- -

Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alba Martínez, José es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Blasco Giménez, Ramón Manuel es_ES
dc.contributor.author Berjano Zanón, Enrique es_ES
dc.date.accessioned 2014-10-06T12:43:19Z
dc.date.available 2014-10-06T12:43:19Z
dc.date.issued 2011-09
dc.identifier.issn 0265-6736
dc.identifier.uri http://hdl.handle.net/10251/40665
dc.description.abstract Purpose: To assess whether tailoring the Kp and Ki values of a proportional-integral (PI) controller during radiofrequency (RF) cardiac ablation could be advantageous from the point of view of the dynamic behaviour of the controller, in particular, whether control action could be speeded up and larger lesions obtained. Methods: Theoretical models were built and solved by the finite element method. RF cardiac ablations were simulated with temperature controlled at 55 degrees C. Specific PI controllers were implemented with Kp and Ki parameters adapted to cases with different tissue values (specific heat, thermal conductivity and electrical conductivity) electrode-tissue contact characteristics (insertion depth, cooling effect of circulating blood) and electrode characteristics (size, location and arrangement of the temperature sensor in the electrode). Results: The lesion dimensions and T(max) remained almost unchanged when the specific PI controller was used instead of one tuned for the standard case: T(max) varied less than 1.9 degrees C, lesion width less than 0.2 mm, and lesion depth less than 0.3 mm. As expected, we did observe a direct logical relationship between the response time of each controller and the transient value of electrode temperature. Conclusion: The results suggest that a PI controller designed for a standard case (such as that described in this study), could offer benefits under different tissue conditions, electrode-tissue contact, and electrode characteristics. es_ES
dc.description.sponsorship This work received financial support from the Spanish 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' Grant no. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. The authors alone are responsible for the content and writing of the paper en_EN
dc.language Inglés es_ES
dc.publisher Informa Healthcare es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ablation es_ES
dc.subject Cardiac ablation es_ES
dc.subject Closed loop control es_ES
dc.subject Finite element method es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Temperature controlled ablation es_ES
dc.subject Theoretical model es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3109/02656736.2011.586665
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Alba Martínez, J.; Trujillo Guillen, M.; Blasco Giménez, RM.; Berjano Zanón, E. (2011). Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models. International Journal of Hyperthermia. 27(6):539-548. https://doi.org/10.3109/02656736.2011.586665 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3109/02656736.2011.586665 es_ES
dc.description.upvformatpinicio 539 es_ES
dc.description.upvformatpfin 548 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 210642
dc.description.references Gaita, F., Caponi, D., Pianelli, M., Scaglione, M., Toso, E., Cesarani, F., … Leclercq, J. F. (2010). Radiofrequency Catheter Ablation of Atrial Fibrillation: A Cause of Silent Thromboembolism? Circulation, 122(17), 1667-1673. doi:10.1161/circulationaha.110.937953 es_ES
dc.description.references Anfinsen, O.-G., Aass, H., Kongsgaard, E., Foerster, A., Scott, H., & Amlie, J. P. (1999). Journal of Interventional Cardiac Electrophysiology, 3(4), 343-351. doi:10.1023/a:1009840004782 es_ES
dc.description.references PETERSEN, H. H., CHEN, X., PIETERSEN, A., SVENDSEN, J. H., & HAUNSO, S. (2000). Tissue Temperatures and Lesion Size During Irrigated Tip Catheter Radiofrequency Ablation: An In Vitro Comparison of Temperature-Controlled Irrigated Tip Ablation, Power-Controlled Irrigated Tip Ablation, and Standard Temperature-Controlled Ablation. Pacing and Clinical Electrophysiology, 23(1), 8-17. doi:10.1111/j.1540-8159.2000.tb00644.x es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Lai, Y.-C., Choy, Y. B., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2004). Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures. IEEE Transactions on Biomedical Engineering, 51(10), 1859-1864. doi:10.1109/tbme.2004.831529 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568 es_ES
dc.description.references Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649 es_ES
dc.description.references Hong Cao, Vorperian, V. R., Tungjitkusolmun, S., Jan-Zern Tsai, Haemmerich, D., Young Bin Choy, & Webster, J. G. (2001). Flow effect on lesion formation in RF cardiac catheter ablation. IEEE Transactions on Biomedical Engineering, 48(4), 425-433. doi:10.1109/10.915708 es_ES
dc.description.references Tungjitkusolmun, S., Vorperian, V. R., Bhavaraju, N., Cao, H., Tsai, J.-Z., & Webster, J. G. (2001). Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 48(2), 194-201. doi:10.1109/10.909640 es_ES
dc.description.references Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051 es_ES
dc.description.references Langberg, J. J., Calkins, H., el-Atassi, R., Borganelli, M., Leon, A., Kalbfleisch, S. J., & Morady, F. (1992). Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation, 86(5), 1469-1474. doi:10.1161/01.cir.86.5.1469 es_ES
dc.description.references Calkins, H., Prystowsky, E., Carlson, M., Klein, L. S., Saul, J. P., & Gillette, P. (1994). Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Atakr Multicenter Investigators Group. Circulation, 90(3), 1279-1286. doi:10.1161/01.cir.90.3.1279 es_ES
dc.description.references Lennox CD, Temperature controlled RF coagulation. Patent number: 5.122.137 Hudson NH es_ES
dc.description.references Edwards SD, Stern RA, Electrode and associated system using thermally insulated temperature sensing elements. Patent number: US Patent 5,456,682 es_ES
dc.description.references Panescu D, Fleischman SD, Whayne JG, Swanson DK, (EP Technology. Effects of temperature sensor placement on performance of temperature-controlled ablation. IEEE 17th Annual Conference, Engineering in Medicine and Biology Society, Montreal, Canada (1995) es_ES
dc.description.references BLOUIN, L. T., MARCUS, F. I., & LAMPE, L. (1991). Assessment of Effects of a Radiofrequency Energy Field and Thermistor Location in an Electrode Catheter on the Accuracy of Temperature Measurement. Pacing and Clinical Electrophysiology, 14(5), 807-813. doi:10.1111/j.1540-8159.1991.tb04111.x es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Bhavaraju, N. C., Cao, H., Yuan, D. Y., Valvano, J. W., & Webster, J. G. (2001). Measurement of directional thermal properties of biomaterials. IEEE Transactions on Biomedical Engineering, 48(2), 261-267. doi:10.1109/10.909647 es_ES
dc.description.references Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459 es_ES
dc.description.references PETERSEN, H. H., & SVENDSEN, J. H. (2003). Can Lesion Size During Radiofrequency Ablation Be Predicted By the Temperature Rise to a Low Power Test Pulse in Vitro? Pacing and Clinical Electrophysiology, 26(8), 1653-1659. doi:10.1046/j.1460-9592.2003.t01-1-00248.x es_ES
dc.description.references LANGBERG, J. J., LEE, M. A., CHIN, M. C., & ROSENQVIST, M. (1990). Radiofrequency Catheter Ablation: The Effect of Electrode Size on Lesion Volume In Vivo. Pacing and Clinical Electrophysiology, 13(10), 1242-1248. doi:10.1111/j.1540-8159.1990.tb02022.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem