, 1992. ICCD '92. Proc.,
IEEE 1992 Intl. Conf. on, pages 502-506, 1992.

N. Kamiura, T. Kodera, and N. Matsui. Design of a fault tole-
rant multistage interconnection network with parallel duplicated
switches. In Defect and Fault Tolerance in VLSI Systems, 2000. Proc.
IEEE Intl. Symp. on, 2000.

S. Bataineh and B. Allosl. Fault-tolerant multistage interconnec-
tion network. Telecommunication Systems, 17(4):455-472, 2001.
C.W. Chen, PS. Gan, and C.H. Chang. Designing a High Per-
formance and Fault Tolerant Multistage Interconnection Network
with Easy Dynamic Rerouting. In Parallel and Distributed Proce-
ssing and Applications, volume 3358 of LNCS, pages 1007-1016.
2005.

F.O. Sem-Jacobsen, T. Skeie, O. Lysne, O. Toerudbakken, E. Rong-
ved, and B. Johnsen. Siamese-Twin: A Dynamically Fault-Tolerant
Fat-Tree. In Parallel and Distributed Processing Symp., 2005. Proc.
19th IEEE Intl., 2005.

M. Valerio, L.E. Moser, and PM. Melliar-Smith. Fault-tolerant
orthogonal fat-trees as interconnection networks. In Algorithms
and Architectures for Parallel Processing, 1995. ICAPP 95. IEEE First
ICA/sup 3/PP., IEEE First Intl. Conf. on, 1995.

I. Gazit and M. Malek. Fault tolerance capabilities in mul-
tistage network-based multicomputer systems. Computers, IEEE
Transactions, 37(7):788-798, 1988.

C.T. Ho and L. Stockmeyer. A new approach to fault-tolerant
wormhole routing for mesh-connected parallel computers. In
Vehicle Navigation and Information Systems Conf., 1993., Proceedings
of the IEEE-IEE.

ET. Chong and TF. Knight, Jr. Design and Performance of
Multipath MIN Architectures. In Proc. of the 4th Annual ACM
Symp. on Parallel Algorithms and Architectures. 1992.

C. Gémez, M.E. Gémez, P. Lépez, and]. Duato. FT2EL A Dynamic
Fault-Tolerant Routing Methodology for Fat-Trees with Exclusion
Intervals. I[EEE TPDS, 20(6), 2009.

G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath
Fault-Tolerant Routing Method for High-Speed Interconnection
Networks. Europar, 5704:1078-1088, 2009.

V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A
Fault-tolerant Engineered Network. In Proc. of the 10th USENIX
Conf. on Networked Systems Design and Implementation, 2013.

V.P. Bhardwaj and N. Nitin. A new fault tolerant routing algo-
rithm for advance irregular augmented shuffle exchange network.
In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th
Intl. Conf. on, 2012.

E. Bistouni and M. Jahanshahi. Pars network: A multistage
interconnection network with fault-tolerance capability. Journal
of Parallel and Distributed Computing, 75(0):168 — 183, 2015.

R.R. Aggarwal and Dr. L. Kaur. Fault-Tolerance and Permutation
Analysis of ASEN and its Variant. Intl. Journal of Computer Science
and Information Technologies, 1(1):24-32, 2010.

F. Petrini and M. Vanneschi. k-ary n-trees: High performance
networks for massively parallel architecture. IEEE Micro, 15, 1995.
C. Goémez, E Gilabert, M.E. Gémez, P. Lépez, and]. Duato.
Deterministic versus Adaptive Routing in Fat-Trees. In Parallel and
Distributed Processing Symp., 2007. IPDPS 2007. IEEE Intl., 2007.
S. Scott, D. Abts, J. Kim, and W.J. Dally. The BlackWidow High-
Radix Clos Network. In Computer Architecture, 2006. ISCA "06.
33rd Intl. Symp. on, 2006.

14

Diego F. BermUdez G. obtained his MS in
Computer Science from the Universidad Po-
litecnica de Valencia, Spain, in 2008. He joined
the Parallel Architecture Group at Universidad
Politécnica de Valencia in 2011, where he is
conducting his PhD. His research interests are in
the field of topology for off-chip interconnection
networks and GPU architectures.

Crispin G 6mez Requena obtained his MS in
Computer Science from the Universidad Po-
litécnica de Valencia, Spain, in 2005. He joi-
ned the Parallel Architecture Group at Universi-
dad Politécnica de Valencia in 2006 where he
presented his thesis. On 2010, he joined the
Intel Barcelona Research Center group inside
Intel Labs under the leadership of Prof. Antonio
Gonzalez. His research interests are in the field
of topology and fault-tolerance for off-chip and
on—chip interconnection networks, and in micro-
processor architectures.

Maria Engracia G 6mez obtained her MS and
PhD degrees in Computer Science from the
Universidad Politécnica de Valencia, Spain, in
1996 and 2000, respectively. She joined the
Department of Computer Engineering (DISCA)
at Universidad Politécnica de Valencia in 1996
where she is currently an Associate Professor
of Computer Architecture and Technology. Her
research interests are in the field of interconnec-
tion networks, networks-on-chips, cache cohe-

. rence protocols and memory hierarchy. In those
fields she has publlshed more than 50 refereed conference and journal
papers.

Pedro L 6pez is a full professor in computer
architecture and technology at the Department
of Computer Engineering (DISCA), Universidad
Politécnica de Valencia, Spain. He received the
BEng degree in electrical engineering and the
MS and Ph.D. degrees in computer engineering
from the same university in 1984, 1990 and
1995, respectively. He has taught several cour-
ses on computer organization and architecture.
His research interests include high performance
interconnection networks for multiprocessor sys-
tems and clusters and networks on chip. Prof. Lopez has published
more than 100 refereed conference and journal papers. He served as
a member of the editorial board of Parallel Computing journal.

Jos é Duato received the MS and PhD degrees
in electrical engineering from the Technical Uni-
versity of Valencia, Spain, in 1981 and 1985,
respectively. Currently, Dr. Duato is Professor
in the Department of Computer Engineering
(DISCA) at the Polytechnic University of Valen-
cia. He was also an adjunct professor in the De-
partment of Computer and Information Science,
The Ohio State University. His current research
interests include interconnection networks and
multiprocessor architectures. Prof. Duato has
published over 400 refereed papers. He proposed a powerful theory of
deadlock-free adaptive routing for wormhole networks. Versions of this
theory have been used in the design of the routing algorithms for the MIT
Reliable Router, the Cray T3E supercomputer, the on-chip router of the
Alpha 21364 microprocessor, and the IBM BlueGene/L supercomputer.
Prof. Duato is the first author of the book "Interconnection Networks: An
Engineering Approach”. Dr. Duato served as a member of the editorial
boards of IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, and IEEE Computer Architecture Letters.

