- -

Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xanthopoulou, Aliki es_ES
dc.contributor.author Montero-Pau, Javier es_ES
dc.contributor.author Mellidou, Ifigeneia es_ES
dc.contributor.author Kissoudis, Christos es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Tsaballa, Aphrodite es_ES
dc.contributor.author Tsaliki, Eleni es_ES
dc.contributor.author Dalakouras, Athanasios es_ES
dc.contributor.author Paris, Harry S. es_ES
dc.contributor.author Ganopoulou, Maria es_ES
dc.contributor.author Moysiadis, Theodoros es_ES
dc.contributor.author Osathanunkul, Maslin es_ES
dc.contributor.author Tsaftaris, Athanasios es_ES
dc.contributor.author Madesis, Panagiotis es_ES
dc.date.accessioned 2020-12-12T04:32:28Z
dc.date.available 2020-12-12T04:32:28Z
dc.date.issued 2019-08-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156948
dc.description.abstract [EN] Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four subsp. pepo (Pumpkin, Vegetable Marrow, Cocozelle, green Zucchini, and yellow Zucchini) morphotypes and three of the subsp. ovifera (Acorn, Crookneck, and Scallop) morphotypes. A high-depth resequencing approach was followed, using the BGISEQ-500 platform that enables the identification of rare variants, with an average of 33.5X. Approximately 94.5% of the clean reads were mapped against the reference Zucchini genome. In total, 3,823,977 high confidence single-nucleotide polymorphisms (SNPs) were identified. Within each accession, SNPs varied from 636,918 in green Zucchini to 2,656,513 in Crookneck, and were distributed homogeneously along the chromosomes. Clear differences between subspecies pepo and ovifera in genetic variation and linkage disequilibrium are highlighted. In fact, comparison between subspecies pepo and ovifera indicated 5710 genes (22.5%) with Fst > 0.80 and 1059 genes (4.1%) with Fst = 1.00 as potential candidate genes that were fixed during the independent evolution and domestication of the two subspecies. Linkage disequilibrium was greater in subsp. ovifera than in subsp. pepo, perhaps reflective of the earlier differentiation of morphotypes within subsp. ovifera. Some morphotype-specific genes have been localized. Our results offer new clues that may provide an improved understanding of the underlying genomic regions involved in the independent evolution and domestication of the two subspecies. Comparisons among SNPs unique to particular subspecies or morphotypes may provide candidate genes responsible for traits of high economic importance. es_ES
dc.description.sponsorship This work has been supported by Hellenic Agricultural Organization (ELGO) Demeter. Furthermore, we thank the Conselleria de Educacio, Investigacio, Cultura i Esport (Generalitat Valenciana) for funding Project Prometeo 2017/078 "Seleccion de Variedades Tradicionales y Desarrollo de Nuevas Variedades de Cucurbitaceas Adaptadas a la Produccion Ecologica". Also, this work was supported by Chiang Mai University. es_ES
dc.language Inglés es_ES
dc.publisher Springer Nature es_ES
dc.relation.ispartof Horticulture Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Yabby gene family es_ES
dc.subject Fruit shape es_ES
dc.subject Candidate genes es_ES
dc.subject Reveals es_ES
dc.subject Evolution es_ES
dc.subject Homologs es_ES
dc.subject Common es_ES
dc.subject Size es_ES
dc.subject Sun es_ES
dc.subject.classification GENETICA es_ES
dc.title Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41438-019-0176-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F078/ES/Selección de variedades tradicionales y desarrollo de nuevas variedades de cucurbitáceas adaptadas a la producción ecológica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Xanthopoulou, A.; Montero-Pau, J.; Mellidou, I.; Kissoudis, C.; Blanca Postigo, JM.; Picó Sirvent, MB.; Tsaballa, A.... (2019). Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research. 6:1-17. https://doi.org/10.1038/s41438-019-0176-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41438-019-0176-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2052-7276 es_ES
dc.identifier.pmid 31645952 es_ES
dc.identifier.pmcid PMC6804688 es_ES
dc.relation.pasarela S\410034 es_ES
dc.contributor.funder Chiang Mai University es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Hellenic Agricultural Organization (ELGO) Demeter es_ES
dc.description.references Maynard, D. & Paris, H. in The Encyclopedia of Fruits & Nuts (eds Paull, R. E. & Janick, J.) 276–313 (CABI, New Jersey, U.S.A., 2018). es_ES
dc.description.references Paris, H. S. in Genetics and Genomics of Cucurbitaceae, Grumet, Rebecca, Katzir, Nurit, Garcia-Mas, Jordi (Eds.) 111–154 (Springer, New York, U.S.A., 2016). es_ES
dc.description.references Whitaker, T. W. & Davis, G. N. Cucurbits (Leonard Hill (Books) Ltd., London, and Interscience Publishers Inc., New York, 1962). es_ES
dc.description.references Paris, H. S. History of the cultivar-groups of Cucurbita pepo. Hortic. Rev. 25, 71–170 (2001). es_ES
dc.description.references Paris, H. S. A proposed subspecific classifiaction for Cucurbita pepo. Phytologia (USA) 61, 133–138 (1986). es_ES
dc.description.references Lira, R., Andres, T. C. & Nee, M. in Systematic and Ecogeographic Studies on Crop Genepools, Vol. 9, 1–115 (International Plant Genetic Resources Institute, Roma, Italia, 1995). es_ES
dc.description.references Castellanos-Morales, G. Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Mol. Phylogenet. Evol. 128, 38–54 (2018). es_ES
dc.description.references Paris, H. S., Lebeda, A., Křistkova, E., Andres, T. C. & Nee, M. H. Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 66, 71–90 (2012). es_ES
dc.description.references Dong, W., Wu, D., Li, G., Wu, D. & Wang, Z. Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci. Rep. 8, 2908 (2018). es_ES
dc.description.references Galpaz, N. et al. Deciphering genetic factors that determine melon fruit‐quality traits using RNA‐Seq‐based high‐resolution QTL and eQTL mapping. Plant J. 94, 169–191 (2018). es_ES
dc.description.references Gur, A. et al. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci. Rep. 7, 9770 (2017). es_ES
dc.description.references Blanca, J. et al. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom. 12, 104 (2011). es_ES
dc.description.references Esteras, C. et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 13, 80 (2012). es_ES
dc.description.references Montero-Pau, J. et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using genotyping-by-sequencing. BMC Genom. 18, 94 (2017). es_ES
dc.description.references Vicente-Dólera, N. et al. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement. PLoS ONE 9, e112743 (2014). es_ES
dc.description.references Wyatt, L. E., Strickler, S. R., Mueller, L. A. & Mazourek, M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic. Res. 2, 14070 (2015). es_ES
dc.description.references Xanthopoulou, A. et al. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 622, 50–66 (2017). es_ES
dc.description.references Montero‐Pau, J. et al. De novo assembly of the zucchini genome reveals a whole‐genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol. J. 16, 1161–1171 (2018). es_ES
dc.description.references Garcia-Mas, J. et al. Cloning and mapping of resistance gene homologues in melon. Plant Sci. 161, 165–172 (2001). es_ES
dc.description.references Xanthopoulou, A. et al. Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (‘Cucurbita pepo’) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust. J. Crop Sci. 9, 14 (2015). es_ES
dc.description.references Huang, J. et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience 6, gix024 (2017). es_ES
dc.description.references Natarajan, K. N. et al. Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biol. 20, 70 (2019). es_ES
dc.description.references Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). es_ES
dc.description.references Tian, L. et al. Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biol. 9, 1 (2009). es_ES
dc.description.references Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). es_ES
dc.description.references McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). es_ES
dc.description.references Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007). es_ES
dc.description.references Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). es_ES
dc.description.references Team, R. C. (2015). http://www.r-project.org/ . es_ES
dc.description.references Krzywinski, M. I. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009). es_ES
dc.description.references Kosman, E. & Leonard, K. J. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol. Ecol. 14, 415–424 (2005). es_ES
dc.description.references Huson, D. H. & Bryant, D. Estimating Phylogenetic Trees and Networks Using SplitsTree 4. www.splitstree.org (2005). es_ES
dc.description.references Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). es_ES
dc.description.references Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strainw1118; iso-2; iso-3. Fly 6, 80–92 (2012). es_ES
dc.description.references Wu, S. et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 9, 4734 (2018). es_ES
dc.description.references Drevensek, S. et al. The Arabidopsis TRM1–TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24, 178–191 (2012). es_ES
dc.description.references Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). es_ES
dc.description.references Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014). es_ES
dc.description.references Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587 (2017). es_ES
dc.description.references Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017). es_ES
dc.description.references Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009). es_ES
dc.description.references Leida, C. et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 16, 28 (2015). es_ES
dc.description.references Esteras, C. et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor. Appl. Genet. 126, 1285–1303 (2013). es_ES
dc.description.references Maria José Gonzalo et al. Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genom. 20, p. 448 (2019). es_ES
dc.description.references Nimmakayala, P. et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genom. 15, 767 (2014). es_ES
dc.description.references Gonzalo, M. J. & Monforte, A. J. in Genetics and Genomics of Cucurbitaceae, Grumet, Rebecca, Katzir, Nurit, Garcia-Mas, Jordi (Eds.) 269–290 (Springer, New York, U.S.A., 2016). es_ES
dc.description.references Pomares-Viciana, T. et al. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biol. 19, 61 (2019). es_ES
dc.description.references Lu, S. et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18, 3594–3605 (2006). es_ES
dc.description.references Jin, B., Kim, J., Jung, J., Kim, D. & Park, Y. Characterization of IQ domain gene homologs as common candidate genes for elongated fruit shape in cucurbits. Hortic. Sci. Technol. 36, 85–97 (2018). es_ES
dc.description.references van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. 5, 227 (2014). es_ES
dc.description.references Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J. & Van Der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530 (2008). es_ES
dc.description.references Dou, J. et al. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor. Appl. Genet. 131, 947–958 (2018). es_ES
dc.description.references Pan, Y. et al. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor. Appl. Genet. 130, 573–586 (2017). es_ES
dc.description.references Liu, J. et al. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening. PLoS ONE 10, e0123870 (2015). es_ES
dc.description.references Liu, J. et al. Mu MADS 1 and Ma OFP 1 regulate fruit quality in a tomato ovate mutant. Plant Biotechnol. J. 16, 989–1001 (2018). es_ES
dc.description.references Cong, B., Barrero, L. S. & Tanksley, S. D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 40, 800 (2008). es_ES
dc.description.references Huang, Z., Van Houten, J., Gonzalez, G., Xiao, H. & van der Knaap, E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol. Genet. Genom. 288, 111–129 (2013). es_ES
dc.description.references Bowman, J. L. The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 3, 17–22 (2000). es_ES
dc.description.references Liu, J., Van Eck, J., Cong, B. & Tanksley, S. D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl Acad. Sci. USA 99, 13302–13306 (2002). es_ES
dc.description.references Tsaballa, A., Pasentsis, K., Darzentas, N. & Tsaftaris, A. S. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol. 11, 46 (2011). es_ES
dc.description.references Wang, S., Chang, Y., Guo, J. & Chen, J. G. Arabidopsis Ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J. 50, 858–872 (2007). es_ES
dc.description.references Lazzaro, M. D., Wu, S., Snouffer, A., Wang, Y. & Van Der Knaap, E. Plant organ shapes are regulated by protein interactions and associations with microtubules. Front. Plant Sci. 9, 1766 (2018). es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem