- -

Genome wide association study of growth and feed efficiency traits in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genome wide association study of growth and feed efficiency traits in rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garreau, Hervé es_ES
dc.contributor.author Labrune, Yann es_ES
dc.contributor.author Chapuis, Hervé es_ES
dc.contributor.author Ruesche, Julien es_ES
dc.contributor.author Riquet, Juliette es_ES
dc.contributor.author Demars, Julie es_ES
dc.contributor.author Benitez, Florence es_ES
dc.contributor.author Richard, François es_ES
dc.contributor.author Drouilhet, Laurence es_ES
dc.contributor.author Zemb, Olivier es_ES
dc.contributor.author Gilbert, Hélène es_ES
dc.date.accessioned 2023-11-03T09:23:33Z
dc.date.available 2023-11-03T09:23:33Z
dc.date.issued 2023-09-28
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/199168
dc.description.abstract [EN] Feed efficiency is a major production trait in animal genetic breeding schemes. To further investigate the genetic control of feed efficiency in rabbits, we performed a genome-wide association study (GWAS) for growth and feed efficiency on 679 rabbits genotyped with the Affimetrix Axiom Rabbit 200K Genotyping Array. After quality control, 127 847 single-nucleotide polymorphisms (SNP) were retained for association analyses. The GWAS were performed using GEMMA software, applying a mixed univariate animal model with a linear regression on each SNP allele. The traits analysed were weight at weaning and at 63 days of age, average daily gain, total individual feed intake, feed conversion ratio and residual feed intake. No significant SNP was found for growth traits or feed intake. Fifteen genome-wide significant SNPs were detected for feed conversion ratio on OCU7, spanning from 124.8 Mbp to 126.3 Mbp, plus two isolated SNP on OCU2 (77.3 Mbp) and OCU8 (16.5 Mbp). For residual feed intake, a region on OCU18 (46.1-53.0 Mbp) was detected, which contained a putative functional candidate gene, GOT1. es_ES
dc.description.sponsorship This study is part of the Feed-a-Gene Project, funded from the European Union’s H2020 Programme under grant agreement nº 633 531. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Feed efficiency es_ES
dc.subject SNP es_ES
dc.subject GWAS es_ES
dc.subject Genetics es_ES
dc.subject Candidate genes es_ES
dc.subject Rabbits es_ES
dc.title Genome wide association study of growth and feed efficiency traits in rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2023.18215
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/633531 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Garreau, H.; Labrune, Y.; Chapuis, H.; Ruesche, J.; Riquet, J.; Demars, J.; Benitez, F.... (2023). Genome wide association study of growth and feed efficiency traits in rabbits. World Rabbit Science. 31(3):163-169. https://doi.org/10.4995/wrs.2023.18215 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2023.18215 es_ES
dc.description.upvformatpinicio 163 es_ES
dc.description.upvformatpfin 169 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\18215 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Aggrey S.E., Lee J., Karnuah A.B., Rekaya R. 2014. Transcriptomic analysis of genes in the nitrogen recycling pathway of meattype chickens divergently selected for feed efficiency. Anim. Genet., 45: 215-222. https://doi.org/10.1111/age.12098 es_ES
dc.description.references Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345: 1074-1079. https://doi.org/10.1126/science.1253714 es_ES
dc.description.references Delpuech E., Aliakbari A., Labrune Y., Fève K., Billon Y., Gilbert H., Riquet J. 2021. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol., 53: 49. https://doi.org/10.1186/s12711-021-00642-1 es_ES
