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Abstract 
In this paper, the contact conditions and stresses that arise in a fretting test have been analysed 

by means of a three-dimensional finite element model of the contact between a sphere and a 

flat surface. An h-adaptive process, based on element subdivision, has been used in order to 

obtain a low discretization error at a reasonable computational cost. The influence of finite 

dimensions of the specimen in the stress fields has been evaluated. The results have been 

compared with the classical Cattaneo-Mindlin solution. 
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1. Introduction 

In engineering, the term fretting is used to describe the process of damage produced at 

the interface of two bodies in contact subjected to some relative oscillatory slip 

movement of small amplitude. As a result of such a phenomenon a number of cracks 

could be initiated in the contact zone. These cracks may produce surface degradation by 

generation and subdivision of small debris or may grow and expand inside one of the 

bodies eventually producing fracture. This process appears in many mechanical 

systems, such as bolted and riveted joints, shrink fitted shaft connections, blade 

connections, medical implants, etc. 

A number of test devices, where the contact pads (with spherical, cylindrical or flat 

geometry) slip on the specimen under consideration, have been proposed in order to 
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study the fretting problem. According to Hills and Nowell [1], tests carried out with 

spherical pads possess some advantages compared with two dimensional contacts. The 

advantages are related to corner effects that do not appear in 3D spherical contact. 

Therefore, during the last few years, the number of devices developed to carry out this 

kind of test has increased. 

Figure 1 schematically shows the fretting test analysed in this paper. Two zones of 

contact are generated on a flat specimen loaded with a constant tension T (creating a 

bulk stress) by means of the application of a constant force P on two spherical fretting 

pads. An alternating tangential load Q is applied after this normal load. Usually, the 

tangential load |Q| is lower than P, being  the friction coefficient, so both a slip zone 

and a stick zone appear in the contact area. In the analytical model, the contact area and 

the stick zone are circular and their radii are a and c respectively [2]. The stress field 

near the contact zone is variable, multiaxial and non-proportional [3]. 

Various criteria have been proposed during the last years (see for example [4], [5], [6]) 

in order to evaluate initiation and growing of cracks generated in the contact area. The 

use of these models requires the evaluation of the stress state in the vicinity of the 

contact. For spherical contact problems this is usually achieved using analytical or semi 

analytical methods. The first studies related to spherical bodies in contact subjected to 

normal and tangential loads were carried out independently by Cattaneo [1] and Mindlin 

[8], [9]. These authors considered the bodies in contact as infinite half-spaces. Hamilton 

and Goodman [10] obtained the stress field inside the bodies loaded with a hertzian 

distribution of normal and tangential contact stresses on the surface. Hamilton [11] and 

Sackfield and Hills [12] extended the previous work obtaining a formulation that is 

easier to process. Using these previous works Domínguez [3] calculated the evolution of 

the stresses in a fretting fatigue test cycle. As Domínguez shows, the solution obtained 
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is only approximate because of the finite dimensions of the specimen, tangential contact 

stress perpendicular to the tangential load, and some other aspects such as surface wear, 

surface roughness, etc., are not considered. 

Munisamy et al.[13] studied the tangential traction in a direction perpendicular to the 

tangential load Q for sphere-flat contact problems using a semi analytical model based 

on influence coefficients. The effects of finite dimensions of the specimen were studied 

also by Nowell and Hills in [14] (variation of contact conditions and stresses) and [8] 

(internal stress field) in the case of 2D cylinder-flat contact. 

A number of finite element models of fretting tests have been recently developed. Most 

of them are bidimensional analyses of cylindrical contact problems. For example, 

McVeigh and Farris [16] evaluated the influence of the bulk stress on the contact 

pressure for this kind of problem. Iyer and Mall [17] used the numerical solution to 

estimate fretting fatigue life. Tsai and Mall [18] incorporated elastoplastic behaviour in 

the material in order to obtain the evolution of stress and strains during a fretting fatigue 

test. In 3D contact problems using spherical pads, Giannakopoulos and Suresh [19] used 

a bidimensional model and a trigonometrical expansion of the displacement field to 

simulate the real three dimensional problem. This approximation leads to a reduction in 

the number of degrees of freedom necessary to obtain accurate finite element solutions. 

However, the effect of specimen width and bulk stress cannot be appropriately 

computed. 

In this paper, the influence of finite dimensions of the specimen (in particular, thickness 

and width) in three dimensional spherical contact problems on the contact conditions 

and stress distribution have been analysed. The study is restricted to cases without bulk 

stress (T = 0). The evolution of contact pressure and stress field inside the specimen for 

different values of specimen width and thickness has been evaluated. A 3D finite 
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element model has been defined in order to achieve this objective. An h-adaptive 

process of mesh refinement has been developed ([16], [21]), with the aim of obtaining 

accurate solutions with a controlled discretization error, and a reasonable computational 

time. The finite element solution has been compared with an analytical solution in order 

to estimate the degree of approximation inherent in the models. 

2. Finite element model 

A finite element analysis of the geometrical model shown in figure 2 has been carried 

out to obtain the stress distribution in the specimen when using spherical fretting pads. 

The fretting pad consists of a modified cylinder whose lower end (in contact with the 

specimen) is spherical. The specimen dimension L and pad dimensions r and H are 

chosen to be greater than 10 times the characteristic contact size. Therefore they have a 

negligible influence on the stress field near the contact area. The radius of the spherical 

surface (R), is 50 times larger than the characteristic contact radius a. 

The problem has two symmetry planes: the XY plane and the y = -b plane, so the 

appropriate boundary symmetry conditions have been imposed. Furthermore, some 

restriction on the displacement of nodes located on the shaded surfaces are imposed in 

order to apply the other boundary conditions. Displacements in directions X, Y and Z of 

all nodes located on the top surface (y = h) of the spherical pad are forced to be identical 

to those of the node where the normal load P is applied (co-ordinates x = z = 0, y = h). 

Analogously, load Q is applied to the specimen on surface x = L. By means of these 

restrictions the transmission of the normal and tangential loads is correctly achieved. 

Provided the distance between the top surface and the contact zone is large enough, the 

applied restrictions do not affect the stress distribution near the contact. The boundary 

conditions minimize the rotation of the spherical pad due to the friction force. The 
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problem of excessive rotation of the pad appears in some finite element models in the 

reviewed literature where the fretting pad is constrained using low stiffness elements. 

Loads have been applied in two steps in order to solve the finite element problem. In the 

first step, the normal load P is applied while displacements in X direction of nodes on Y 

axis are restricted in order to avoid rigid body motion. Afterwards, these restrictions are 

eliminated and the tangential load Q is applied. The value of this force should be kept 

under the value necessary to produce global sliding (Q < P). In this second step, 

displacement in X direction of the node located in x = z = 0, y = h is restricted. As the 

contact problem is non-linear, loads must be gradually increased in small increments. 

These load increments must be sufficiently small, otherwise the correct normal and 

tangential pressure distribution in the contact zone will not be obtained. 

The finite element commercial code ABAQUS [21] has been used. This program uses 

the concept of master surfaces and slave nodes to define the contact between bodies. 

Slave nodes are chosen to be those nodes in the specimen that may come into contact 

with the spherical pad. The master surface has been defined as the spherical surface of 

the fretting pad. Contact conditions are imposed using the Lagrange multiplier method. 

The h-adaptive mesh refinement process used [21] is based on element subdivision. The 

subdivision process is based on the error indication given by the Zienkiewicz-Zhu error 

estimator [23]. Hexahedral elements are utilized in the FE model. 

The first mesh of the sequence is directly created using the ABAQUS mesh generator. 

Therefore, no elements are subdivided in this mesh. An external program computes the 

discretization error from the finite element solution. From this calculation, the program 

determines which elements should be divided (ie. a new mesh is generated) in order to 

achieve a selected reduction of the error. The process is repeated until the specified 

global error is achieved. Displacement field continuity between adjacent elements with 
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different degree of refinement is guaranteed using multipoint constraints (MPC’s). A 

sequence of meshes obtained using this process is shown in figure 3. In the sequence 

shown, the global error in energy norm for each mesh is half of the error for the 

previous mesh. 

In all the finite element analyses, 20-node quadratic element meshes with standard 

integration in 3x3x3 Gauss points have been used. Elements used in the contact area are 

21-node special elements [24]. A 2% global error in energy norm has been defined as 

the target error for all the analyses performed. 

A number of analyses have been carried out for different values of the specimen 

semi-width d and semi-thickness b. The stress field distribution in the contact zone and 

inside the specimen has been studied. Sphere dimensions are the same for all the 

analyses. The material considered is aluminium Al 7075-T6 with Young modulus 

E = 71.7 MPa and Poisson ratio  = 0.33. A Coulomb friction model has been used in 

the simulation of the contact with a friction coefficient  = 1.2, which coincides with 

some experimental data of real fretting tests using spherical pads and the same material 

([4], [5]). 

3. Comparison with analytical solution 

A comparison of the analytical solution for the spherical contact problem with the 

results obtained with the finite element model has allowed us to validate the model. For 

comparison purposes dimensions b and d of the specimen were chosen to be larger than 

10 times the characteristic contact area size, a∞ (radius of the contact area), in order to 

allow the specimen to be represented as an infinite half-space. From now onwards, 

magnitudes with infinite subscript refer to spherical contact problem between two 

bodies behaving as infinite half-spaces. 
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The analytical solution is based on the work carried out by Cattaneo [1] and Mindlin 

[9], who studied some spherical contact problems with both, normal and tangential 

loads. Justification of the following results can be found in [2]. 

When a normal load P is applied, the pressure distribution in the contact zone, 

according to Hertz theory, is given by: 
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where P0∞ is the maximum value of the normal pressure and can be obtained from the 

following equation: 
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a∞ is the radius of the contact area which depends on the load P and the radius R of the 

spherical pad as: 
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When a monotonically increasing tangential load Q < P is added, the contact area is 

divided into a stick zone and a slip zone. The analytical solution of this problem is only 

approximate because the slip (and therefore the shear traction) in a direction 

perpendicular to the applied tangential load (Z direction) are neglected. Under this 

assumption, the stick zone is circular and its radius can be obtained using Q from 
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 Equation 4 

The shear traction distribution in the contact zone in X direction, qx, is given by the 

following equation 
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Hamilton and Goodman [10] obtained the stress distribution inside an infinite 

half-space, assuming a hertzian contact stresses distribution. This solution has been 

compared with the finite element results. 

The case in which only the normal load is applied is studied first. Figure 4 a) shows the 

normalised finite element von Mises stress distribution, eq / P0∞, in the XY plane for 

this case of load. Figure 4 b) plots the differences in % of P0∞ between the finite 

element solution and the analytical model. As shown in this figure the finite element 

results precisely match the analytical solution. The maximum differences between the 

two models are about 2 % of P0∞. 

When the tangential load is applied, the analytical solution is only an approximate one 

because in the analytical solution transverse slip (Z direction) is considered negligible 

compared to that produced in X direction. Figures 5 and 6 compare the stress 

distribution x and xy respectively along the line y = z = 0 in the vicinity of the contact 

area for different values of the tangential load, Q. Good agreement is observed between 

the finite element results and the analytical solution for this stress component. 

Differences between the finite element results and the analytical solution are found in 

the contact area when tangential stress yz is considered. In figure 7 the normalised finite 

element tangential stress yz in the specimen surface is presented. The external circle in 

figure 7 corresponds to the theoretical contact area and the internal circle the theoretical 

boundary between adhesion and slip zones. Results in this figure correspond to a 
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tangential load Q = 0.8P (c = 0.585a∞) and coincide with those obtained by [13] using 

a numerical method based on influence coefficients. This is also in agreement with the 

results exposed by [25], who show that these stresses are about 5% of P0∞ . Lastly, the 

influence of the tangential stress yz on the stress distribution inside the specimen has 

been analysed. The main differences are apparent when studying results in the XY plane. 

It has been found that the equivalent von Mises stresses obtained by the FE analysis 

beneath the slip zone are about 3% greater than those predicted by the analytical model. 

4. Normal load: Influence of finite dimensions 

In this section, the influence of the specimen dimensions (width and thickness) when 

only the normal load P is applied has been studied. A set of finite element analyses has 

been carried out with different values of the specimen semi-thickness, b, keeping the 

other dimensions, L, r, H and d, much greater (more than 10 times) than the 

characteristic contact size a∞. 

The effect of the thickness reduction is the variation of the contact conditions and 

stresses. However, the shape of the contact area remains circular because the problem is 

still axi-symmetric. 

Figure 8 shows the normalised normal pressure p/P0∞ and shear traction in X direction 

qx/P0∞ along the X axis for different values of the specimen semi-thickness b. Plots 

without markers represent analytical calculations and the other plots correspond to finite 

element results. As the specimen semi-thickness is reduced, the maximum value of the 

normal pressure P0 increases and this distribution is no longer of hertzian type. For very 

small values of the specimen thickness, the contact pressure distribution tends to that 

obtained for the case of two spheres (with radius R) in contact. In this situation, the 

contact becomes hertzian again as shown in figure 8. When the contact pressure is not 
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hertzian, an axisymmetrical distribution of tangential stresses appears in the contact 

area. The maximum value of these tangential stresses is about 20 % of the maximum 

contact pressure (P0∞) for a specimen semi-thickness b of about 0.3 a∞. Figure 9 

summarizes these results. The evolution of the normalised maximum contact pressure 

(P0/P0∞) and maximum shear traction (q0/P0∞) with specimen semi-thickness is plotted. 

The thickness influence becomes important for specimen semi-thickness lower than 

twice the characteristic size of the contact area a∞. 

Also, a variation of the contact area size a is noticed in this analysis. In figure 10 the 

variation of this contact size a with the specimen thickness is presented (case when 

tangential load Q = 0). The variation of the stick zone c size with specimen dimensions 

when Q  0 (also shown in figure 10) will be explained in the next section. When the 

semi-thickness is greater than 3 times a∞ , the size of the contact area given by the finite 

element analysis is virtually the same as that for an infinite half space. On the other 

hand, when the thickness tends to 0, the size of the contact area approximates that of 

two spheres in contact. 

The values of P0 (figure 9) and a (figure 10) could be used to obtain the stress 

distribution in a fretting test for a given thickness value using equations 1 and 2. In such 

a case, the solution would not be exact due to two factors: the tangential stresses are 

assumed to be zero, and the error associated with the assumption of the normal pressure 

as a distribution of hertzian type. 

An effect of the thickness reduction is the concentration of stresses inside the specimen. 

As a result of this stress redistribution the maximum value of the equivalent von Mises 

stress increases. The point where this maximum value is obtained is approximately 

located at coordinates x = z = 0, y = -0.5a∞, for b > 0.5a∞. For small thickness values 

this point is located at x = z = 0, y = -b. Figure 11 shows the effect of the specimen 
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thickness on the evolution of the normalized maximum von Mises equivalent stress 

(case when Q = 0). There are also other plots for Q  0 that will be commented in the 

next section. For b > 0.4a∞ the maximum value of the equivalent von Mises stress 

diminishes as the thickness is increased. When the specimen thickness is very small, the 

stress state inside the specimen approaches that obtained on the surface of the pads 

when the contact problem involves two spheres of the same radius. This value has been 

used in figure 11 to obtain the point for b = 0. 

After this first analysis the specimen dimension b is kept constant (larger than 10 times 

the characteristic size a∞) and the influence of specimen width d is analyzed. Only 

values of d > 1.5a∞ have been considered in this analysis. The effect of d on the stress 

state when only the normal load is applied is very small. Although in this situation the 

problem under consideration is not axisymmetric, the only differences between the 

finite element model and the analytical solution (considering infinite half spaces) appear 

for specimen width d of about 1.5a∞ for the range analyzed. An increase of the 

maximum normal pressure is noticed in this situation. Small tangential stresses in the Z 

direction also appear, although differences with the referred analytical solution can be 

neglected. The contact area becomes elliptical, increasing its size along the X direction 

and decreasing along the Z direction although this effect is also very small. 

5. Influence of finite dimensions: Tangential load 

The influence of the specimen dimensions b and d on the stress distribution when a 

tangential load |Q| < P is applied in conjunction with the normal load has been 

analysed in this section. Figure 12 a) shows the contact pressure distribution along X-

axis when the value of the tangential load is close to producing global sliding of the 

surfaces in contact (Q = 0.99  P) for different values of the specimen semi-thickness. 
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Figure 12 b) shows the tangential shear traction qx along the same line. As can be 

observed in this figure, the normal pressure, when the specimen thickness is reduced, 

differs from that obtained for the case Q = 0 (figure 8). The reason for these differences 

is that for very small values of semi-thickness b, the behaviour of the specimen is less 

compliant than that for the half space and, therefore, there exists a coupling between 

normal and tangential contact stresses. This coupling is similar to that obtained when 

the problem of two bodies in contact having different elastic properties is studied [24]. 

In figure 12 a) it is observed the effect of tangential stress (figure 12 b)) on the shape of 

the normal pressure distribution. 

The changes produced in the contact conditions when the tangential load is applied are 

shown schematically in figure 13. The contact area remains approximately circular and 

its size does not depend on Q, but it is displaced towards the direction of the applied 

tangential force Q in the sphere (figure 13) as the specimen thickness is reduced (see 

also figure 12 a)). The shape of the adhesion zone remains approximately circular in all 

cases. An eccentricity e of this adhesion zone with respect to the contact area may 

appear. 

For small values of specimen thickness, the shear traction distribution on the surface qx 

produces a different displacement in the Y direction of points in the sphere and in the 

specimen. In the limit when the thickness b tends to 0, the problem would be analogous 

to a sphere in contact with a body that would be rigid in the Y direction. As a result of 

this behaviour, points in the sphere located near B (see figure 13) will leave the contact 

area and points near A’ will become into contact. At the same time, the maximum value 

of the contact pressure will displace towards point A as could be observed in figure 12 

a). 
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This ‘stress concentration’, associated with the reduction of the specimen thickness, will 

cause the point with the maximum value of the von Mises stress on the surface to move 

towards point A (for Q values near P). This can be observed in figure 14, where the 

von Mises stress distribution on the specimen surface is shown for two different values 

of the specimen thickness, for Q = 0.9P. Figure 14 a) corresponds to b = 1.25 a∞ and 

the maximum von Mises stress appears at a point with between the end of the stick zone 

and the point B. The semi-thickness in figure 14 b) is b = 0.2 a∞ and the maximum von 

Mises stress appears in a point between A’ and the end of stick zone. The evolution of 

maximum value of von Mises stress (inside the specimen) with the specimen semi-

thickness is presented in figure 11 for different values of the tangential load Q. 

The size of the adhesion zone c, depends on the tangential load and the specimen 

thickness. From figure 9 the size of the adhesion zone can be obtained for different 

values of the tangential load Q and the specimen semi-thickness b. For a given value of 

the tangential load, the size of the adhesion zone, c, is reduced as the thickness is 

reduced. This behaviour is similar to that of the contact area size a. 

The eccentricity of the stick zone with respect to the contact area could be due to two 

different factors. The first one is the existence of the tangential shear traction qx in the 

case when the only load applied is the normal load P, due to the different compliance of 

the bodies. The eccentricity of the stick zone rises with increasing values of these 

tangential stresses. The second one is the bulk stress produced by the transmission of 

the tangential load Q in the specimen (this factor has to be taken into account only for 

those cases where this bulk stress cannot be neglected when compared to P0). 

The influence of the specimen semi-width d has also been studied for cases where d is 

greater than 1.5 times the size of the contact area. The only noticeable effect of this 

parameter on the stress distribution can be found when studying the stresses along the 



 14

Z-axis. Figure 15 shows the components z and zy for b = 1.5a∞ and the results 

obtained by means of the analytical solution. As the exact solution must be zero on the 

boundary of the body (z = 1.5a∞), the stresses are re-distributed in order to account for 

this restriction. Stress distribution in the XY-symmetry plane is almost similar to the half 

space solution for the semi-width values considered. The differences in the von Mises 

stresses are below 3%. 

6. Conclusions 

A three-dimensional finite element model of a fretting test using spherical pads has been 

developed in order to study the influence of specimen dimensions on the stress field 

near the contact area. An h-adaptive mesh refinement procedure has been applied to 

obtain accurate finite element solutions at a reasonable computational cost. 

For the case where only a normal load is applied, a reduction of the specimen thickness 

increases both the maximum contact pressure and the equivalent von Mises maximum 

stress inside the specimen. A reduction of the contact size area is also observed. The 

specimen width has no noticeable effect for values greater than 1.5 the characteristic 

contact area size. 

When the tangential load is applied together with the normal load, the reduction of the 

specimen thickness produces the displacement of the contact area towards the direction 

opposite to the applied tangential load Q (applied in the specimen). The contact pressure 

distribution is also modified due to the coupling between normal and tangential stresses 

produced by the different compliance of the spherical pad and the specimen. 

The distribution of the stress field near the contact area, both on the surface and inside 

the specimen, has been obtained. The analysis showed that even in the case where the 
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specimen and pad dimensions are only 3 times greater than the characteristic contact 

size, the finite element results precisely match those obtained for the contact of two 

infinite half spaces. This fact allows for a considerable reduction of the number of 

degrees of freedom of the finite element model, which is of great importance for the 

study of three-dimensional contact problems. 
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FIGURE CAPTIONS 

Figure 1.- Schema of loads applied during a fretting experiment using spherical pads 

Figure 2.- Geometrical model of the fretting test using spherical pads 

Figure 3.- Example of h-adaptive mesh refinement sequence 

Figure 4.- Normalised von Mises stress distribution on the XY plane of the specimen when only 

the normal load P is applied. a) FE solution,  b) Differences between FE and analytical solution 

Figure 5.- Normal stress x along X axis for different tangential load Q values 

Figure 6.- Tangential stress xy along X axis for different values of tangential load Q 

Figure 7.- Finite element tangential stress distribution yz in the contact zone. Q = 0.9P 

Figure 8.- Contact pressure along X axis for different values of specimen thickness. Q = 0 

Figure 9.- Evolution of normalised maximum normal and tangential stresses in the contact with 

the specimen thickness 

Figure 10.- Size of the contact area and adhesion zone versus  specimen thickness 

Figure 11.- Maximum equivalent von Mises stress vs. the specimen thickness for different values 

of the tangential load 

Figure 12.- a) Contact pressure distribution along X-axis for different values of specimen 

thickness. b) Tangential stress distribution in the contact zone 

Figure 13.- Changes in contact conditions when the tangential load is applied 

Figure 14.- Equivalent von Mises stress in the contact area with tangential load Q = 0.9P 

 a) b = 1.25a∞  b) b = 0.2a∞  

Figure 15.- Stresses z and yz for z=1.5a∞ and half-space along Z axis. Tangential load 

Q = 0.99  P0 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 12 
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Figure 13 
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Figure 14 
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