## **Table de Contents**

| 11 | VTRC          | DDUCTION                                                                                                         | 1                                        |
|----|---------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|    | 1.            | Fruit plastids and their contribution to fruit quality                                                           | 3                                        |
|    | 1.1.          | Role of photosynthesis in the fruit                                                                              | 4                                        |
|    | 1.2.          | Chloroplast are remodeled to chromoplast during ripening                                                         | 9                                        |
|    | 1.3.          | Genetic regulation of genes involved in chloroplast developmen                                                   | nt. 10                                   |
|    | 1.4.          | Fruit chloroplast reinforcement, a double-edged sword?                                                           | 17                                       |
|    | 1.5.<br>riper | Walking on the wild side: oxidative stress during normal fruit ning and under stressful environmental conditions | 19                                       |
|    | 2.            | Photoprotection approach                                                                                         | 20                                       |
|    | 2.1           | Anthocyanins: natural source of photoprotection                                                                  | 20                                       |
|    | 2.2           | Tomato fruit are capable of accumulating anthocyanins                                                            | 21                                       |
|    | 2.3           | Anthocyanin biosynthetic pathway                                                                                 | 22                                       |
|    | 2.4           | Regulation of anthocyanin Pathway                                                                                | 25                                       |
|    | 2.5           | Tomato engineering for high content in anthocyanins                                                              | 27                                       |
| C  | BJE           | CTIVES                                                                                                           | 31                                       |
| C  | НАР           | TER 1: Plastid Fortified Tomatoes Obtained by                                                                    |                                          |
|    |               | oined over-expression of GLK and APRR2 Transcription                                                             |                                          |
| F  | acto          | rs during Early Fruit Development                                                                                | 35                                       |
|    | 3.            | INTRODUCTION                                                                                                     | 37                                       |
|    | 4.            | RESULTS                                                                                                          | 40                                       |
|    |               | NESOLIS                                                                                                          | 40                                       |
|    | 2.1<br>the c  | Engineering tomato plants expressing <i>GLKs</i> and <i>APRR2</i> TFs uncontrol of the TFM5 promoter             | der                                      |
|    | the c         | Engineering tomato plants expressing GLKs and APRR2 TFs unc                                                      | der<br>40<br>2 <i>are</i>                |
|    | the co        | Engineering tomato plants expressing <i>GLKs</i> and <i>APRR2</i> TFs uncontrol of the TFM5 promoter             | der<br>40<br>2 <i>are</i><br>42<br>erved |



## Tabla de contents

| 2.5<br>gran |                   | s-APRR2 increases fruit plastid number, compartment size and<br>ng                                                                                                      |      |
|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.6<br>cons |                   | neering <i>GLK</i> and <i>APRR2</i> early in ovary/ fruit development haves on fruit quality at the ripe stage                                                          |      |
|             | 2.6.1             | dCEF lines accumulate higher levels of total soluble solids                                                                                                             | . 55 |
|             | 2.6.2<br>compo    | dCEF lines show higher contents of nutritional and healthy unds                                                                                                         | . 56 |
|             | 2.6.3             | Volatile profiles modified in dCEF                                                                                                                                      | . 57 |
| 5.          | DISCUS            | SSION                                                                                                                                                                   | 60   |
| 6.          | MATER             | RIALS AND METHODS                                                                                                                                                       | 66   |
| 4.1         | Plan              | t materials and growth conditions                                                                                                                                       | . 66 |
| 4.2         | Plasr             | mid construction and generation of transgenic plants                                                                                                                    | . 68 |
| 4.3         | Tran              | sgenic plants evaluation                                                                                                                                                | . 69 |
| 4.4         | RNA               | extraction and qRT PCR expression analysis                                                                                                                              | . 70 |
| 4.5         | Carc              | tenoid and chlorophyll analysis                                                                                                                                         | . 71 |
| 4.6         | Ligh <sup>.</sup> | t and transmission electron microscopy                                                                                                                                  | . 72 |
| 4.7         | Vola              | tile compounds profiling                                                                                                                                                | . 74 |
| 4.8         | Prim              | ary metabolite profiling                                                                                                                                                | . 74 |
| 4.9         | Data              | analysis and visualization                                                                                                                                              | . 75 |
|             |                   | : Molecular mechanisms underlying the fruit driven by early expression of GLK and APRR2 .                                                                               | 77   |
| 7.          | INTRO             | DUCTION                                                                                                                                                                 | 79   |
| 8.          | RESUL             | TS                                                                                                                                                                      | 82   |
| 2.1<br>meta |                   | scriptome data overview shows changes consistent with the cfuit phenotype                                                                                               | . 82 |
|             | noter aff         | vactivation of <i>GLK2</i> or <i>APRR2</i> under the control of a fruit spec<br>ects a common set of genes that are related to fruit<br>sis and chloroplast development |      |
| 2.3<br>DEG  |                   | ear genes implicated in chloroplast retrograde signaling are                                                                                                            | . 88 |
|             |                   | t expression of APRR2 and GLK2 early in development results orcement of chlorophyll synthesis and photosynthesis machin                                                 |      |



|          | 2.5<br>APRR2    | The boost in photosystem machinery in double engineered <i>GLK</i> -fruit is maximized when using <i>GLK1</i> 9                                                          | 1  |
|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          | 2.6<br>effect o | Early expression of <i>GLK2</i> and <i>APRR2</i> still has a quantitatively large on fruit transcriptome at MG stage9                                                    | 4  |
|          | 2.7<br>higher   | Fruit chloroplast enhancement in <i>GLK1-APRR2</i> lines results in a total protein content9                                                                             | 7  |
|          | 2.8<br>chlorop  | Proteomics analysis of fortified fruit revealed that mitochondria and plast are the most affected cellular components                                                    |    |
|          | 2.9             | Chloroplast biogenesis increases in CEF genotypes10                                                                                                                      | )4 |
|          | 2.10<br>proteor | Largest differentially protein portion analyzed belong to chloroplas<br>me                                                                                               |    |
|          | 2.11            | Relationship between proteome and transcriptome10                                                                                                                        | 8( |
|          | 2.12            | Over-represented motives in common upregulated genes                                                                                                                     | )9 |
|          | 9. DI           | ISCUSSION11                                                                                                                                                              | .0 |
|          | 3.1<br>chlorop  | GLKs and APRR2 affecting an array of chloroplast biogenesis and blast functions including retrograde signaling program11                                                 | 1  |
|          | 3.2<br>early in | Additive effect resulting from joint expression of GLK and APRR2 fruit development and the possible underlying mechanism                                                 | 4  |
|          | 3.3<br>upregu   | Increased in plastid development is well-correlated with the lation of genes and proteins process-associated11                                                           | 7  |
|          | 3.4<br>carbon   | Fruit photosynthesis enhancement supported by upregulation of fixation enzymes11                                                                                         | 9  |
|          | 10.             | Materials and Methods                                                                                                                                                    | 20 |
|          | 4.1             | Plant materials and growth conditions                                                                                                                                    | 20 |
|          | 4.2             | Protein analysis                                                                                                                                                         | 21 |
|          | 4.3             | RNA extraction                                                                                                                                                           | 21 |
|          | 4.4             | Global transcriptomics profiling by RNAseq12                                                                                                                             | 22 |
|          | 4.5             | RNA Data Analysis12                                                                                                                                                      | 23 |
| ur<br>of | nder th         | ER 3: Expression of tomato complex BHLH:MYB:WD4 he light inducible promoter PLI results in high levels ocyanin accumulation in the fruit peel and Type VI ar trichomes12 |    |
| -        | 11.             | INTRODUCTION 12                                                                                                                                                          | 7  |



| 12.              | RESULTS                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------|
| 1.1<br>BHLH:I    | Generation of tomato plants overexpressing tomato MYB:WD40 complex in fruit peel132                            |
| 1.2<br>fruit pe  | Engineered fruit display intense purple pigment accumulation in sel134                                         |
| 1.3<br>anthoc    | Biochemical analysis revealed the detailed composition of yanin-enriched fruits137                             |
| 1.4              | Unexpected anthocyanin accumulation in type VI trichomes 140                                                   |
| 1.5              | Trichome-type Specificity                                                                                      |
| 1.6<br>transcr   | Anthocyanin trichome expression appears to require BM iptional complex to be driven the PLI promoter145        |
| 1.7<br>glandu    | Specificities of the alteration of the flavonoid pathway in type VI<br>lar trichomes driven by the PLI::BMW147 |
| 1.8              | AEP phenotype is dependent on light149                                                                         |
| 1.9<br>flavono   | Differences in light intensity produces dramatic changes in the bid profile of the fruit peel154               |
| 13.              | DISCUSSION                                                                                                     |
| 1.10<br>in fruit | Purple pigment in our AEP is restricted to peel similarly as it happens of wild species                        |
| 1.11             | Unexpected novel localization of anthocyanin in tomato trichomes 158                                           |
| 1.12             | Engineering trichomes as biofactories161                                                                       |
| 1.13             | Enriched fruit flavonoid profile                                                                               |
| 1.14             | Light dependent phenotype                                                                                      |
| 1.15             | Photo-oxidative Stress Protection                                                                              |
| 1.16             | Conclusion and future perspectives                                                                             |
| 14.              | MATERIALS AND METHODS167                                                                                       |
| 1.17             | Plant materials and growth conditions167                                                                       |
| 1.18             | Anthocyanin module construct and plant transformation                                                          |
| 1.19             | Transgene expression determination by quantitative real time PCR 169                                           |
| 1.20             | Sampling method170                                                                                             |
| 1.21             | Microscopy characterization170                                                                                 |



## Tabla de contents

|   |                 | fruits and trichomes                                                                                                  | 1 |  |  |
|---|-----------------|-----------------------------------------------------------------------------------------------------------------------|---|--|--|
| G | ENER            | AL DISCUSSION175                                                                                                      | 5 |  |  |
|   | 15.             | Fruit Photosynthesis                                                                                                  | 7 |  |  |
|   | 16.<br>Chloro   | Early-fruit Specific Overexpression of <i>GLKs</i> and APRR2 TFs: plast and Photosynthesis Boost with Additive Effect | 9 |  |  |
|   | 16.1            | A Multi-level Analysis Confirmed the Chloroplast Boost18                                                              | 0 |  |  |
|   | 16.2            | Beyond Chloroplasts- Mitochondria and other Related Functions 18                                                      | 2 |  |  |
|   | 16.3            | Molecular Basis of the GLK::APRR2 additive Effect18                                                                   | 3 |  |  |
|   | 16.4<br>Associa | Fruit Photosynthesis Boost Demonstrated through Metabolites ated18                                                    | 4 |  |  |
|   | 16.5            | An Early Chloroplast Boost Impacts on Red Fruit Quality18                                                             | 5 |  |  |
|   | 17.             | A Possible Solution for Tomato Fruit Photooxidative Stress. 18                                                        | 6 |  |  |
|   | 17.1            | Novel Anthocyanin Trichome Phenotype18                                                                                | 8 |  |  |
|   | 18.             | Future perspectives for CEF and AEP 18                                                                                | 9 |  |  |
| C | ONCL            | USION19                                                                                                               | 1 |  |  |
| S | UPPLE           | MENTARY FIGURES19                                                                                                     | 5 |  |  |
| S | UPPLE           | MENTARY TABLES20                                                                                                      | 7 |  |  |
| R | REFERENCES 213  |                                                                                                                       |   |  |  |

