- -

A study of the local convergence of a fifth order iterative method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A study of the local convergence of a fifth order iterative method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Singh, Sukjith es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Maroju, P. es_ES
dc.contributor.author Behl, Ramandeep es_ES
dc.date.accessioned 2021-02-11T04:32:57Z
dc.date.available 2021-02-11T04:32:57Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0019-5588 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161059
dc.description.abstract [EN] We present a local convergence study of a fifth order iterative method to approximate a locally unique root of nonlinear equations. The analysis is discussed under the assumption that first order Frechet derivative satisfies the Lipschitz continuity condition. Moreover, we consider the derivative free method that obtained through approximating the derivative with divided difference along with the local convergence study. Finally, we provide computable radii and error bounds based on the Lipschitz constant for both cases. Some of the numerical examples are worked out and compared the results with existing methods. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Indian Journal of Pure and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative methods es_ES
dc.subject Local convergence es_ES
dc.subject Divided differences es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A study of the local convergence of a fifth order iterative method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13226-020-0409-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Singh, S.; Martínez Molada, E.; Maroju, P.; Behl, R. (2020). A study of the local convergence of a fifth order iterative method. Indian Journal of Pure and Applied Mathematics. 51(2):439-455. https://doi.org/10.1007/s13226-020-0409-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13226-020-0409-5 es_ES
dc.description.upvformatpinicio 439 es_ES
dc.description.upvformatpfin 455 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\422671 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, New Jersey, (1999). es_ES
dc.description.references J. M. Douglas, Process Dynamics and Control, Prentice Hall, Englewood Cliffs, (1972). es_ES
dc.description.references M. Shacham, An improved memory method for the solution of a nonlinear equation, Chem. Eng. Sci., 44 (1989), 1495–1501. es_ES
dc.description.references J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New-York, (1970). es_ES
dc.description.references J. R. Sharma and H. Arora, A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numer. Algorithms, 67 (2014), 917–933. es_ES
dc.description.references I. K. Argyros, A. A. Magreńan, and L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation, J. Math. Chem., 54 (2016), 1404–1416. es_ES
dc.description.references E. L. Allgower and K. Georg, Lectures in Applied Mathematics, American Mathematical Society (Providence, RI) 26, 723–762. es_ES
dc.description.references A. V. Rangan, D. Cai, and L. Tao, Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics, J. Comput. Phys., 221 (2007), 781–798. es_ES
dc.description.references A. Nejat and C. Ollivier-Gooch, Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations, J. Comput. Phys., 227 (2008), 2366–2386. es_ES
dc.description.references C. Grosan and A. Abraham, A new approach for solving nonlinear equations systems, IEEE Trans. Syst. Man Cybernet Part A: System Humans, 38 (2008), 698–714. es_ES
dc.description.references F. Awawdeh, On new iterative method for solving systems of nonlinear equations, Numer. Algorithms, 54 (2010), 395–409. es_ES
dc.description.references I. G. Tsoulos and A. Stavrakoudis, On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Anal. Real World Appl., 11 (2010), 2465–2471. es_ES
dc.description.references E. Martínez, S. Singh, J. L. Hueso, and D. K. Gupta, Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces, Appl. Math. Comput., 281 (2016), 252–265. es_ES
dc.description.references S. Singh, D. K. Gupta, E. Martínez, and J. L. Hueso, Semi local and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition, Appl. Math. Comput., 276 (2016), 266–277. es_ES
dc.description.references I. K. Argyros and S. George, Local convergence of modified Halley-like methods with less computation of inversion, Novi. Sad.J. Math., 45 (2015), 47–58. es_ES
dc.description.references I. K. Argyros, R. Behl, and S. S. Motsa, Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative Algorithms 2015, 8, 1076–1087; doi:https://doi.org/10.3390/a8041076. es_ES
dc.description.references A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett., 25 (2012), 2369–2374. es_ES
dc.description.references I. K. Argyros and A. A. Magreñán, A study on the local convergence and dynamics of Chebyshev- Halley-type methods free from second derivative, Numer. Algorithms71 (2016), 1–23. es_ES
dc.description.references M. Grau-Sánchez, Á Grau, asnd M. Noguera, Frozen divided difference scheme for solving systems of nonlinear equations, J. Comput. Appl. Math., 235 (2011), 1739–1743. es_ES
dc.description.references M. Grau-Sánchez, M. Noguera, and S. Amat, On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods, J. Comput. Appl. Math., 237 (2013), 363–372. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem