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ABSTRACT 9 

Vegetation plays a key role in catchment’s water balance, particularly in semi-arid 10 

regions that are generally water-controlled ecosystems. Nowadays, many of the 11 

available dynamic vegetation models are quite complex and they have high 12 

parametrical requirements. However, in operational applications the available 13 

information is quite limited. Therefore parsimonious models together with 14 

available satellite information can be valuable tools to predict vegetation 15 

dynamics. In this work, we focus on a parsimonious model aimed to simulate 16 

vegetation and hydrological dynamics, using both field measurements and 17 

satellite information to implement it. The results suggest that the model is able to 18 

adequately reproduce the dynamics of vegetation as well as the soil moisture 19 

variations. In other words, it has been shown that a parsimonious model with 20 

simple equations can achieve good results in general terms and it is possible to 21 

assimilate satellite and field observations for the model implementation. 22 
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1. Introduction 25 

A better understanding of the components of catchments’ water balance has 26 

traditionally been one of the main objectives of the hydrological community 27 

(Gerten et al., 2004). To this end, it is certainly well-known that the vegetation 28 

plays a key role in a catchment’s water balance particularly in semi-arid regions 29 

(Laio et al., 2001). In these water-controlled ecosystems, the vegetation controls 30 

the hydrological processes through its influence on interception, infiltration, 31 

evapotranspiration, surface runoff and, consequently, groundwater recharge 32 

(Rodriguez-Iturbe et al., 2001). The vegetation key role on controlling the 33 

hydrological cycle is such that the actual evapotranspiration may account for 34 

more than 90% of the precipitation (Pilgrim et al., 1988; Huxman et al., 2005). 35 

From here that reliable estimates of spatial and temporal variations of actual 36 

evapotranspiration as well as precipitation are vital to obtain reliable estimates of 37 

the available water resources (Andersen, 2008). In spite of this, traditionally, very 38 

few hydrological models had incorporated the vegetation dynamic as a state 39 

variable, neglecting in this way most of the interactions with vegetation and 40 

vegetation dynamics themselves (Lee and Pielke, 1992; Parlange and Katul, 41 

1992; Walker and Langridge, 1996; Alvenäs and Jansson, 1997; Snyder et al., 42 

2000; Aydin et al., 2005). In fact, most of them are able to represent fairly well the 43 

observed discharge at the catchment outlet, but usually including the vegetation 44 

as a static parameter (Quevedo and Francés, 2008).  45 
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In the last decades, the number of hydrological models which explicitly take into 46 

account the vegetation development as a state variable has increased 47 

substantially and considerable efforts have been made to understand and 48 

reproduce adequately the interactions between the vegetation and the water 49 

cycle. However, most of the time, these models are difficult to constrain because 50 

of the high number of parameters that are required to be estimated (Quevedo 51 

and Francés, 2008). This represents a particularly challenging task, especially 52 

considering that in operational applications the available information is frequently 53 

quite limited, in particular for arid and semi-arid regions which often in some 54 

respects could be categorized as ungauged basins (Andersen, 2008).  55 

Therefore parsimonious models, together with available remote sensing 56 

information, can be valuable tools to predict vegetation dynamics. For this 57 

reason, we have focused on the use of the parsimonious and dynamic vegetation 58 

LUE-model proposed by Pasquato et al. (2014).Briefly, the parsimonious LUE-59 

model simulates gross primary production (GPP) as a function of absorbed 60 

photosynthetically active radiation (APAR) and the vegetation light use efficiency 61 

(LUE). Net primary production (NPP) is then calculated taking into account 62 

maintenance respiration. This model is focused particularly on simulating foliar 63 

biomass, which is obtained from NPP through an allocation equation based on 64 

the maximum LAI sustainable by the system (Pasquato et al., 2014). 65 

However, since LUE is a parsimonious and conceptual model, some vegetation 66 

processes have been neglected. It is important to check that the most relevant 67 

processes are being captured by the model. For this reason, the present study 68 

compares the capability of this parsimonious model against a physically-based 69 
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model in reproducing the interaction between vegetation and water. The selected 70 

physically-based model was the well-known Biome-BGC (Thornton et al., 2002). 71 

The models were applied in a semi-arid forest experimental plot (East of Spain) 72 

and their performances were analyzed against field data (daily soil water content 73 

and transpiration). The parsimonious LUE-Model was calibrated using remote 74 

sensing data and validated using the field observations, while the BIOME-BGC 75 

model was implemented only using the field measurements.  76 

In this way, we want to know if the use of a parsimonious model together with 77 

remote sensing data is an option comparable to the use of a physically-based 78 

model together with field observations. This question is very interesting in those 79 

cases in which there are not field measurements. Zhang et al. (2011) showed 80 

how model’s predictions can be improved using satellite imagery combined with 81 

field data. However, there are still many open questions regarding the remote 82 

sensing’s applicability and robustness. Pasquato et al. (2014) highlighted the 83 

importance to evaluate firstly the remote sensing data to be used in order to 84 

ascertain the value of the information that can be extrapolated from them, taking 85 

into account the fact that external conditions and the structure of vegetation 86 

canopy can alter the computed vegetation indices values (Jackson and Huete, 87 

1991).  88 

In most of the applications, satellite data is used combined with field data. But, 89 

actually, it will be rare to have field measurements for model implementation in 90 

practical applications. Therefore, in this paper we address the following two 91 

questions: (1) is the proposed parsimonious model capable to satisfactory 92 

simulate vegetation and hydrological dynamics or a more complex model is 93 
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needed? and, (2) can satellite products be used to implement a dynamic 94 

vegetation model or are field measurements totally necessary?  95 

2. Study area 96 

The study site is an experimental plot located in the Public Forest Monte de la 97 

Hunde y Palomeras in the East part of Spain (Figure 1). The sandy-silty loam 98 

soils predominate with high concentration of carbonate (16-38%, pH 7.7-8.2). Soil 99 

thickness ranges between 50 and 60 cm. The climate is Mediterranean with a 100 

mean annual rainfall of 466 mm and a mean annual temperature of 13.7 ºC 101 

(1960-2007). The mean annual reference evapotranspiration is 749 mm. Using 102 

the Köppen climate classification, the climate of this area is classified as semiarid 103 

(González-Sanchis et al., 2015). 104 

The vegetation in the experimental plot is characterized by an homogeneous 105 

Aleppo pine (Pinus halepensis) plantation of high tree density with scant 106 

presence of other tree species either in forest gaps or as understory species 107 

(e.g., Quercus ilex sbsp. ballota, Pinus pinaster) (Molina and del Campo, 2012). 108 

This place has been previously studied and modeled. Information about the 109 

results of the previous studies can be found at González-Sanchis et al. (2015), 110 

Molina and del Campo (2012) and, del Campo et al. (2014). 111 
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 112 

Figure 1. Location of the experimental plot study site. Detailed view of the 60 years old aleppo pine 113 

plantation, control plot, used for this work. 114 

3. Field measurements 115 

Measurements of Soil Water Content (SWC) and transpiration were carried out in 116 

an experimental plot of 30x30 m (Del Campo et al., 2014). Transpiration was 117 

measured in 4 trees by considering the diametrical distribution (<20.5 cm low, 118 

20.5-26.5 cm medium, >26.5 cm high). Four trees were selected: one of the high, 119 

one of the low and two of the medium diameter class. Sap flow velocity was 120 

measured through the HRM method (Burgess et al., 2001; Hernandez-Santana 121 

et al., 2011; Williams et al., 2004) in all sample trees and programmed to average 122 

every hour. In each tree a HRM sap flow sensor (HRM sensor, ICT International, 123 

Australia) was placed at 1.3 m height and at the north side. 124 

SWC was measured using 9 FDR sensors (EC-TM, Decagon Devices Inc., 125 

Pullman, WA), placed at 30 cm depth and considering either tree influence or not 126 

(i.e., under projected crown or not). SWC was continuously measured for the 127 

whole period every 20 minutes. Field sensor calibrations were carried out by 128 
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determining the gravimetric water content in four sampling dates (saturation, field 129 

capacity, between field capacity and wilting point and wilting point) to obtain the 130 

full range of SWC in the study site (Del Campo et al., 2014). In this way, plant 131 

transpiration and soil moisture were obtained in the experimental plot during the 132 

observational period from 27/03/2009 to 31/05/2011.  133 

The Leaf Area Index (LAI) was estimated on field using a LAI-2000 sensor (LI-134 

COR, 1991) only once at the beginning of the work. Readings were taken under 135 

direct solar radiation (Molina and Del Campo, 2011) with a 270° view cap and 136 

with the sensor always shaded to avoid light dispersions affecting sensor 137 

readings (LI-COR, 1991). The measured LAI has a value of 2.6. 138 

At the end, we used the following field measurements to carry out the 139 

implementation of the complex model: (1) daily transpiration data calculated as 140 

an average which takes into account the number of trees included in each 141 

diameter class (low, medium and high), and (2) daily SWC data calculated 142 

according to the vegetation cover, assuming that the sensors under tree 143 

influence (mean value) were representative of the area covered by vegetation 144 

and the sensors without tree influence (mean value) were representative of bare 145 

soil. The fraction covered by pine in the experimental plot is the 84% with a tree 146 

density of 1489 tree/ha. 147 

4. Satellite data 148 

In this work, we analyzed the following satellite products provided by NASA 149 

(NASA Land Processes Distributed Active Archive Center (LP DAAC)): the 150 

Normalized Difference Vegetation Index (NDVI), included in the MOD13Q1 and 151 

http://www.sciencedirect.com/science/article/pii/S0378112711007845#b0130
http://www.sciencedirect.com/science/article/pii/S0378112711007845#b0130
http://www.sciencedirect.com/science/article/pii/S0378112711007845#b0165
http://www.sciencedirect.com/science/article/pii/S0378112711007845#b0130
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MYD13Q1 products; the Leaf Area Index (LAI), included in the MOD15A2; and 152 

the MYD15A2 products and the actual evapotranspiration (ET), included in the 153 

product MOD16A2. For the coverage of the study site, the h17v05 tile is required, 154 

where h and v denote the horizontal and vertical tile number, respectively. The 155 

MODIS vegetation index datasets provided in Hierarchical Data Format (HDF) 156 

were imported to GeoTIFF format by MODIS Reprojection Tool (MRT) (software 157 

provided by NASA) and reprojected from the Integerized Sinusoidal (ISIN) 158 

projection to Universal Transform Mercator projection system. 159 

The NDVI data is provided by NASA every 16 days and with a spatial resolution 160 

of 250X250 m. On the other hand, the LAI data is provided every 8 days and with 161 

a spatial resolution of 1X1 km. Both MODIS products were analyzed from 162 

18/02/2000 to 02/02/2013. Finally, the ET datasets provided by NASA are 163 

evaluated using Mu et al.’s algorithm (2011) based on Penman Monteith equation 164 

(Monteith, 1965). This algorithm uses the following satellite information to be 165 

implemented: land cover classification, albedo, LAI and fPAR (fraction of the 166 

photosynthetically active radiation). It is available from 01/01/2000 to 26/12/2012, 167 

provided every 8 days and with a spatial resolution of 1X1 km. As the study 168 

experimental plot (described above) is only of 30X30 m and it is completely 169 

covered by one satellite pixel, we used directly the value of NDVI, LAI and ET 170 

from this pixel. In other words, interpolation techniques were not needed. 171 

As a result of the dataset analysis, only NDVI was finally used to calibrate LUE 172 

model. Despite the fact that all analyzed satellite products (NDVI, LAI and ET) 173 

showed a marked seasonal quasi-sinusoidal behavior as expected (Figure 2), the 174 

values of LAI were significantly lower than the one measured in the field. Satellite 175 
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LAI values ranged from 0.8 to 1.2, while the measured one was 2.6. This field 176 

value is in agreement to values reported in literature (Sabaté et al., 2002; 177 

Sprintsin et al., 2007; Vicente-Serrano et al., 2010) for the same species and 178 

under similar climatic conditions. Thus, the use of satellite LAI was finally 179 

dismissed. Likewise, as the Mu’s algorithm employed to calculate ET uses the 180 

MODIS LAI, the use of satellite ET was also rejected. Hence, we used only the 181 

NDVI data from 18/02/2000 to 02/02/2013 to carry out the calibration of the LUE 182 

model. It should be underline that LAI and ET products are calculated by NASA 183 

using models, and at least for this particular pixel, they did not work. 184 

5. Models 185 

5.1. LUE-Model 186 

Hydrological sub-model 187 

The dynamic vegetation model was coupled with a hydrological model based on 188 

a tank-based schema (Figure 2). A more detailed description of the hydrological 189 

model used can be found in Quevedo and Francés (2008), Pasquato (2013) and 190 

Pasquato et al. (2014).  191 

Briefly, the first tank represents the amount of water retained by the canopy. This 192 

water can only exit from this tank by direct evaporation. On the other hand, the 193 

soil depth is divided into two layers: a shallow layer that involves the processes of 194 

bare soil evaporation and superficial roots transpiration, and a second underlying 195 

layer that provides soil moisture to deeper roots (Figure 2). 196 
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Transpiration (both from the shallow layer and from the deeper layer) is 197 

calculated according to FAO recommendations (Allen et al., 1998): the 198 

transpiration is obtained using the reference evapotranspiration (ET0) multiplied 199 

by a water stress factor (ζ) and by a factor related to the current leaf area index 200 

(LAI) simulated by the dynamic vegetation model, as shown in equation 1. 201 

Through this factor, the state of vegetation affects the hydrological fluxes and, 202 

consequently, the water storage in the different tanks. 203 

𝑇𝑖 = (𝐸𝑇0 − 𝐸𝐼) ∗ min(1, 𝐿𝐴𝐼) ∗ 𝜁 ∗ 𝑍𝑖                                                                                      (1) 

where Ti is the transpiration from the i soil layer, EI is the evaporation of the 204 

intercepted water and Zi is the percentage of roots in the i soil layer. The 205 

expression min(1,LAI) is the factor which replaces the crop factor recommended 206 

by the FAO 56.  207 
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 208 

Figure 2. Schema of the hydrological sub-model (Pasquato et al., 2014)  209 

Dynamic Vegetation sub-model 210 

Many approaches for estimating plant biomass production (Field et al., 1995; 211 

Running et al., 2004; Montaldo et al., 2005; Pasquato et al., 2014) are based on 212 

the use of the light use efficiency (LUE) concept. The LUE is the proportionality 213 

between plant biomass production by terrestrial vegetation and absorbed 214 

photosyntetically active radiation in optimal conditions. However, this efficiency 215 

can be affected by stress conditions. The key factors contributing to the variation 216 

of this efficiency are: soil moisture content, air temperature (Landsberg and 217 

Waring, 1997; Sims et al., 2006), and nutrient levels (Gamon et al., 1997; 218 

Ollinger et al., 2008). 219 
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Our LUE model simulates the leaf biomass (Bl, kg DM m-2 ground) as follows 220 

(Pasquato et al., 2014: 221 

𝑑𝐵𝑙

𝑑𝑡
= (𝐿𝑈𝐸 ∗ 𝜀 ∗ 𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅 − 𝑅𝑒) ∗ 𝜑𝑙 − 𝑘𝑙 ∗ 𝐵𝑙                                                            (2) 

where ε takes into account the reduction in LUE due to stress sources. In this 222 

study, as it was applied in a water-controlled catchment, the stress factors 223 

considered were only the water stress and the temperature stress. The nutrient 224 

levels were not considered, because they are not the dominant stress source in 225 

this area. The water stress factor connects the dynamic vegetation model with 226 

the hydrological model. Re is the respiration, ϕl is the fractional leaf allocation and 227 

kl is the leaf natural decay factor to reproduce the senescence. Finally, PAR and 228 

fPAR are the photosyntetically active radiation and the fraction of PAR absorbed 229 

by the canopy respectively. More information about these terms can be found in 230 

Pasquato (2013). 231 

The daily PAR was obtained from the incident global radiation provided by a 232 

nearby meteorological station using a constant ratio of 0.48 MJ (PAR) MJ-1 233 

(global radiation) (McCree, 1972). The fPAR was obtained using the Beer-234 

Lambert law: 235 

𝑓𝑃𝐴𝑅 = 0.95 ∗ (1 − 𝑒−𝑘∗𝐿𝐴𝐼)                                                                                                     (3) 

where k is the light extinction coefficient and LAI is the leaf area index simulated 236 

by the model. The LAI is simulated through the specific leaf area (SLA) and the 237 

vegetation fractional cover (fv): 238 

𝐿𝐴𝐼 = 𝐵𝑙 ∗ 𝑆𝐿𝐴 ∗ 𝑓𝑣                                                                                                                         (4) 
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However, Dawson et al. (1998) showed that NDVI is influenced by leaf water 239 

content. For this reason, some authors (William and Albertson, 2005; Pasquato 240 

et al., 2014) recommend the use of a water stress factor to make comparable the 241 

LAI with the NDVI as shown in equation 5. 242 

𝐿𝐴𝐼𝑟 = 𝐿𝐴𝐼 ∗ 𝜁10                                                                                                                             (5) 

where the LAIr is the LAI comparable with NDVI and 𝜁10 is the average plant 243 

water stress of the previous 10 days as proposed by William and Albertson 244 

(2005). 245 

5.2. Biome-BGC Model 246 

As representative of a complex model, this paper uses the Biome-BGC 4.2 model 247 

(Thornton et al., 2002) for two reasons. Firstly, the model is well documented, 248 

both technically and in scientific publications; second, the source code of the 249 

model is publicly available on the Internet (NTSG 2001). Furthermore, it is also 250 

widely used as a benchmark during global change analysis (e.g., Schimel et al. 251 

1994). Complete descriptions of the model have been carried out in many studies 252 

(Pietsch et al., 2003; Tatarinov and Cienciala, 2006; Chiesi et al., 2007; Maselli et 253 

al., 2009).  254 

Briefly, the model operates in a 1m2 scale, with a daily time step and describes 255 

the dynamics of energy, water, carbon and nitrogen in a defined type of terrestrial 256 

ecosystem (deciduous broadleaf forest, coniferous forest or grassland). The 257 

model requires: daily climate data, information of the general environment (soil, 258 

vegetation and site conditions) and 34 parameters describing the eco-259 
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physiological characteristics of vegetation such as specific leaf area, water 260 

interception coefficient or light extinction coefficient. BIOME-BGC is provided with 261 

default ecophysiological parameters sets for the major biome types, but these 262 

must be modified to adapt to Mediterranean ecosystems (Chiesi et al., 2007). 263 

Water cycle calculation includes daily canopy interception, evaporation, 264 

transpiration, soil evaporation, soil water potential, soil water content and outflow. 265 

6. Methodology 266 

This paper implements the LUE-Model following two steps: (1) calibration of the 267 

model using the satellite NDVI and (2) validation using the available field 268 

measurements (transpiration and SWC). The performance of the model is then 269 

compared to that of the BIOME-BGC model by comparing the simulation results 270 

between them and to the field observations. Thus, the simulated period of both 271 

models includes the period with available field data (27/03/2009 to 31/05/2011), 272 

as well as two different precipitation scenarios: dry (year 2005) and wet (year 273 

2010). In particular, we computed the amount of ‘blue water’ (water in liquid form 274 

used for the human needs or which flows out the ecosystems) and the amount of 275 

‘green water’ (water having the vapor for resulting from evaporation and 276 

transpiration processes) in order to obtain and compare the blue/green rate (B/G) 277 

using both modeling alternatives. 278 

Due to observational and model conceptualization errors and time and space 279 

scale effects, any mathematical model must use effective parameters for a better 280 

reproduction of reality (Blöschl and Sivalapan, 1995; Francés et al., 2007). The 281 

main reason of the calibration of a mathematical model is therefore to obtain the 282 

effective values of its parameters. 283 
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The hydrological sub-model has six parameters to be calibrated: (1) maximum 284 

interception storage, (2) the wilting point soil moisture, (3) field capacity soil 285 

moisture, (4) optimal point soil moisture, (5) effective depth soil of the first layer 286 

and (6) effective depth soil of the second layer. With regards to the dynamic 287 

vegetation sub-model, there are seven parameters to be calibrated: (1) LUE, 288 

Light Use Efficiency, (2) coverage factor, (3) distribution of roots factor, (4) 289 

maximum LAI sustainable by the system, (5) light extinction coefficient, (6) SLA, 290 

Specific Leaf Area, and (7) optimal temperature.  291 

To calibrate both sub-models (thirteen parameters) we used the available NDVI 292 

data from 18/02/2000 to 02/02/2013. As NDVI is sensitive to green leaf biomass, 293 

it can be primarily employed to monitor the photosynthetically active biomass of 294 

plant canopies, and the relationships between NDVI and LAI have been strongly 295 

demonstrated. For this reason, the selected objective function was the Pearson’s 296 

correlation coefficient between the simulated LAIr and the satellite NDVI. Firstly, 297 

calibration was carried out using a manual adjustment of parameter’s values and 298 

using values recommended in literature for each parameter (some sources were: 299 

Ceballos and Ruiz de la Torre, 1979; Calatayud et al., 2000 and others). Later, a 300 

genetic algorithm called Evolver was used to optimize the calibration process. 301 

Finally, the model was validated using daily field measurements of SWC and 302 

transpiration. 303 

The BIOME-BGC was calibrated and validated using daily field sap flow and soil 304 

moisture data. For calibration, the 70% of the field data were used, while the 305 

remaining 30% were used to validate the model. Since it is a model which works 306 

at 1m2 scale (individual scale), it was applied in various trees and, later, we 307 
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calculated an average of these ‘individual’ results.  A more detailed description of 308 

this process can be found in González-Sanchis et al. (2015). 309 

The performance of both models was analyzed comparing the simulation results 310 

to the field observations. The selected goodness-of-fit indexes were the Root 311 

Mean Square Error (RMSE), the Nash and Sutcliffe efficiency index (E) and the 312 

Pearson correlation coefficient (only for the LAI evaluation). 313 

As the main objective of this paper is to know if a simple model implemented only 314 

using satellite data can be used as alternative against a well-known physically-315 

based model implemented using field measurements, we ran both models for a 316 

long period and, later, we compared the differences between them. 317 

Finally, the B/G water ratio was calculated using the results from each model. In 318 

our models, on one hand, the Blue water is the excess water from the upper soil: 319 

i.e., surface runoff plus deep percolation. And, on the other hand, the Green 320 

water is calculated as the sum of the amount of water transpired by plants, the 321 

amount of water evaporated from the bare soil and the amount of water 322 

evaporated from the interception.  323 

7. Results  324 

In general, the calibration of the LUE model showed a strong positive relationship 325 

between the LAIr and the NDVI provided by satellite in the entire period (see 326 

Figure 3), with a Pearson correlation coefficient of 0.635. 327 

However, during the calibration, despite the fact that generally the simulated 328 

peak values of LAIr coincided with those of NDVI, a significant disagreement 329 
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between both variables was obtained during two specific periods (shaded in 330 

Figure 3). During the first period, from July 2004 to December 2005, the LAIr and 331 

the NDVI series were totally uncorrelated, especially during the beginning of this 332 

period. Likewise, in the second period, spring 2010, the simulated LAIr 333 

maintained a high value while the NDVI decreased substantially.  334 

 335 

Figure 3. Comparison between LAIr simulated by the model and NDVI from satellite. The shaded 336 

areas correspond to the two specific periods with a significant disagreement between simulated 337 

LAIr and satellite NDVI. 338 

The validation of the LUE-Model with the field measurements showed a general 339 

agreement between the simulated and the measured SWC and transpiration, 340 

although the former appears to be more accurately reproduced (see Table II). 341 

The major disagreement in the prediction of transpiration values occurred during 342 

the spring of 2010, which is the same period where the simulated LAIr and the 343 

NDVI were noticeably uncorrelated. 344 
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 345 

Figure 4. Transpiration and SWC simulated by both models and measured in field 346 

As mentioned before, the calibration and validation of the BIOME-BGC has been 347 

previously carried out in González-Sanchis et al. (2015) and the results are 348 

summarized in Table II. The model predicts accurately SWC and transpiration, 349 

although like the LUE model, the BIOME-BGC also reproduces more accurately 350 

the dynamics of SWC. The E index is approximately 0.5 in the case of 351 

transpiration (0.532 in the calibration and 0.544 in the validation) while the same 352 

index in the case of SWC is higher than 0.7 (0.766 in the calibration and 0.715 in 353 

the validation). In any case, the obtained results were satisfactory in both, 354 

transpiration and SWC. 355 

Therefore, both models reproduce with acceptable accuracy the water dynamics 356 

of the study site. In fact, the E indexes in terms of SWC is higher than 0.65 for 357 
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both models (Table II). However, as it was expected and it is shown by the 358 

selected goodness of fit indexes, the BIOME-BGC appears to be more accurate 359 

than the LUE-Model (see Figure 4 and Table II). 360 

Table II. Results of the validation using field data for the LUE and Biome-BGC 361 

models (observational period 27/03/2008 to 31/05/2011) 362 

 Transpiration SWC 

 LUE-Model Biome-BGC LUE-Model Biome-BGC 

E 0.346 0.544 0.65 0.715 

RMSE 0.274 0.209 0.051 0.070 

Comparing the results of both models in a longer run (from 2004 to 2012 363 

approximately), we can observe that there are not big differences between them 364 

(see Figure 5). The agreement between SWC time series is very strong and it is 365 

better than the agreement between transpiration time series. But, in general, 366 

there are not big differences. In fact, the Pearson correlation coefficient values 367 

between them are 0.638 and 0.865 for the transpiration and SWC respectively. 368 
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 369 

Figure 5. Transpiration and SWC time series simulated by both models (from 2004 to 2012 370 

approximately)  371 

Likewise, when estimating the general B/G rate during the dry and the wet years, 372 

the models produce very similar results, with a rate around 0.1 during the dry 373 

year and around 0.8 during the wet year (Table III).  374 

Table III. Results of each model in terms of blue (excedence) and green (evapotranspiration) water 375 

 Flows Dry year (2005) Wet year (2010) 

L
U

E
-M

o
d

e
l 

Precipitation (mm) 188 739 

Evapotranspiration (mm) 165.18 431.87 

Excedence (mm) 16.34 326.93 

B/G 0.098 0.757 

B
io

m
e

-B
G

C
 Precipitation (mm) 188 739 

Evapotranspiration (mm) 156.30 408.80 

Excedence (mm) 31.7 330.10 

B/G 0.104 0.807 
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8. Discussion 376 

In general, LUE and BIOME-BGC reproduced with acceptable accuracy SWC 377 

and transpiration values. Both models simulated more accurately SWC than 378 

transpiration dynamics, and a disagreement between simulated and observed 379 

daily transpiration can be found at certain periods for both models. The 380 

disagreement could be due to the fact that 2010 was an abnormally rainy period, 381 

and as an outlier, the models might not reproduce it properly. However, since the 382 

periods where the models performed with less accuracy were not the same, the 383 

high quantity of rain might not be the cause, or at least not the main one. Del 384 

Campo et al 2014 grouped the simulated period in four spells according to the 385 

precipitation and the average daily temperature: Dry Cool (DC), Dry Warm (DW), 386 

Wet Cool (WC) and Wet Warm (WW). Analyzing the performance of both models 387 

during each spell, it is possible to observe that both models behave different. The 388 

LUE model does not reproduce accurately cool spells, either dry or wet, while the 389 

BIOME-BGC is slightly less accurate when simulating dry spells, either cool or 390 

warm. Analyzing the field data, it is possible to observe a significant linear 391 

relationship between transpiration and Vapor Pressure Deficit (VPD) during cool 392 

spells, which is stronger during WC spells. Contrarily, during warm spells, the 393 

transpiration is significantly correlated to the measured SWC. This behavior 394 

describes the general dynamics of the vegetation, where if soil water availability 395 

does not limit transpiration, it is expected that transpiration will be affected 396 

primarily by atmospheric evaporative demands (Monteith, 1965; Tanner and 397 

Fuchs, 1968). Thus, the LUE model appears not to include properly the 398 

atmospheric evaporative demands, and its performance during the periods were 399 

this demand prevails over SWC is less accurate.  400 
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With regards to the lower performance of the BIOME-BGC model when 401 

simulating transpiration during dry spells, is probably due to the fact that the 402 

model is not originally designed to reproduce arid or semi-arid environments. 403 

Indeed the fact that SWC is always accurately simulated indicates that the 404 

drought tolerance of semi-arid species might reduce the accuracy of the model at 405 

certain periods. 406 

As mentioned previously, when analyzing the performance of the LUE model with 407 

satellite information, we observed that the main disagreement between LAIr and 408 

NDVI is produced during the period from July 2004 to December 2005, which 409 

was an extremely dry period. The precipitation during this period was 188 mm, 410 

which is significantly lower than the annual mean precipitation registered in the 411 

study site (466 mm). Thus, according to the general dynamics of the vegetation, 412 

in this extremely dry period the SWC would be expected to be the main driving 413 

factor of transpiration, and therefore, the performance of the LUE model is 414 

expected to be more accurate. SWC and LAIr are highly correlated in the LUE 415 

model, and a significantly decrease in SWC will also imply a significantly 416 

decreasing of LAIr. However, the immediate response of LAIr to SWC variations 417 

contrasts to that of NDVI, which appears to be delayed a few months. NDVI 418 

values of arid or semiarid areas, as well as those of Mediterranean areas during 419 

the dry summer season, have been demonstrated to be strongly dependent on 420 

plant water availability in preceding months (Maselli 2004). In particular, inter-421 

year NDVI variations of Mediterranean vegetation cover are mostly controlled by 422 

variations in previous plant water stress conditions during the arid season (Caroti 423 

et al., 1995 and Cannizzaro et al., 2002). Maselli 2004 found a strong 424 

dependence of a Mediterranean pine wood summer NDVI values on winter 425 
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rainfalls and summer NDVI were causally linked; i.e., the first was the main cause 426 

for the latter. Besides, as a drought-avoiding species, Pinus halepensis has an 427 

ability to survive intense and prolonged drought (Maseyk et al., 2008; Schiller and 428 

Atzmon 2009) that could delay even more the NDVI response. Thus, the 429 

disagreement between LAIr and NDVI found in this study is probably due to the 430 

late response of NDVI to a severe drought period. Indeed, after this drought 431 

period, NDVI decreases until August 2006, where the regression between LAIr 432 

and NDVI, although significant (sig. < 0.05) showed a low regression coefficient 433 

of 0.2. Contrarily, from August 2006 onwards, NDVI starts to increase again 434 

probably as a response of the rain during the winter of 2006, and the regression 435 

coefficient increases to 0.69. 436 

Likewise, the disagreement between LAIr and NDVI during the first half of 2010 437 

can also be due to the late response of NDVI to changes in water availability, 438 

although in this case the water availability increases substantially as 2010 was an 439 

abnormally rainy period. As a consequence, LAIr increases and remains with 440 

high values almost the first half of 2010. On the contrary, the increasing of NDVI 441 

is not observed until August, when the regression coefficient between LAIr and 442 

NDVI increases from 0.29 to 0.61. However, with these exceptions, the LUE 443 

model captures well the dynamic of the vegetation provided by NDVI. 444 

Likewise, the estimation of the general B/G water balance using the LUE and the 445 

BIOME-BGC model produced very similar results when simulating both dry and 446 

wet years. Both models obtained a B/G water ratio below 1, where more than half 447 

of the total annual rainfall would be consumed by the ecosystem and returned to 448 

the atmosphere, and a short quantity of water would be able to supply the 449 
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catchment. The similarity of the results enhances the capability of the 450 

parsimonious LUE-Model to distribute water, which is very similar to that of the 451 

physically-based Biome-BGC model. A proper distribution of blue and green 452 

water is essential for a model as it raises the question of a loss of services that 453 

ecosystems provide to human and also the amount of available water to be used 454 

by vegetation. Particularly, in Mediterranean ecosystems, where the global 455 

climate change scenario predicts an increase in dry years over normal and wet 456 

periods (Giorgi and Lionello, 2008), an accurate distribution of the blue and green 457 

water is fundamental when designing water management policies.  458 

9. Conclusions  459 

The obtained results in this research suggest that the parsimonious model is able 460 

to adequately reproduce the dynamics of vegetation (the correlation coefficient 461 

with the satellite and field transpiration data are acceptable), and it also 462 

reproduces properly the soil moisture variations. In other words, it has been 463 

shown that a parsimonious model with simple equations can achieve good 464 

results in general terms, and it is possible to assimilate satellite information for 465 

the model implementation. However, it also has been observed that the LUE 466 

model’s accuracy is worse when the transpiration is limited by the atmospheric 467 

demands. It’s important to mention that the LUE model uses the reference 468 

evapotranspiration during the calculation of the transpiration. As the LUE model 469 

implementation represented such situation in which there are not field 470 

information, the reference evapotranspiration was calculated by Hargreaves and 471 

Samani method (this method only needs information of temperatures and 472 

http://www.sciencedirect.com/science/article/pii/S0304380015001325#bib0130
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radiation). Maybe the LUE model’s performance can improve if the Penman 473 

Monteith method was used to calculate the reference evapotranspiration.   474 

Anyway, the objective of this paper is not to propose a ‘perfect model’. In fact, we 475 

want to know if a simple model implemented only using satellite data can be used 476 

as alternative against a well-known physically-based model implemented using 477 

field measurements. The comparison between both models in a long period 478 

shows there are not big differences between them, and the dynamics in both 479 

cases (transpiration and SWC) are very similar. 480 

In this research, the satellite data played a key role in the implementation of the 481 

model. In fact, the measured transpiration data were available only over less than 482 

two years as a field observation of the vegetation state and evolution. In this 483 

case, the satellite data was a very useful source of information, and its 484 

combination with the parsimonious LUE model has demonstrated to be an 485 

accurate tool capable of predict the role of the vegetation in the water cycle with 486 

no field data.  487 
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