dc.description.references Ding R., Yang M., Wang X., Quan J., Zhuang Z., Zhou S., Li S., Xu Z., Zheng E., Cai G., Liu D., Huang W., Yang J., Wu Z. 2018. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front. Genet., 9: 220. https://doi.org/10.3389/fgene.2018.00220 es_ES
dc.description.references Drouilhet L., Gilbert H., Balmisse E., Ruesche J., Tircazes A., Larzul C., Garreau H. 2013. Genetic parameters for two selection criteria for feed efficiency in rabbits. J. Anim. Sci., 91: 3128. https://doi.org/10.2527/jas.2012-6176 es_ES
dc.description.references Drouilhet L., Achard C.S, Zemb O., Molette C., Gidenne T., Larzul C., Ruesche J., Tircazes A., Segura M., Theau-Clément M., Joly T., Balmisse E., Garreau H., Gilbert H. 2015. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics. J. Anim. Sci., 94: 38-48. https://doi.org/10.2527/jas.2015-9402 es_ES
dc.description.references El-Sabrout, K., Aggag, S. 2018. Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit. Meat Sci., 137: 67-70. https://doi.org/10.1016/j.meatsci.2017.11.008 es_ES
dc.description.references Gao X., Starmer J., Martin E.R. 2008. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol., 32: 361-369. https://doi.org/10.1002/gepi.20310 es_ES
dc.description.references Gao X., Becker L.C., Becker D.M., Starmer J.D., Province M.A. 2010. Avoiding the high bonferroni penalty in genomewide association studies. Genet. Epidemiol., 34: 100-105. https://doi.org/10.1002/gepi.20430 es_ES
dc.description.references Garreau, H., Ruesche, J., Gilbert, H., Balmisse, E., Benitez, F., Richard, F., David, I., Drouilhet, L., Zemb, O. 2019. Estimating direct genetic and maternal effects affecting rabbit growth and feed efficiency with a factorial design. J. Anim. Breed. Genet., 136: 168-173. https://doi.org/10.1111/jbg.12380 es_ES
dc.description.references Gidenne T., Garreau H., Drouilhet L., Aubert C., Maertens L. 2017a. Improving feed efficiency in rabbit production, a review on nutritional, technico-economical, genetic and environmental aspects. Anim. Feed Sci. Technol., 225: 109-122. https://doi.org/10.1016/j.anifeedsci.2017.01.016 es_ES
dc.description.references Gidenne T., Lamothe L., Bannelier C., Molette C., Gilbert H., Chemit M.L., Segura M., Benitez F., Richard F., Garreau H., Drouilhet L. 2017b. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: III. Digestion and excretion of nitrogen and minerals. J. Anim. Sci., 95: 1301-1312. https://doi.org/10.2527/jas.2016.1192 es_ES
dc.description.references Helal M.M. 2019. Association between growth hormone receptor gene polymorphism and body weight in growing rabbits. Adv. Anim. Vet. Sci., 7: 994-998. https://doi.org/10.17582/journal.aavs/2019/7.11.994.998 es_ES
dc.description.references Helal M., Hany N., Maged M., Abdelaziz M., Osama N., Younan Y. W., Ismail Y., Abdelrahman R., Ragab M. 2021. Candidate genes for marker-assisted selection for growth, carcass and meat quality traits in rabbits. Anim. Biotechnol., 33: 1691-1710. https://doi.org/10.1080/10495398.2021.1908315 es_ES
dc.description.references Larzul C., De Rochambeau H. 2005. Selection for residual feed consumption in the rabbit. Livest. Prod. Sci., 95: 67-72. https://doi.org/10.1016/j.livprodsci.2004.12.007 es_ES
dc.description.references Liao Y., Wang Z., Glória L.S., Zhang K., Zhang C., Yang R., Luo X., Jia X., Lai S.J., Chen, S.Y. 2021. Genome-Wide Association Studies for Growth Curves in Meat Rabbits Through the Single-Step Nonlinear Mixed Model. Frontiers in Genetics, 12, 750939. https://doi.org/10.3389/fgene.2021.750939 es_ES
dc.description.references Masuda Y., Legarra A., Aguilar I., Misztal I. 2019. Efficient quality control methods for genomic and pedigree data used in routine genomic evaluation. J. Anim. Sci. 97: 50-51. https://doi.org/10.1093/jas/skz258.101 es_ES
dc.description.references Mavrides C., Christen P. 1978. Mitochondrial and cytosolic aspartate aminotransferase from chicken: activity towards amino acids. Biochem. Biophys. Res. Comm., 85: 769-773. https://doi.org/10.1016/0006-291X(78)91227-5 es_ES
dc.description.references Misztal, I., Legarra, A., Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree and genomic information. J. Dairy Sci., 92: 4648-4655. https://doi.org/10.3168/jds.2009-2064 es_ES
dc.description.references Misztal, I., S. Tsuruta, D.A.L. Lourenco, I. Aguilar, A. Legarra, and Z. Vitezica. 2014. Manual for BLUPF90 family of programs. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. Accessed August 2022. es_ES
dc.description.references Mukiibi R., Vinsky M., Keogh K. A., Fitzsimmons C., Stothard P., Waters S. M., Li C. 2018. Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle. Sci. Rep. 8: 7303. https://doi.org/10.1038/s41598-018-25605-3 es_ES
dc.description.references Onteru S.K., Gorbach D.M., Young J.M., Garrick D.J., Dekkers J.C.M., Rothschild M.F. 2013. Whole genome association studies of residual feed intake and related traits in the pig. PLoS One. 8: e61756. https://doi.org/10.1371/journal.pone.0061756 es_ES
dc.description.references Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits estimated by using a control cryopreserved population. World Rabbit Sci., 11, 53-62. https://doi.org/10.4995/wrs.2003.497 es_ES
dc.description.references Piles M., Gomez, E.A., Rafel, O., Ramon, J., Blasco, A. 2004. Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits. J. Anim. Sci., 82, 654-660. https://doi.org/10.2527/2004.823654x es_ES
dc.description.references Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet., 81: 559-575. https://doi.org/10.1086/519795 es_ES
dc.description.references Sánchez J.P., Legarra A., Velasco-Galilea M., Piles M., Sánchez A., Rafel O., González-Rodríguez O., Ballester M. 2020. Genomewide association study for feed efficiency in collective cageraised rabbits under full and restricted feeding. Anim. Genet., 51: 799-810. https://doi.org/10.1111/age.12988 es_ES
dc.description.references Sosa-Madrid B.S., Santacreu M.A., Blasco A., Fontanesi L., Pena R.N., Ibanez-Escriche N. 2020. A genome-wide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. J. Anim. Breed Genet., 137: 123-138. https://doi.org/10.1111/jbg.12451 es_ES
dc.description.references Sternstein I., Reissmann M., D., Dorota M., Bieniek J., Brockmann G. A. 2015. “A comprehensive linkage map and QTL map for carcass traits in a cross between Giant Grey and New Zealand White rabbits.” BMC Genetics, 16: 16. https://doi.org/10.1186/s12863-015-0168-1 es_ES
dc.description.references VanRaden P.M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci., 91: 4414-4423. https://doi.org/10.3168/jds.2007-0980 es_ES
dc.description.references Yang L. Q., Zhang K., Wu Q.Y., Li J., Lai S.J., Song T.Z., Zhang M. 2019. Identification of two novel single nucleotide polymorphism sites in the Myostatin (MSTN) gene and their association with carcass traits in meat-type rabbits (Oryctolagus cuniculus). World Rabbit Sci., 27: 249-256. https://doi.org/10.4995/wrs.2019.10610 es_ES
dc.description.references Yang X., Deng F., Wu Z., Chen S.Y., Shi Y., Jia X., Lai S.J. 2020. A genome-wide association study identifying genetic variants associated with growth, carcass and meat quality traits in rabbits. Animals, 10: 1068. https://doi.org/10.3390/ani10061068 es_ES
dc.description.references Zhang G.W., Gao L., Chen S.Y., Zhao X.B., Tian Y.F., Wang X., Deng X.S., Lai S.J. 2013. Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527: 553-557. https://doi.org/10.1016/j.gene.2013.06.024 es_ES
dc.description.references Zhou X., Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet., 44: 821-824. https://doi.org/10.1038/ng.2310 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem