- -

Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santos, Ana P. es_ES
dc.contributor.author Belfiore, Carolina es_ES
dc.contributor.author Urbez Lagunas, Cristina es_ES
dc.contributor.author Ferrando Monleón, Alejandro Ramón es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author Farías, María E. es_ES
dc.date.accessioned 2023-10-06T18:01:17Z
dc.date.available 2023-10-06T18:01:17Z
dc.date.issued 2023-02 es_ES
dc.identifier.issn 0721-7595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197844
dc.description.abstract [EN] Bacteria isolated from extreme environments have been shown to promote plant growth under challenging conditions. This study aimed to examine the performance of the extremophilic microorganisms under salt stress and their ability to improve the tolerance of soybean plants to this stress. In vitro experiments showed that bacteria belonging to the genera Stenotrophomonas and Exiguobacterium were halophilic and displayed plant growth-promoting activities under salt stress. For instance, these two species enhanced soybean germination rate between 35 and 43% in comparison with non-inoculated seeds. In addition, inoculation allowed soybean roots to double their size, both in length and in dry biomass, under 250 mM NaCl. The plant physiological responses correlated with changes in plant gene expression during developmental and stress responses. The expression of a growth marker gene (Glyma.03G226000) increased in the presence of halophilic bacteria both under salt stress (5- to 24-fold) and under non-stress conditions (17- to 25-fold). Soybean genes responsive to stress, such as Glyma.02G228100, Glyma.04G180400, Glyma.08G189600, and Glyma.17G173200, were highly induced by salt in bacteria-inoculated roots. This work showed that the extremophilic bacteria used in these experiments could be used as potential bio-inoculants to help alleviate salt stress and plant growth. es_ES
dc.description.sponsorship The authors acknowledge the generous financial support by the PICT V Bicentenario 2010 1788 Project (FONCyT, Argentina). This work was performed in the context of the project called "Analisis de Adaptacion al Cambio Climatico en Humedales Andinos". ID: 6188775-8-LP13. Ministerio del Medio Ambiente, Region de Antofagasta (www.mma.gob.cl/). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Soybean es_ES
dc.subject Seed germination es_ES
dc.subject Salt stress es_ES
dc.subject Extremophilic microorganisms es_ES
dc.title Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-022-10605-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FonCyT//2010 1788/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MMA//6188775-8-LP13/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Santos, AP.; Belfiore, C.; Urbez Lagunas, C.; Ferrando Monleón, AR.; Blazquez Rodriguez, MA.; Farías, ME. (2023). Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean. Journal of Plant Growth Regulation. 42(2):946-959. https://doi.org/10.1007/s00344-022-10605-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00344-022-10605-5 es_ES
dc.description.upvformatpinicio 946 es_ES
dc.description.upvformatpfin 959 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\486074 es_ES
dc.contributor.funder Ministerio del Medio Ambiente, Región de Antofagasta es_ES
dc.contributor.funder Fondo para la Investigación Científica y Tecnológica, Argentina es_ES
dc.description.references Ashraf M (1994) Genetic variation for salinity tolerance in spring wheat. Hereditas 120:99–104 es_ES
dc.description.references Belfiore C, Fernandez A, Santos AP, Contreras M, Farías ME (2018a) Characterization and comparison of microbial soil diversity in two andean peatlands in different states of conservation-vega tocorpuri. J Environ Prot 6:194–210 es_ES
dc.description.references Belfiore C, Santos AP, Contreras M, Farias ME (2018b) Isolation and characterization of plant growth promoting bacteria isolated from andean soil as potential inoculants of soybean seeds. Environ Nat Resour J. https://doi.org/10.5539/enrr.v8n3p203 es_ES
dc.description.references Carley HE, Watson TW (1966) A new gravimetric method forestimating root-surface areas. Soil Sci 102:289–291 es_ES
dc.description.references Chang RZ (1994) Effect of salt on agricultural characters and chemical quality of seed in soybean. Soybean Sci 13:101–105 es_ES
dc.description.references Clause SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Biol 49:427–251 es_ES
dc.description.references Del-amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90 es_ES
dc.description.references Dobereiner J (1995) Isolation and identification of aerobic nitrogen fixing bacteria from soil and plant. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, Cambridge, pp 134–141 es_ES
dc.description.references Edbeib MF, Wahab RA, Huyop F (2016) Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 32:1–23 es_ES
dc.description.references Egamberdieva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil 36:184–189 es_ES
dc.description.references Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864 es_ES
dc.description.references Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:563–571 es_ES
dc.description.references Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt- tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791 es_ES
dc.description.references Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978 es_ES
dc.description.references Garcia J, Schmidt JE, Gidekel M, Gaudin AC (2021) Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). J Plant Nutr 44:1818–1825 es_ES
dc.description.references Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401 es_ES
dc.description.references Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agr Biol Sci 1:210–215 es_ES
dc.description.references Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. Trichoderma Gliocladium 2:229–265 es_ES
dc.description.references Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083 es_ES
dc.description.references Hossain MS (2019) Present scenario of global salt affected soils, its management and importance of salinity research. Int Res J Biol Sci 1:1–3 es_ES
dc.description.references Hosseini MK, Powell AA, Bingham IJ (2002) Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res 12(3):165–172 es_ES
dc.description.references Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1–14 es_ES
dc.description.references Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+-transporter (HKT1) gene. Curr Sci 111:1961–1967 es_ES
dc.description.references Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E (2020) Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 104:1–17 es_ES
dc.description.references Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M, Adhikari A, Kang SM, Kim MK, Lee IJ (2021) Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol 21:1–15 es_ES
dc.description.references Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial- mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573 es_ES
dc.description.references Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed B-glucosidase. J Biol Chem 270:15789–15797 es_ES
dc.description.references Lim CH, Han S, Hwang IS, Kim DS, Lee HBK, SH, (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942 es_ES
dc.description.references Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 es_ES
dc.description.references Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomanas. Annu Rev Phytopathol 39:461–490 es_ES
dc.description.references Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572 es_ES
dc.description.references Mendoza-Hernandez CP, Perea-Velez YS, Arriola-Morales J, Martínez-Simon S, Perez- Osorio G (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61 es_ES
dc.description.references Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387 es_ES
dc.description.references Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopor SK (2013) Plant growth- promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9 es_ES
dc.description.references O’Toole GA (2011) Microtiter dish biofilm formation assay. J Visual Exp Jove 47:24–37 es_ES
dc.description.references Papiernik SK, Grieve CM, Lesch SM, Yates SR (2005) Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Commun Soil Sci Plant Anal 36:951–967 es_ES
dc.description.references Penrose DM, Glick R (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15 es_ES
dc.description.references Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212 es_ES
dc.description.references Puchulú ME (2008) Salinización de los suelos. Su incidencia en la provincia de Tucumán y en la República Argentina. Acta Geológica Lilloana 21:81–94 es_ES
dc.description.references Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82 es_ES
dc.description.references Rehman S, Harris PJC, Bourne WF, Wilkin J (1996) The effect of sodium chloride on germination and the potassium and calcium contents of acacia seeds. Seed Sci Technol 25:45–57 es_ES
dc.description.references Rodríguez DM, Schulz GA, Tenti Vuegen LM (2019) Distribución de suelos afectados por sales en Argentina. Actas De La Red Argentina De Salinidad (RAS) 6:24–30 es_ES
dc.description.references Sapsirisopa S, Chookietwattana K, Maneewan K, Khangkhan P (2009) Effect of salt- tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Agric Ind Organ 2:69-S74 es_ES
dc.description.references Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56 es_ES
dc.description.references Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131 es_ES
dc.description.references Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding Jun DuJ, Liu J, Yang F, Wang Q, Ding J, Du J, Liu J, Yang F, Yang F, Wang Q, Liu W, Yong T, Wang X, Feng Y, Yang W (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372 es_ES
dc.description.references Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red peper seedlings (Capsicum annuu L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434 es_ES
dc.description.references Srinivasan R, Yandigeri MS, Kashyap A (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434 es_ES
dc.description.references Steinborn J, Roughley RJ (1974) Sodium chloride as a cause of low numbers of rhizobium in legume inoculants. J Appl Microbiol 37:93–99 es_ES
dc.description.references Szymańska S, Piernik A, Hrynkiewicz K (2013) Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils. Ecol Quest 18(1):9–19 es_ES
dc.description.references Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsui M (2005) shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J 42:13–22 es_ES
dc.description.references Tang YW, Bonner J (1948) The enzymatic inactivation of indole acetic acid. II. The physiology of the enzyme. Am J Bot 35:570–578 es_ES
dc.description.references Tapia-Vázquez I, Sánchez-Cruz R, Arroyo-Domínguez M, Lira-Ruan V, Sánchez- Reyes A, del Rayo S-CM, Padilla-Chacón D, Batista-García RA, Folch- Mallol JL (2020) Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiol Res 232:126394 es_ES
dc.description.references Tian J, Chen M, Zhang J, Li K, Song T, Zhang X, Yao Y (2017) Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Hortic Res. 4:17070 es_ES
dc.description.references Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607 es_ES
dc.description.references Vázquez P, Holguin G, Puente E, Lopez-Cortez A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in semiarid costal lagoon. Biol Fertil Soils 30:460–468 es_ES
dc.description.references Verhoef R, De Waard P, Schols HA, Siika-aho M, Voragen AG (2003) Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide. Carbohydr Res 338:1851–1859 es_ES
dc.description.references Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up regulated by salt stress, osmotic stress, and ABA. J Plant Physiol 162(1):81–89 es_ES
dc.description.references Wang L, Wu N, Zhu Y, Song W, Zhao W, Li Y, Hu Y (2015) The divergence and positive selection of the plant-specific BURP-containing protein family. Ecol Evol 5(22):5394–5412 es_ES
dc.description.references Xu HL, Li YX, Yan YM, Wang K, Gao Y, Hu Y (2010) Genome-scale identification of Soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 10:197–212 es_ES
dc.description.references Yadav AN (2017) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci 1(1):30 es_ES
dc.description.references Zeng A, Chen P, Korth KL, Ping J, Thomas J, Wu C, Srivastava S, Pereira A, Hancock F, Brye K, Ma J (2019) RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 111(4):629–635 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem