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Abstract 

 In this work, a method for the preparation and anchoring of polymeric 

monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for 

microbore HPLC is described. In order to assure a covalent attachment of the monolith 

to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface 

etching reagents, a commercial sodium naphthalene solution (Fluoroetch®), or mixtures 

of H2O2 and H2SO4, were tried and compared. Then, the obtained hydroxyl groups on 

the PTFE surface were modified by methacryloylation. Attenuated total reflectance 

Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy 

(SEM) confirmed the successful modification of the tubing wall and the stable 

anchorage of monolith to the wall, respectively. Special emphasis was also put on the 

reduction of the unwanted effects of shrinking of monolith during polymerization, by 

using an external proper mold and by selecting the adequate monomers in order to 

increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) 

monoliths were in situ synthesized by thermal polymerization within the confines of 

surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and 

the monolithic column exhibited good pressure resistance up to 20 MPa. The column 

performance was also evaluated via the isocratic separation of a series of alkylbenzenes 

in the reversed-phase mode. The optimized monolithic columns gave plate heights 

ranged between 70 and 80 µm. The resulting monoliths were also satisfactorily applied 

to the separation of proteins. 

 

Keywords: Polymer monolith; polytetrafluoroethylene; surface modification; monolith 

attachment; microbore column; reversed-phase liquid chromatography  

 

 

1. Introduction 

 

Monolithic columns are becoming very attractive stationary phases due to their 

advantageous hydrodynamic features and their easy flexible preparation and versatility. 

Thus, numerous reports on both silica- [1] and polymer-based monolithic columns [2, 3] 

and their application to sample preparation and separation have been described. 

Polymeric monoliths are prepared from a bulk polymerization mixture and their 

structure is defined by the monomer composition and polymerization temperature 
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without further processing [3]. Up to now, most of the related literature has been 

focused on the monolithic structure for enhancing column performance and on new 

column chemistries for tailoring selectivity [4], while  research in the extension of these 

materials  on column size (within inner diameters higher than 500 m) and housing 

materials has been reduced [5-7]. On the other side, fused-silica capillaries have been 

traditionally employed as physical supports in the preparation of monolithic columns 

due to their easy covalent attachment to the wall after its vinylization. These capillary-

scale columns have demonstrated to be of interest in miniaturized techniques 

(capillary/nano-LC and electrochromatography) and its application to the growing field 

of life-sciences. However, capillaries are too narrow for the flow-rate ranges employed 

in conventional HPLC. 

In general, the fabrication of  large monolithic columns with sizes larger than 

500 m involves some difficulties in preparation. An increase in the column tubing 

diameter (from capillary format to internal diameter above 1 mm) can produce 

heterogeneous monoliths with radial gradients of properties due to the slow dissipation 

of heat during the exothermic polymerization process [8]. Other problems are caused by 

the monolith shrinkage during polymerization. The forces put into play by longitudinal 

and radial shrinkage of the polymer are strong enough to extensively breakdown the 

monolith-tube anchorage. The unwanted effects of shrinking are negligible in 

capillaries, although very important in larger diameter tubes. A few approaches to 

reduce the shrinking effects have been suggested, including the use of solvents that keep 

the stationary phase in the swollen-state [9], polymerization under high pressures [10], 

and the employ of a titanium scaffold [11]. 

On the other hand, there is an increasing interest in developing monolithic 

columns confined in tubes made of materials different from silica, such as stainless 

steel, polyether ether ketone (PEEK) or polytetrafluoroethylene (PTFE) tubes of at least 

0.5 mm i.d. Above this diameter, a column can be used in HPLC and other systems 

using conventional flow-rate ranges, such as in flow injection analysis and solid-phase 

extraction (SPE) devices for on-line sample preparation. However, few contributions 

have been reported for the preparation of micro-bore scale monolithic columns in non-

silica molds [5-7, 12-13].  

PTFE has been widely used in the electronics, chemical, and medical industries, 

due to its excellent properties such as high chemical inertness and thermal stability, low 

dielectric constant and transparency to UV radiation [14]. The properties of PTFE have 
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led to many successful applications, such as lining for reactors and electrical cables, 

substrate for printed circuit boards, anti-sticking coating for kitchen utensils, and 

adhesive tapes, etc. Moreover, PTFE has been extensively used as recommended 

material in several analytical applications, such as trace metal studies, automation 

methods, and in sample preparation devices (reactors, filters, membranes, etc.). Due to 

its UV transparent properties, PTFE capillaries have been also employed as separation 

media in capillary electrophoresis [15]. However, its poor adhesion properties and poor 

wettability have caused considerable problems in particular application fields such as 

microelectronic devices, adhesive and protective coatings and biomaterials [16-17]. In 

order to enhance its adhesiveness to other materials, or to improve its biocompatibility, 

several surface modification methods have been proposed to introduce polar groups 

such as hydroxyls or carboxylates onto PTFE surfaces. Along with wet chemical 

treatments [18-19], plasma [20] and ion beam [21-22] etching treatments are considered 

the most efficient techniques for PTFE surface modification. However, plasma and ion 

beam techniques cannot be used to modify the inner surface of capillaries, and they are 

not easy to use in narrow tubes either. 

In this study, the use of PTFE tubing of 1/16’’ o.d.  0.8 mm i.d. as a column 

housing for microbore HPLC using polymeric monoliths is investigated. In order to 

assure covalent attachment of the monolith to the inner wall of the PTFE tube, a 

chemical modification of this material was first performed. For this purpose, two 

etchant reagents, a sodium naphthalene solution (Fluoroetch®) or mixtures of H2O2 and 

H2SO4, were tried and compared. The objective of this etching step was to create 

reactive hydroxyl groups on the PTFE surface. Then, these groups were subsequently 

modified by methacryloylation to obtain a vinylized surface. Special emphasis was also 

put on to reduce the unwanted effects of shrinking by using an external polymerization 

mold for the subsequent thermal polymerization stage; in addition, success was 

achieved by also selecting a proper selection of monomers to increase the flexibility of 

the resulting polymers.  

The resulting monolithic columns were connected to a conventional HPLC 

system and its chromatographic properties were evaluated using a mixture of 

alkylbenzenes. After optimization of the polymerization conditions (composition and 

polymerization time) of the monolithic columns, a satisfactory chromatographic 

performance of probes was achieved. Furthermore, the capability of using the 

synthesized columns in the prepared PTFE supports for the separation of proteins was 
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also investigated. To our knowledge, this is the first report that demonstrates the use of 

PTFE tubing as supporting material for monoliths and its application to the separation 

of small molecules and proteins by reversed-phase LC. 

 

2. Materials and methods 

 

2.1. Chemicals and reagents 

Glycidyl methacrylate (GMA), ethylene dimethacrylate (EDMA), tetrahydrofuran 

(THF) and triethylamine (TEA) were from Sigma-Aldrich (Steinheim, Germany). 

Divinyl benzene (technical grade, 80% mixture of isomers, 20% mainly ethylstyrene, 

DVB), 1-decanol and lauroyl peroxide (LPO) were supplied by Alfa Aesar (Karlsruhe, 

Germany). Azobisisobutyronitrile (AIBN) was from Fluka (Buchs, Switzerland). 

HPLC-grade acetonitrile (ACN) and methanol (MeOH) were from Merck (Darmstadt, 

Germany). Uracil, alkyl benzenes from Riedel de Haën (Seelze, Germany) and proteins 

such as ribonuclease A (bovine heart), cytochrome C (bovine pancreas) from Alfa 

Aesar, and myoglobin (horse skeletal muscle) from Sigma, were used as probes. 

Acetone, sulfuric acid and hydrogen peroxide (37%) were supplied by Panreac 

(Barcelona, Spain). Ultra-pure water was obtained with a Milli-Q water purification 

system from Millipore (Bedford, MA, USA). Unless otherwise stated, other chemicals 

used were of analytical grade. Polytetrafluoroethylene (PTFE) tubing of 1/16’’ (1.6 

mm) o.d. × 0.8 mm i.d. from Omnifit (Fisher Scientific, Loughborough, UK) was used.  

Stock solutions of alkyl benzenes were prepared in ACN at 1.0 mg mL-1 each and 

kept at 4ºC until use. Working standard solutions were freshly prepared by dilution to 

the desired concentration with the mobile phase. Proteins were dissolved in water at 

concentration of 1.0 mg mL-1 each. 

2.2. Instrumentation 

 

Chromatographic analysis was carried out in an HPLC equipment from Jasco 

Analytica (Madrid, Spain), composed of a PU-2089 quaternary gradient pump, an AS-

2055 autosampler with a 100 µL injection loop and MD-2018 photodiode array 

detector. The system was controlled using the LC-NETII/AFC interface also supplied 

by Jasco. Acquisition and data treatment was performed using the ChromNAV software 

(version 1.17.01). SEM photographs of PTFE surfaces and monolithic materials were 

performed with a scanning electron microscope (S-4100, Hitachi, Ibaraki, Japan) 
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provided by a field emission gun, an EMIP 3.0 image data acquisition system, and a 

microanalysis system (Rontec, Normanton, UK). FT-IR spectra of PTFE surfaces were 

obtained with a Nicolet Magna FT-IR 750 spectrometer (Madison, WI, USA) fitted with 

a single reflection attenuated total reflectance (ATR) accessory. Spectra were recorded 

at room temperature between 4000 and 550 cm-1 with 8 cm-1 nominal resolution at 50 

scans per spectrum. Nitrogen adsorption surface area analysis of monolithic materials 

was performed on a Micromeritics ASAP2010 automated sorption analyzer 

(Rutherford, Germany). Gas chromatography–mass spectrometry (GC-MS) analysis 

was performed on a Focus DSQ II gas chromatograph provided with an AI 3000 

autosampler and single quadrupole MS detector from Thermo Fisher Scientific (Austin, 

TX, USA).  

 

2.3. Modification of inner wall surface of PTFE tubing 

 

To modify the inner wall surface of PTFE tubing (Fig. 1A), the following two wet 

chemical procedures were adopted. The first one employed sodium-naphthalene based 

solution (Fluoroetch, Acton Co., Limerick, Ireland) as etchant reagent. The detailed 

chemical and processing information of Fluoroetch treatment can be found elsewhere 

[23]. Briefly, the PTFE tubing was flushed with the Fluoroetch solution at 55-65ºC for 

60 s. Then, the tubes were washed with MeOH for 20 s, followed by rinsing with water 

at 70ºC for 30 s, and acidified water (containing 5% acetic acid) at 70ºC for 60 s. Next, 

the tubing was dried by flushing air at 70ºC. The second inner surface PTFE 

modification procedure was adapted from Löhbach et al. [18]. Thus, the tubing was 

filled with a H2O2/H2SO4 (1:1) solution, sealed with caps, and left at 70ºC for 60 min. 

Next, the tubing was flushed with water followed by acetone, and then dried with 

nitrogen. Both protocols produced hydroxyl reactive groups on the PTFE surface (Fig. 

1B). Afterwards, the PTFE activated surface (obtained with each protocol) was reacted 

with 2 M GMA in acetone containing 5 mM TEA at pH 8.0 for 5 min using a home 

microwave oven (output power: 800 W). This step allowed the introduction of double 

bonds (methacryloyl groups) onto the treated PTFE inner wall surface (Fig. 1C). The 

methacryloylated PTFE tubing was rinsed with acetone and then dried with nitrogen. 
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3. Results and discussion 

 

3.1. Modification of inner wall surface of PTFE tubing 

The surface of PTFE-based material was modified by wet chemical treatments to 

introduce polar groups such as hydroxyl groups into PTFE structure, thus enhancing its 

adhesiveness to other materials and molecules. For this purpose, two etchants were 

studied: a commercial sodium naphthalene solution (Fluoroetch) or a mixture of 

H2O2/H2SO4. The treatment using Fluoroetch is known to be a very effective method 

in industry for PTFE modification [18], whereas the second approach provides a milder 

modification of PTFE surface [18]. Thus, the internal surface of PTFE tubing was 

modified according to the procedures described in Section 2.3. In any case, both 

reactions produced hydroxyl groups (see Fig. 1A, first reaction step) onto the inner wall, 

which could be due to defluorination of PTFE molecular structure by the attack of 

complex radicals, generated from the interaction between the sodium metal and 

naphthalene (Fluoroetch reagent) or from reactive atomic oxygen species from 

“piranha” solution (H2O2/H2SO4 mixture). As a result, the surface C–F bonds were 

transformed into C–H, CH2OH and carboxyl (–COOH) bonds [18], and consequently, 

the hydrophobicity of the PTFE material decreases. The effectiveness of each chemical 

etching can be also established by evaluating the change in surface wettability in PTFE 

material. This parameter was measured though the contact angle of a droplet of water on 

the surface of the material. Thus, the water contact angle of the untreated PTFE 

decreased from 109º to 50º and 88º after treatment with Fluoroetch [24] or 

H2O2/H2SO4 mixture [18], respectively.  

To investigate the surface modification of PTFE tubing before and after each 

treatment, FT-IR measurements were obtained (see Fig. S1). The unmodified PTFE 

tubing (Fig. S1, trace A) showed the typical absorption bands of C-F bonds (from 1100 

to 1300 cm−1), whereas the FT-IR spectra of modified PTFE surface treated with either 

Fluoroetch (Fig. S1, trace B) or H2O2/H2SO4 mixture (Fig. S1, trace C) showed a new 

broad absorption band at 3200 cm-1 (attributable to the OH group) [25]. This band was 

more intense in the case of the Fluoroetch treatment. In addition, in this case, a small 

new band at 1730 cm-1 (attributed to stretching of the ester carbonyl group) was 

observed (Fig. S1, trace B).  



 

show

In co

etche

being

treatm

of ch

form

inset

funct

mech

polym

colum

produ

all th

studi

Fig. 
Fluor

accom

appro

reage

alkal

meth

deriv

could

group

as ca

The mor

ws the SEM 

omparison w

ed PTFE w

g these res

ment turned

hemical etch

med (Fig. 3C

t). In fact, 

tional (hydr

hanical stre

meric mon

mns were t

uct implied

hese reason

ies. 

3. SEM m
roetch (B)

 

Next, m

mplished. T

oach of u

ent. In par

line hydro

hacryloylatio

vatives of n

d be prepar

ps of these 

atalyst in a 

rphology o

micrograph

with the un

with Fluoroe

sults consist

d the PTFE 

hing using “

C) and no 

as we show

roxyl) group

ngth of PTF

oliths led t

tested in LC

d several rea

ns, the treat

micrographs 
) and with a

methacryloyl

This chemic

using (trime

rticular, the

olysis) mor

on step. Th

natural polys

red [26-28]

polymers i

mild basic

f the PTFE

hs of PTFE 

ntreated hyd

etch (Fig.

tent with p

tubing from

“piranha” so

color chang

wn later, th

ps for chem

FE. Howev

to the pres

C (data not

action steps 

tment with 

of surface 
a H2O2/H2SO

lation of th

cal modific

ethoxysilyl)

e resulting 

re readily 

hus, prior p

saccharides

. Thus, the

n the presen

c environme

10 

E tubing w

E tubing befo

drophobic P

 3B) show

previous stu

m white to d

olution (H2O

ge in the P

his treatmen

mical anchor

ver, the Fluo

sence of ar

t shown). B

and some e

a H2O2/H2

of PTFE t
O4 mixture 

he hydroxy

cation appro

)propyl me

C-O-Si bo

than typ

published s

s (like dextr

e epoxy gro

nce of seve

ent (pH 8.0

was also inv

fore and afte

PTFE tubing

wed random

udies [24]. 

dark brown 

O2/H2SO4 m

PTFE tubin

nt provided

ring of mon

oroetch-m

rtifacts and 

Besides, the

environmen

2SO4 mixtu

tubing untr
(C). 

ylated PTFE

oach was s

ethacrylate 

onding can 

pical C-O-

studies hav

ran, hyaluro

oup of GM

eral amines 

0-9) [29-31

vestigated b

er both chem

g (Fig. 3A)

mly distribut

In addition

(Fig. 3B, in

mixture) sm

g was evid

d sufficient 

nolith witho

modified sup

double pe

e use of th

ntal and safe

re was sele

reated (A) a

E surface w

elected ove

as commo

be broken

-C bonds 

ve demonstr

onic acid) a

MA can reac

(e,g, trimet

]. The expe

by SEM. F

mical treatm

), the chem

ted deep cr

n, this che

nset). In the

mall grooves

denced (Fig

number of

out damagin

pports conta

eaks when 

his sodium-b

ety concerns

ected for fu

and treated

with GMA

er the tradit

on organos

n (especiall

obtained 

rated that G

and related f

ct with hyd

thylamine, T

erimental re

Fig. 3 

ments. 

ically 

racks, 

mical 

e case 

 were 

g. 3C, 

f free 

ng the 

aining 

these 

based 

s. For 

urther 

 

d with 

A was 

tional 

silane 

ly by 

after 

GMA 

fibers 

droxyl 

TEA) 

esults 



11 
 

showed that the best etching solution to introduce methacryloyl groups could be 

achieved by exposing the hydroxylated PTFE surface to 2 M GMA in acetone 

containing 5 mM TEA (pH 8.0) (for more details, see Experimental section). This 

reaction step is crucial to attach successfully the posterior monolith to the PTFE wall (as 

demonstrated below). In fact, when this step was skipped, and only a polymerization 

mixture containing GMA as bulk monomer was used, the resulting monolith was not 

bound to the PTFE wall. 

As previously mentioned, shrinkage is an unavoidable process in any vinyl 

polymerization procedure and leads to longitudinal and radial contraction of the so-

formed polymer. Besides, these phenomena could be strong enough to breakdown the 

monolith-tube anchorage, being particularly important in large diameter tubes. Thus, in 

order to avoid the undesirable effect of longitudinal shrinkage, an adequate 

polymerization set-up was designed (see Fig. 2). The details of preparation of monoliths 

using this system are given in Section 2.4. Using this system, the longitudinal shrinkage 

took place outside the confines of the polypropylene mold (a Pasteur pipette), and a 

perfectly filled PTFE tubing with monolith was obtained. 

Regarding to the radial shrinkage, Svec et al. [32] prepared large-scale 

monoliths (8 mm i.d. in a stainless steel mold) in absence of this effect. The authors 

suggested that it was the result of both the absence of interfacial tension (compressing 

the polymer during its formation) and the lack of mixing along polymerization. 

However, these monoliths were not used as HPLC columns since probably a monolith 

detachment from the confining wall will be occurred. Other studies focused on the 

preparation of large-scale monolithic columns in housing materials [13, 33] have 

indicated that the radial shrinkage could be also significantly eliminated by the presence 

of enough anchoring groups as well as by the use of a proper mixture of monomers. In 

our case, it is likely that a combination of all these factors avoided the existence of 

radial compression effects. Several reports [34-36] have demonstrated that the elasticity 

and other morphological properties of polymeric monoliths are attributed to the type of 

crosslinker within polymer chains. In this work, two crosslinkers (EDMA and DVB) in 

the presence of GMA as bulk monomer were investigated. In addition, the preparation 

of GMA-based monolith relies on that this polymer is chemically and mechanically 

very stable and contains epoxy groups that can be further modified to prepare stationary 

phases suitable for ion exchange, hydrophobic interaction, reversed-phase or affinity 

separation. The initial conditions to prepare the polymerization mixture were adapted 
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3.3.  Repeatability studies of fabrication process 

The repeatability  of the fabrication process of polymeric monoliths in PTFE 

tubing was also evaluated by analyzing several chromatographic parameters, including 

run-to-run, day-to-day column (made from polymerization mixture) as well as column-

to-column (prepared  from different polymerization mixtures). The run-to-run 

repeatability was evaluated from series of six injections of the alkyl benzene test 

mixture at 0.5 mL min-1 performed on the GMA-based monolith, while the column-to-

column repeatability was estimated by preparing five monoliths (which were subjected 

to the optimal modification protocol of PTFE tubing). As observed in Table 1, for the 

tested parameters, satisfactory RSD values (below 7%) were obtained in all cases. 

Table 1  

Repeatability and reproducibility of several chromatographic properties (expressed as 

RSD%) of GMA-co-DVB monoliths prepared in PTFE tubing1. 

Parameter Repeatability Reproducibility 

 
Run-to-run 

column 
(n = 6) 

Day-to-day 
column 

(n = 6, 3 days) 

Column-to-

column 

(n = 5) 

t0 (min) 
0.3 0.5 1.0 

kpentylbenzene
 

0.4 0.7 1.1 

Hpentylbenzene (m) 
2.4 3.0 7.0 

1 Working LC conditions as in Fig. 5. 
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4. Conclusions 

A method for chemical modification of the inner wall surface of a PTFE tubing 

to assure a covalent attachment of polymeric monolith has been developed. The success 

of binding of the monolith was demonstrated by using FTIR and SEM measurements, 

adhesion tests and chromatographic separations. The use of a proper mold and an 

adequate polymerization mixture composition was established to reduce undesirable 

shrinking phenomena. This study led to flexible polymers tightly attached to the PTFE 

surface. The resulting monolithic columns (with 1/16” o.d. and 0.8 mm i.d.) were 

flexible and resilient to bonding stress of PTFE tubing, and these can be easily 

connected to conventional HPLC systems. The monolithic columns also exhibited 

acceptable column efficiency, satisfactory pressure resistance (up to 20 MPa) and 

reproducibility. Additionally, the developed microbore columns in this work could be 

also employed in flow methods and other analytical methodologies for 

purification/preconcentration/separation purposes, which undoubtedly expand the 

application field of the organic monolithic stationary phases. 
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