- -

Experimental study of viscous friction in undergraduate physics laboratory: introduction of phase diagrams to analyse dynamic equilibrium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental study of viscous friction in undergraduate physics laboratory: introduction of phase diagrams to analyse dynamic equilibrium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno Cano, Rafael es_ES
dc.contributor.author Page Del Pozo, Alvaro Felipe es_ES
dc.contributor.author Riera Guasp, Jaime es_ES
dc.contributor.author Hueso Pagoaga, José Luís es_ES
dc.date.accessioned 2016-05-23T11:01:09Z
dc.date.available 2016-05-23T11:01:09Z
dc.date.issued 2015-04-15
dc.identifier.issn 0143-0807
dc.identifier.uri http://hdl.handle.net/10251/64599
dc.description.abstract In this work we propose using phase diagrams to explain the dynamical behaviour of simple mechanical systems. First the motion of the system x (t) is experimentally measured, and then the derivatives, v(t) and a(t), are obtained from it and the motion equation f (x, v, a) = 0 is represented graphically. This idea is applied to the study of a system with linear viscous drag, explaining the evolution of the system towards the dynamical equilibrium point corresponding to the limit velocity. The phase diagrams of the viscous drag are compared with those of the Coulomb drag, which is not continuous and does not necessarily lead to a uniformly accelerated motion. The method is illustrated by an experiment in a dynamic track with magnetic damping. The use of phase diagrams allows for the checking the linearity of this damping. Moreover it allows for the identification of the existence of a small Coulomb drag between the track and the cart that appears as a small discontinuity of the function a (v) when the direction of the movement changes. es_ES
dc.language Inglés es_ES
dc.publisher European Physical Society es_ES
dc.relation.ispartof European Journal of Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Digital image es_ES
dc.subject Phase diagram es_ES
dc.subject Photogrammetry es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Experimental study of viscous friction in undergraduate physics laboratory: introduction of phase diagrams to analyse dynamic equilibrium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0143-0807/36/3/035033
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Moreno Cano, R.; Page Del Pozo, AF.; Riera Guasp, J.; Hueso Pagoaga, JL. (2015). Experimental study of viscous friction in undergraduate physics laboratory: introduction of phase diagrams to analyse dynamic equilibrium. European Journal of Physics. 36:1-15. doi:10.1088/0143-0807/36/3/035033 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0143-0807/36/3/035033 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.relation.senia 298886 es_ES
dc.description.references Larson, R. F. (1998). Measuring the coefficient of friction of a low-friction cart. The Physics Teacher, 36(8), 464-465. doi:10.1119/1.879928 es_ES
dc.description.references Paetkau, M., Bahniwal, M., & Gamblen, J. (2008). Magnetic Low-Friction Track. The Physics Teacher, 46(5), 307-309. doi:10.1119/1.2909753 es_ES
dc.description.references Takahashi, K., & Thompson, D. (1999). Measuring air resistance in a computerized laboratory. American Journal of Physics, 67(8), 709-711. doi:10.1119/1.19356 es_ES
dc.description.references Lindemuth, J. (1971). The Effect of Air Resistance on Falling Balls. American Journal of Physics, 39(7), 757-759. doi:10.1119/1.1986278 es_ES
dc.description.references Andereck, B. S. (1999). Measurement of air resistance on an air track. American Journal of Physics, 67(6), 528-533. doi:10.1119/1.19318 es_ES
dc.description.references Pantaleone, J., & Messer, J. (2011). The added mass of a spherical projectile. American Journal of Physics, 79(12), 1202-1210. doi:10.1119/1.3644334 es_ES
dc.description.references Feinberg, G. (1965). Fall of Bodies Near the Earth. American Journal of Physics, 33(6), 501-502. doi:10.1119/1.1971740 es_ES
dc.description.references Bohren, C. F. (2004). Dimensional analysis, falling bodies, and the fine art ofnotsolving differential equations. American Journal of Physics, 72(4), 534-537. doi:10.1119/1.1574042 es_ES
dc.description.references Moreno, R., Page, A., Riera, J., & Hueso, J. L. (2013). Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory. European Journal of Physics, 35(1), 015005. doi:10.1088/0143-0807/35/1/015005 es_ES
dc.description.references Erlichson, H. (1983). Maximum projectile range with drag and lift, with particular application to golf. American Journal of Physics, 51(4), 357-362. doi:10.1119/1.13248 es_ES
dc.description.references Brancazio, P. J. (1985). Looking into Chapman’s homer: The physics of judging a fly ball. American Journal of Physics, 53(9), 849-855. doi:10.1119/1.14350 es_ES
dc.description.references Parker, G. W. (1977). Projectile motion with air resistance quadratic in the speed. American Journal of Physics, 45(7), 606-610. doi:10.1119/1.10812 es_ES
dc.description.references Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273-279. doi:10.1088/0143-0807/27/2/010 es_ES
dc.description.references Shone, R. (2002). Economic Dynamics. doi:10.1017/cbo9781139165020 es_ES
dc.description.references Murray, J. D. (Ed.). (2002). Mathematical Biology. Interdisciplinary Applied Mathematics. doi:10.1007/b98868 es_ES
dc.description.references Van Buskirk, R., & Jeffries, C. (1985). Observation of chaotic dynamics of coupled nonlinear oscillators. Physical Review A, 31(5), 3332-3357. doi:10.1103/physreva.31.3332 es_ES
dc.description.references Siahmakoun, A., French, V. A., & Patterson, J. (1997). Nonlinear dynamics of a sinusoidally driven pendulum in a repulsive magnetic field. American Journal of Physics, 65(5), 393-400. doi:10.1119/1.18546 es_ES
dc.description.references Vidaurre, A., Riera, J., Monsoriu, J. A., & Giménez, M. H. (2008). Testing theoretical models of magnetic damping using an air track. European Journal of Physics, 29(2), 335-343. doi:10.1088/0143-0807/29/2/014 es_ES
dc.description.references Page, A., Moreno, R., Candelas, P., & Belmar, F. (2008). The accuracy of webcams in 2D motion analysis: sources of error and their control. European Journal of Physics, 29(4), 857-870. doi:10.1088/0143-0807/29/4/017 es_ES
dc.description.references Cadwell, L. H. (1996). Magnetic damping: Analysis of an eddy current brake using an airtrack. American Journal of Physics, 64(7), 917-923. doi:10.1119/1.18122 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem