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Abstract

The Intelligent Transportation Systems area has experienced great developments in the recent past, although suffering
from slow adoption ratios thus depriving consumers of many interesting and innovative applications. The only solution
to this problem is to develop Intelligent Transportation Systems solutions using the already available technologies that
are within the grasp of the common people, to make them cost-effective, quick to deploy and easy to adopt. Ve have
therefore developed an affordable Intelligent Transportation Systems that make use of standard smartphones to assist
drivers when overtaking. The system autonomously creates a network among the close-by vehicles and provides drivers
with a real-time video feed from the one located just ahead. Our system seamlessly offers a better view of the road, and
of any vehicle travelling in the opposite direction, being especially useful when the front view of the driver is blocked by
large vehicles. Ve have validated our overtaking assistance system, in both laboratory environment and realistic scenar-
ios. The laboratory tests involved choosing the most effective video codec between MJPEG and H.264, for providing
real-time video streaming. Then, using the chosen codec, we performed the outdoor tests to further tune our applica-
tion to maximise performance. The preliminary results from our experiments allow being optimistic about the effective-
ness and applicability of the proposed system.
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Introduction travel information, traffic and demand management,
smart ticketing or urban logistics. Our goal here is to
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ITS applications that can reach out to the masses in a
short period of time. The choice of smartphones is not
only justified by their wide availability and use but also
because they are evolving towards high-performance
terminals with multi-core microprocessors packed with
sufficiently accurate on-board sensors.

Accidents while overtaking are considered by many
sources' as one of the main reasons behind injuries and
loss of lives on the road. Owing to the fact that scarce
opportunities arise to practise overtaking during stan-
dard driving lessons, it is no surprise that errors may be
committed by both inexperienced and experienced driv-
ers alike. Groeger and Clegg,” in their analysis of man-
ocuvres in lessons that stretched over 550 h, deduced
that practising overtaking only formed 5% of the total
duration. Once identified as a major and critical prob-
lem, overtaking was studied in detail at the University
of Nottingham, and their findings can be accessed at
the study of Clarke et al.®> Thus, our aim was to address
this problem and make the roads safer by developing a
real-time visual overtaking assistant application that
works without user intervention.

The application developed by Patra et al.,* which
will be presented in this article, aims at providing visual
overtaking assistance and runs on the Android plat-
form. The minimum hardware requirement for our
application is the use of a smartphone equipped with
global positioning system (GPS), WiFi and a back
camera. The smartphone running our application is to
be mounted on the vehicle windshield, and the camera
is used to record a video which is transmitted over the
vehicular network to the vehicle located just behind
where it is displayed. This way, it provides an enhanced
multimedia information aid to the drivers based on
which they might decide whether to overtake. It is
important that the devices being used possess GPS
because, based on location information, both the
source and destination of the video stream are chosen.
It is to be kept in mind that the video streaming occurs
between cars travelling in the same direction and
always occurs from the vehicle in front to the vehicle
travelling behind. The smartphones are to be mounted
in such a manner that its screen faces the driver, and
the back camera points towards the windshield. Care
should be taken that the camera has a clear view of the
road in front, and of the cars coming from the opposite
direction, so that, when the video is streamed, the
driver of the car behind is made aware of the traffic sit-
uation ahead of it. The drivers would only receive and
check this video when they wish to overtake the vehicle
ahead, basing their decision on what they see in the
video, being especially useful in scenarios where the
view of the driver is blocked by a larger vehicle or when
a long queue of cars is located ahead and the driver
wishes to overtake. It is important to note that our
application works without wuser interaction once

started. Since the application makes use of the GPS,
wireless communication for the exchange of data, and
always-on display, it makes our solution battery inten-
sive. Nevertheless, since most vehicles offer the possibil-
ity to charge smartphones, battery usage is not a
concern.

It is technically feasible for our solution to stream
video using multihop communication, which would be
useful for platooning situations where vehicles follow
one another making a queue. In this case, the leader of
the queue could stream the road conditions ahead to
the vehicles following it, helping them decide whether
to brake, as platooning vehicles seldom overtake.
However, in our application, we aim solely at providing
a reliable overtaking aid, and so we have intentionally
left out this option; thus, the video streaming and play-
back always occur between the car just in front and the
vehicle following it to eliminate any confusion that
might arise if the video was streamed by the leader of
the queue. In such a case, the driver, unaware of the
number of cars ahead, would be overtaking in danger-
ous situations. Another added advantage of using this
type of communication is that our application does not
suffer from typical multihop delays.

Our application was tested in both laboratory and
outdoor scenarios. The tests performed within the
laboratory consisted of comparing the performance of
the application using two different video codecs,
namely, H.264°> and MJPEG, which involves compres-
sing the video stream separately as Joint Photographic
Experts Group (JPEG)® images. These two encoding
formats were compared focusing mainly on their resis-
tance to packet losses because the wireless medium is
used for video data streaming. Once the encoding for-
mat is chosen, the application was tuned so that it can
deliver real-time visual aid while overtaking, taking
into account the delay between capture and playback
of the video stream. Then, making use of the chosen
application settings based on the laboratory experi-
ments, we have performed outdoor tests involving real
cars. A more detailed explanation about the developed
application in terms of its architecture, design, imple-
mentation issues and obtained results will be provided
in the following sections.

The rest of this article is organised as follows. In sec-
tion ‘State of the art’, we survey some works in the liter-
ature that makes use of smartphones to provide
intelligent services to users. In section ‘Application over-
view’, we will present a general overview of the devel-
oped application. Later, in section ‘Implementation
details’, we will discuss in detail the application mod-
ules, the process of video streaming between the car
ahead to the car following it, the setup used to create
the vehicular network that is used by our application
for exchanging data and possible security threats.
Preliminary results from a real test bed, as well as from
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laboratory experiments, will be described in detail in
section ‘Results’. Finally, we will conclude this article by
summarising our contributions in section ‘Conclusion’.

State of the art

Both academia and industry have shown very keen
interest in I'TS solutions that uses mobile devices, result-
ing in many innovative applications. We are going to
describe some of these interesting works that are closely
related to our own, specially concentrating on solutions
that are based on smartphones.

One of the first works done was in 2009 by Whipple
et al.,” who developed a safety application that collected
the location and speed information using the GPS of
the mobile devices; then, using the Google Maps appli-
cation programming interface (API), they looked up
for nearby schools and alerted the drivers if they drove
at a high speed near these school areas.

After 2 years, an Android-/OSGi-based vehicular
network management system was designed by Chen
et al.® In the same year, Yang et al.’ proposed an appli-
cation that uses the location, moving direction and
velocity of the vehicles obtained using the on-board
GPS. This information is periodically exchanged
between vehicles, and warnings are issued if the prob-
ability of collision is high. An Android-based applica-
tion that detects accidents through the on-board
diagnostics (OBD-II)'? interface to inform predefined
contacts was shown in the work of Zaldivar et al.'!
Carbon Recorder!? is another application that can be
used to detect the daily carbon emission of vehicles.

The year 2012 saw a lot of development in the field
of ITS applications, and one of the applications devel-
oped during this period that is worth mentioning is
DriveAssist by Diewald et al.'* DriveAssist provides
users with an overview of nearby traffic, triggering
warning messages for certain traffic incidents.
SMaRTCaR' is a platform also developed during the
same period that integrates smartphones and provides
support to traffic management applications. Another
application that makes use of the OBD-II standard to
extract safety and environment-related information
was proposed by Wideberg et al.'> The See-Through
System, by Gomes et al.,'® aims at improving the visibi-
lity of the drivers using augmented reality components,
while the developers of SignalGuru'” predict the sched-
ule of traffic signals leveraging collaborative sensing on
windshield-mount smartphones. Tornell et al.'® pro-
posed an application that can display important vehi-
cles like ambulances and police cars on a map view,
which was later improved in the study of Patra et al."”

Later, in 2013, the CarSafe App>® was introduced by
You et al.,, which is another driver safety app for
Android phones that alerts drivers when detecting

dangerous driving conditions and driver behaviour. It
makes use of computer vision and machine learning
algorithms on the images from front and back cameras
of the smartphones to monitor and detect whether the
driver is tired or distracted, while simultaneously keep-
ing track of the road conditions. Another interesting
application was proposed by Meseguer et al.,! which
incorporates data mining techniques and neural net-
works to analyse and generate a classification of driv-
ing styles using the data from the OBD-II, assisting
drivers to correct the bad habits in their driving beha-
viour and providing tips to improve fuel efficiency.

Other interesting applications that are available
online for download are Waze,> Torque,23 and
iOnRoad.”* Waze is a well-known community-based
traffic and navigation application where users share
important traffic information on the go. Torque is
an Android application that uses the data from the
OBD-II connector to monitor different parameters in
real time. The application iOnRoad, however, provides
driving assistance functions including augmented driv-
ing, collision warning and ‘black-box’ like video
recording.

Despite having found many different ITS applica-
tions for smartphones, we see that only a handful
aimed at providing visual aids to the drivers, namely,
SignalGuru, CarSafe and iOnRoad. However, none of
these smartphone-based applications actually provides
a real-time visual overtaking aid from other cars taking
advantage of vehicular networks, even though the idea
of video-based overtaking assistance systems is not
new. Works like the See-Through System,* which was
later improved in the study of Gomes et al.,*® although
not targeted for smartphones, have also focused on the
issue of video-based overtaking assistance. Other
related works worth mentioning are Vinel et al.>’ and
Belyaev et al.,® which demonstrate the feasibility of
such video-based assistance systems. Performance
improvements related to a video-based overtaking
assistant, that supports codec channel adaptation, is
shown in the study of Vinel et al.?’ Instead, Belyaev
et al?® focused on reallocation of wireless channel
resources to enhance the experienced visual quality.

Encouraged by the findings from the aforemen-
tioned works, and in order to fill in the need for a visual
overtaking assistance application that targets consu-
mers, we decided to develop our proposed application
that relies on smartphones to achieve rapid acceptance,
studying the integration of smartphones with vehicular
networks.

Application overview

Our application enables vehicles to perform real-time
streaming of the view as seen by the driver sitting in the
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car ahead, thus providing users with visual assistance
during overtaking. For our application to function
properly, the users need to have a smartphone with
GPS and a back camera, besides the availability of the
vehicular network for data transmission.

The working of our overtaking aid application can
be explained in three easy steps. In step one, the sender
and the receiver vehicle of the video stream are selected
using some special tests and validation conditions. The
second step involves the transmission of the video being
captured by the sender and its display at the receiver
end. In the third step, which is also the last one, video
transmission and playback are stopped when video
transmission is no longer necessary.

Step one, which involves the election of video source
and destination, begins with the broadcast of an adver-
tisement message by devices running our application.
This advertisement message is basically an announce-
ment of video availability by nearby vehicles, contain-
ing information regarding the location of the vehicle
broadcasting the advertisement packet and its direction
of motion. Each vehicle, while broadcasting the video
availability message, also listens for advertisement mes-
sages coming from its neighbours. Upon receiving an
advertisement packet, the vehicle receiving it verifies
whether the sender is a valid source from which a video
stream may be requested. This validity check involves
tests to find out whether the source is travelling just
ahead of the receiver on the same lane and in the same
direction. If more than one valid video source is
detected, then the receiver selects the best source from
all valid sources requesting the video. The selection is
based on the distance between source and receiver. A
more detailed explanation of the validity checks to
select the video source is provided later in the section
that follows.

The selected source vehicle, upon receiving the
request for the video, starts streaming the video signal
to the destination over the vehicular network in step
two. However, before starting the video transmission,
the source checks the validity of the request for video
by performing the same validity check used by the desti-
nation node before sending the request in step one. At
the destination, the video is displayed on-screen for the
driver as soon as reception starts. The streaming of the
video by the sender, and its playback at the receiver
end, is stopped when the receiving vehicle successfully
overtakes the sender or when it stops following the sen-
der; in either case, the video stream becomes irrelevant.

Figure 1 depicts step one previously explained. In
the case depicted in the figure, there are three cars,
and all of them are using our application. CAR-A
and CAR-B are moving in the same direction, while
CAR-C is moving in the opposite direction. At the
beginning, all the cars broadcast advertisement packets
containing information about the sender location and
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Figure I. Functional overview of the application —Step one: (a)
the vehicles exchange advertisements and (b) the client requests
video from the server.

B3 «

CAR-A _Video streaming and playback CAR-B\

Figure 2. Functional overview of the application —Step two.

the direction of motion, as shown in Figure 1(a). CAR-
C is outside the communications range of the other
cars, and hence, it is unable to receive any packets
transmitted by them. Upon receiving advertisement
packets, each car performs the validity checks to detect
if the source of the advertisement is travelling ahead of
it, on the same lane and direction. Here, only CAR-A
finds the advertisement message sent by CAR-B to be
valid and thus sends a video request to CAR-B, as
depicted in Figure 1(b).

Once CAR-B receives the video request, it performs
the validity tests to double check if the sender of the
video request is following it and travelling on the same
lane. Since here the validity tests are satisfied success-
fully, CAR-B starts streaming video to CAR-A, as
shown in Figure 2. CAR-A then starts playing the
video stream for its driver as soon it starts receiving the
stream. Notice that a particular vehicle may act as both
the video source and the destination, a situation which
might arise when there is a queue of cars travelling in
the same direction or platooning. In that case, a vehicle
might receive a video aid from the node travelling
ahead while streaming its own view to the node follow-
ing it.

Figure 3 points out one of the two cases which might
lead to the end of video streaming and playback. In the
figure, we can see that CAR-A has overtaken CAR-B
which causes the video streaming to stop. Now, since
CAR-A is travelling just ahead of CAR-B and in the
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Figure 3. Functional overview of the application —Step three.

same direction, CAR-B might request overtaking aid
from CAR-A.

Implementation details

In the previous section, we have seen an overview of the
main application features. In this section, we are going
to see in detail the different working components of our
proposed application and how they work together to
provide users with the visual aid while performing over-
taking manoeuvres.

The video server and client

Apart from the fact that the functionality of our appli-
cation can be split into three steps, we are also aware
that each node running our architecture can work as a
server and client at the same time. This means that all
nodes have the capacity to receive video from a node
and display it, while streaming video to a completely
different node. However, for the sake of clarity, we are
going to consider two devices running our application
placed in two different cars, out of which only one will
be acting as the server streaming video, while the other

as a client and merely receiving the stream. Even
though at the beginning of step one the roles of vehicles
are not defined, we will refer to vehicles as server and
client according to the roles they will be attaining in the
future.

Figure 4 presents all the possible states of the client
and server. At the outset of step one, the server is in the
notify state, while the client is in the /isten state, as dis-
played in Figure 4(a) and (b). The server in the notify
state starts advertising the availability of the video feed
by broadcasting an advertisement message (hello
packet) and also listens for replies from clients to its
hello message. The hello message accommodates loca-
tion and direction information of the server so that the
client, upon receiving the message, can extract the loca-
tion information and use it to analyse whether the ser-
ver is just ahead of the client and travelling in the same
direction. The client, however, remains listening for
advertisements from servers, being in the listen state
from the beginning, as depicted in Figure 4(b). Upon
receiving hello messages from servers, the client per-
forms validity checks and then, if the test conditions
are satisfied, the information is stored in a queue of
candidate servers.

The validity tests used to initiate video streaming,
consists of two test conditions, namely, the same direc-
tion test and the same lane test. The same direction test,
as the name suggests, is used to detect whether the two
vehicles are travelling in the same direction. Instead,
the same lane test is used to find out if the two vehicles
are travelling on the same lane, one leading the other.

For understanding the same direction test, let us
refer to Figure 5. As shown in the figure, we assume
two vehicles, one moving from point Al to A2, while

NOTIFY

STREAM

LISTEN

REQUEST

(b)

Figure 4. State diagram of the Server and Client: (a) different server states and (b) different client states.
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Table |. Messages exchanged between the server and client.

Message type Message source Client state Server state Message contents

Hello Server Listen Notify Location and direction
Request Client Request Notify Location and direction

Ready Server Request Reply Video sender port

Reject Server Request Reply -

Data Server Play Stream Location, direction and speed
Data-ack Client Play Stream -

End Client Play Stream -

B2
Al [¢]
ORB A2
RA

Figure 5. Same direction test.

Figure 6. Same lane test.

the other is moving from B1 to B2. The current loca-
tion of the two cars is thus A2 and B2, being their pre-
vious location Al and Bl. We now construct the
displacement vector of the two vehicles using their cur-
rent and previous locations and then measure the angle
0 between the two displacement vectors. If the mea-
sured angle 6 is less than a predefined threshold (« in
this case), we consider that the two vehicles are travel-
ling in the same direction. Rarely will the measured
angle 6 between the two displacement vectors be zero,
a result which may be due to different driving styles,
the nature of the route and GPS errors.

Even if the same direction test is satisfied, it does not
mean that the two vehicles are travelling one ahead of
the other. The vehicles may be travelling on different
lanes or parallel roads altogether. Thus, to detect if one
vehicle is following the other on the same lane, we per-
form the same lane test. The same lane test is explained
in Figure 6. For performing the test, we again assume
two vehicles travelling from Al to A2 and the other
from B1 to B2 where Al and B1 are the previous loca-
tions while A2 and B2 are the current locations, respec-
tively. In this case too, we determine the displacement
vectors for the two vehicles from the previous and cur-
rent location. We also draw an imaginary line joining
the current locations A2 and B2 of the two vehicles.

Next, we measure the angle of intersection of this line
joining points A2 and B2 with the displacement vector
of the vehicle behind. When the measured angle of
intersection ¢ is less than a predefined threshold 8,
then the vehicles are considered to be travelling one in
front of the other on the same lane. Being on different
lanes will result in a higher value of the measured angle
¢, and the same lane test will fail. If the same direction
test and same lane test are satisfied, then the two vehi-
cles are assumed to be travelling in the same direction,
one following the other, and hence the vehicle behind
may request the video stream from the vehicle ahead.

The client, which was in the /isten state, now, after
having prepared a list of all valid servers, and after
making the validation tests, selects the best server based
on the distance between server and client. Next, the
chosen server is sent a request for the video stream by
the client, which moves to the request state. The server,
upon receiving the request from the client, evaluates the
validation tests before replying to the client with a ready
or reject message. A ready message is sent if the evalua-
tion of the validation tests is positive; otherwise, a reject
is transmitted, and the server state changes to reply.
The server state may further change to stream, or move
back to the notify state, depending on its own reply to
the client. However, the client state changes from
request to play only if the reply from the server was a
ready message containing the video sender port number;
otherwise, it may choose to contact some other server.
Table 1 lists the different packets exchanged between
the server and client.

Step two, which involves video streaming and play-
back at the server and client ends, respectively, begins
only if the server is in the stream state and the client is
in the play state. Apart from streaming video, the server
and client in this step exchange a data message contain-
ing the location and direction information. Such data
message is exchanged every second, and the purpose of
this message is to detect if video streaming is necessary.
The client, upon receiving the data message from the
server, checks if the validity tests consisting of the same
direction test, and the same lane test are fulfilled. If not,
it is assumed that the streaming of video is no longer
necessary. If the validity tests give a positive result, it
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Figure 7. The video transmission process: client—server message exchanges.

responds to the server by sending a data-ack message to
keep the video connection alive.

If video streaming is no longer necessary, which
would be the case upon the completion of overtaking
manoeuvres, or if the car behind stops following the
car ahead, step three is initiated. In this step, the client
requests the server to stop the video streaming by send-
ing an end message. The client state changes to the end
state before switching to the /isten state once again dur-
ing step three. However, the server may end video
streaming upon receipt of the end message from the cli-
ent or if no data-ack message is received (it is used to
keep the connection between the server and client
alive). In our implementation, we have fixed the wait-
ing time for all messages exchanged between the server
and the client to 3 s, because the selected waiting time
is considered to be adequate enough as all communica-
tion occurs between two cars, one just ahead of the
other.

Video transmission

Our application relies on the real-time streaming proto-
col (RTSP)* for sending video over the vehicular net-
work. It is used to establish and control the media
sessions between the server and the client while they are
in the stream and play states, respectively.

Figure 7 illustrates all the data and commands
exchanged between the server and client. The server
(video sender) initially listens for an incoming

connection from the client (video receiver) on a prede-
fined port, which here we assume to be port A. This
port is made known to the client with the help of the
ready message sent by the server in response to the
video request made by the client. Thus, the client com-
municates with server at port A, making use of local
port X to send or receive packets.

The entire communication between the server and
client can be explained in three steps:

(a) Step-1. Used to setup the video streaming process;

(b) Step-1I. The video data transfer takes place;

(¢) Step-III. Includes the exchange of data to termi-
nate the video streaming.

In Step-I, the client enquires all the options sup-
ported by the RTSP server. The server replies to the
request by listing all the commands that it supports,
which in our case includes describe, setup, play and tear-
down. The client, using the describe command, asks the
server about the video properties that the server would
be sending, to which the server replies. Afterwards, the
client requests the server to start configuring the video
streaming process, using the setup option. This results
in the server replying with the port numbers to be used
for the sending and receiving of the video as well as
audio data, if any. Note that our application only
makes use of video data but no audio. In this case, port
numbers B and C are to be used for receiving, while D
and E are used for sending. Hence, following the
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instructions provided by the server, the client tries to
open ports B and C before sending the play request.
The server acknowledges the play request by the client,
and then, in Step-1I, an exchange of video data takes
place between the server and client using the previously
negotiated ports. User datagram protocol (UDP) is
used for the sending of audio and video data, while in
the other steps messages are exchanged using transmis-
sion control protocol (TCP). When the video streaming
is to be stopped, the client initiates a teardown request
to which the server acknowledges, causing the video
streaming to end.

The vehicular network

The proper functionality of our overtaking assistance
application is dependent on the availability of a vehicu-
lar network for data exchange. However, vehicles used
on a daily basis still lack the capability to communicate
with one another. Thus, for creating a network of vehi-
cles, we employed GRCBoxes.”® A GRCBox is a low-
cost connectivity device based on the Raspberry Pi'
which enables V2X communication and encourages the
integration of smartphones into vehicular networks.
The necessity for a device such as the GRCBox arose
due to the difficulty in creating an ad hoc network
merely using smartphones.

Figure 8 is one of the photos taking during our real
experiments with our application, both the cars used in
the experiments had a GRCBox mounted within to be
able to communicate. The GRCBox consists of a con-
troller, which is a RaspberryPi, a battery as a power
source and a universal serial bus (USB) hub to connect
various network interfaces. Each GRCBox has a mini-
mum of two WiFi network interfaces, of which one
works as an access point and the other one is used to
create an ad hoc network. The smartphones and the
mobile devices used to run our application connect to
the GRCBox using the access point, and then, the data
to be sent are forwarded to the other nodes using the
ad hoc network. Thus, the GRCBox acts as a router
for the exchange of data. Even though the GRCBox is
supposed to be equipped with 802.11p for vehicular
communication, we used 802.11a devices instead since
802.11p-enabled hardware was not available while set-
ting up the GRCBox to perform the tests. In future
experiments, we intend to use 802.11p-compatible hard-
ware to take advantage of the WAVE standard.>

Security threats

The solution present in this article is a smartphone soft-
ware that provides overtaking aid and thus may be
affected by different types of application layer attacks.
It is to be noted here that we have not used any extra
security measures to protect our application from the

Figure 8. The experiments with our application in real
scenario.

different security-related threats, which have been left
as future work as a likely improvement in the next ver-
sion. Thus, some of the possible attacks that might
influence the performance of the designed application
are denial of service,*® non-control-data corruption,34
malwares and hacks. Denial of service can occur if a
server is unable to respond to a legitimate client when
it is occupied in communication with the attacker.
Approaches against this type of attack are usually
based on the use of public key cryptographic protocols,
an example of which is in the study of Fung and Lee.®
Non-control-data corruption attacks, however, refers
to the access and modification of user, user identity,
configuration or decision-making data. Our application
has been designed for the Android operating system,
based on the Linux environment, which provides devel-
opers the possibility to store data that is private to the
application, thereby rendering non-control-data cor-
ruption attacks difficult to execute.*® An example of
malware could be software that infects the original
code by modifying the actual behaviour of the applica-
tion; solution to this security threat includes the use of
control-flow integrity,’” that implies embedding within
software executables both the control-flow policy to be
enforced during runtime and the mechanism for that
enforcement. Hacking is another security threat,
whereby the attacker would be able to modify the per-
formance of the application and supply receivers with a
recorded video feed instead of streaming live road con-
ditions. These types of problems can be easily dealt
with by making the whole system embedded within the
car and force the application to be proprietary software
with manufacturer certification.

Results

In this section, we are going to present the experimental
setup and the results obtained using our application.
The application was deployed in both laboratory and



Patra et al.

GRCBoxes
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Figure 9. Indoor demonstration of the application.

outdoor scenarios. The experiments done in the labora-
tory environment aimed at selecting the best video
codec between H.264 and MJPEG for our application.
Once the codec was selected from our laboratory
experiments, we went ahead to test the application out-
doors. In our experiments in real scenarios, we tried to
evaluate the thresholds used in the validation of the
same direction and same lane tests used by the applica-
tion to start and stop video streaming.

Laboratory evaluation

The setup used for our laboratory experiments with the
application is very similar to the one that is to be used
when the application works in a real scenario. All the
experiments were done imagining that two cars are
being used for the tests. We used two Samsung Galaxy
Note 10.1 (2014 edition) tablets whose computational
capabilities were similar to modern day smartphones.
These Android devices were used for recording or dis-
playing the video being streamed. The tablets were
equipped with a quad-core 1.9 GHz plus quad-core
1.3 GHz processors, 3 GB RAM, 8 MP primary cam-
era and 2 MP secondary camera. Each of these tablets
used for the experiments were connected to a different
GRCBox, which provided the vehicular network for
the exchange of data.

Figure 9 shows the actual setup used for the test in
the laboratory environment. It is important to note
that each device in the real scenario has the capacity to
stream its capture to another device while receiving
video from a completely different device. In other
words, the same device can act as source and destina-
tion of two different video streams; but to keep it sim-
ple in our tests, one tablet was configured to work as
the server that streams video to another tablet, which
acts as a client. In the figure, we can see that the device
on the left, acting as the server, is recording whatever is
being displayed on the screen of the laptop placed
ahead. It first sends this stream to the GRCBox to
which it is connected and placed right next to it in this
case. The GRCBox, which is responsible for the vehicu-
lar network, forwards the video data to the next

GRCBox where the client is connected. The client thus
receives the video stream and displays the video on-
screen. Using this setup, we compared two video
codecs, namely, MJPEG and H.264, assessing how the
video quality is affected in the presence of packet
losses. Once the video codec to be used in our applica-
tion was chosen, experiments related to application
delay were conducted making use of the same setup.

Video quality experiments. For the first set of experiments
in the laboratory environment, we determined how the
quality of the video is affected when there are losses.
The idea here is to select the video codec that is least
affected by losses because our application is to be used
in wireless environments with nodes in constant
motion, and so the communication between the nodes
will be affected by information losses.

The first metric that we are going to use to compare
the two video codecs is peak signal-to-noise ratio
(PSNR),*® which is the ratio between the maximum
possible power of a signal and the power of the distort-
ing noise that affects the quality of representation of
the original signal.

Figure 10 shows how the PSNR for the video pro-
duced using H.264 and MJPEG is affected by the pres-
ence of packet losses. It can be seen from the graph
that the percentage of packet loss was varied from 0%
to 20%. A loss of 0% means that the receiver obtains
exactly the same video that the sender transmits, in
which case, the PSNR should be theoretically unde-
fined. But since a comparison is made between the
received video stream and the original raw data, which
is encoded before being sent, the PSNR value is never
undefined. For the case when there are no losses, it can
be noted that H.264 performs better than MJPEG. The
reason for this phenomenon is that MJPEG is a much
simpler codec compared to H.264, and so there is no
inter-frame compression involved, resulting in an out-
put video that occupies more space. The encoder for
MIPEG tries to reduce the network usage by produc-
ing a video of lesser quality than the one produced by
the H.264 encoder, resulting in better PSNR values in
case of H.264. However, as packet loss appears in the
scenario, we can see that H.264 is more affected than
MIPEG as PSNR values fall more steeply for H.264,
which is due to inter-frame compression.

Another important metric for the comparison of
image or video quality is structural similarity
(SSIM).**** SSIM is a method for measuring the per-
ceived similarity between two images, designed to
improve upon traditional methods such as PSNR and
mean squared error (MSE).*' Similar experiments are
repeated with H.264 and MJPEG once again, but this
time to calculate the SSIM values for each of the video
codecs.
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Figure 10. Variation of PSNR with packet loss for H.264 and MJPEG.

Figure 11 compares the SSIM values for H.264 and
MIJPEG, and how it is affected by packet losses. This
figure shows similar trends as in Figure 10, but in this
case, the SSIM values decline more smoothly in the
presence of data loss. It is important to note that,
according to the SSIM index, the difference in the qual-
ity of the initial videos produced from the raw data by
the two video encoders is not that significant, being
that the video produced by the H.264 encoder is only
slightly better. However, as packet loss increases, the
quality of the H.264 video is more affected than in the
case of MJPEG.

Thus, the inference from our video quality experi-
ments is that MJPEG is a better choice as the video
codec to be used in the proposed application for our
high-mobility vehicular scenarios, considering the fact
that it is more resistant to packet losses than H.264.

Application delay experiments. An important parameter to
determine the functionality of our application, which is
characterised by providing a visual aid to drivers to
assist them in overtaking, is the delay between video
capture and its playback. If this delay is too high, the
video played at the receiver end would be of no real use
to the driver. Thus, we first have to calculate the maxi-
mum admissible delay that we can afford and then find
out if the delay requirement is fulfilled by the different
resolutions of our chosen MJPEG video codec.

For calculating the maximum allowable delay for
our application, it is important to have an idea of the
safe overtaking distance between the car trying to over-
take and the car coming from the opposite direction.
This is because the application delay would cause the
car coming from the opposite direction to be actually
closer to the overtaking vehicle than it appears.
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Figure 12 explains the idea that the vehicle coming
from the opposite direction, in this case CAR-C, would
be closer than it is seen in the displayed video at CAR-
A, due to the delay in between capture at CAR-B and
its playback at CAR-A. While studying the explained
phenomenon, Crawford*? found that, under ideal con-
ditions, a distance of 228.6 m is required for overtaking
at about 80.47 km/h. However, Hills** further showed
that, for both overtaking and incoming vehicle speeds
of 80.47 km/h, the total overtaking distance required is
of about 457.2 m, twice that recommended by
Crawford.

Our application has been designed to be used
majorly while driving on single carriageways where the
road is undivided and has traffic moving in both direc-
tions with high velocity. Now, let us assume that we
have two cars moving in the opposite direction at
80.47 km/h (similar to the assumptions made by Hills).

Current position
of CAR-C

""" Y-

ideo streaming and playback CAR-B\

CAR-A

Figure 12. Error due to delay.

The relative velocity (Vg) can be calculated using the
formula

VR:VA+VB

where V, and Vp are the velocities of the two cars, and
Vr is found to be 160.94 km/h or 44.706 m/s. Limiting
the maximum error in the positioning of the vehicle
coming from the opposite direction to 5% of the total
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Figure 14. Variation of throughput with JPEG quality for a
10 fps MJPEG video.

overtaking distance of 457.2 m as suggested by Hills,
would allow an error of 22.86 m. Now, considering the
maximum error in positioning as 22.86 m and the rela-
tive velocity of 44.706 m/s, the maximum allowable
delay for our application is 0.511 s in accordance with
the equation: time = distance/speed. In the next experi-
ment with the MIPEG codec, we will see whether it ful-
fils our strict delay requirement. It is to be noted that
fulfilling the time constraint would make our applica-
tion usable even while driving on roads with a higher
speed limit than the assumed speed of 80.47 km/h; this
is because vehicles driven at a higher speed would also
proportionally need a larger overtaking distance from
the vehicle coming in the opposite direction.

The MJPEG stream is composed of separate JPEG
images; thus, its performance when talking about

compression-ratio is also limited due to its simplicity.
The MJPEG encoder accepts, apart from video resolu-
tion itself, another parameter which is quality, and it
may range between 0 and 100. Value 0 produces a
video with maximum compression, but least perceived
quality, while the opposite occurs when the quality
parameter is set to the value of 100.

In Figure 13, the JPEG quality in our experiments
with MJPEG video varied from 20% to 80%, as for
values below 20% the video quality was too low,
whereas values over 80% did not show any significant
improvements in the perceived video quality. It is also
important to note that the number of frames per sec-
ond for the video stream was fixed at 10 to minimise
bandwidth usage which in turn would make our appli-
cation more scalable. We observe that, for a resolution
of 320 X 240, the average delay suffer minimal varia-
tions (from 0.24 to 0.27 s), whereas for 640 X 480, it
ranges from 0.26 to 0.31 s. Eventually, for a resolution
of 1280 X 720, we see that the mean delay lies between
0.4 and 0.44 s.

Since all the three resolutions of quarter video gra-
phics array (QVGA), video graphics array (VGA) and
high definition (HD) for MJPEG video has delay
within the previously calculated maximum allowable
delay of 511 ms, it can be safely stated that MJPEG
video encoding scheme is a wise choice and may be
used in our application for streaming video data.

Chosen video settings. We have already seen that MJPEG
was more resistant to losses in data than H.264, and
later it was shown that it fulfils our strict delay require-
ment of 511 ms for all resolutions up to HD, which is
very important for our application since it promises a
real-time visual aid while overtaking.

Next, we would like to determine the most appropri-
ate resolution and JPEG quality for the video stream
to be used in the scope of our application. Since the
vehicular network is provided using GRCBoxes, the
decision regarding the choice of the video parameters
largely depends on the performance of the GRCBoxes.
It was observed from experiments performed with the
GRCBoxes that they are capable of providing a mean
bandwidth of 10.5 Mbps for TCP traffic and
15.5 Mbps for UDP traffic,** although, the worst-case
bandwidth values for both TCP and UDP was close to
5.5 Mbps. Android devices using our application could
be simultaneously operating as video sources and desti-
nations, and so the effective bandwidth available for
one-way video streaming, considering the worst-case
scenario, is 2.75 Mbps.

Figure 14 shows the throughput variation for
MIJPEG video with different JPEG quality levels. We
observe that, for a video resolution of 320 X 240, the
average throughput varies from 0.405 to 1.029 Mbps,
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while for 640 X 480 it lies between 0.976 and
2.336 Mbps, and range between 1.805 to 4.177 Mbps
for the resolution of 1280 X 720.

Since the bandwidth available using the GRCBoxes
was of 2.75 Mbps, we observe that MJPEG video
streams of resolutions up to HD, with JPEG quality up
to 50%, may be used as suggested by Figure 14. Thus,
this is the default settings we use in our application, but
they may be modified by users according to their
preference.

Outdoor evaluation

In this section, we will discuss the test results obtained
in the experiments done in the real scenario. The setup
involved the use of two cars, each equipped with a
GRCBox box for inter-vehicular communication and a
Samsung Galaxy Note 10.1 tablet running our
application.

Figure 15 shows the routes followed in our outdoor
tests. The first route depicted in Figure 15(a), which is
on a highway, was about 9.25-km long. Figure 15(b)
shows the route taken around the Universitat
Politécnica de Valéncia, considered as an urban sce-
nario of 3.76 km in length. In both cases, the two cars
used were driven one ahead of the other at all times,
with the car behind receiving video from the car ahead
using the GRCBoxes mounted within the cars. Data
were collected during these experiments to analyse the
two validation conditions important to our application,
namely, the same direction and same lane test used to
start/stop the video transmission. These validation tests
were already discussed in the ‘Implementation details’
section. Since the validation conditions were dependent
on separate threshold values, the aim of the experi-
ments done in the outdoor environment was to calcu-
late a reasonable value for the thresholds and to
evaluate the usefulness of these validation conditions.

Figure 16(a) presents the observations from the same
direction test that is used to detect if vehicles are travel-
ling in the same direction. A comparison has been
made between the use of unfiltered GPS locations and
Kalman filtered*® location data for the evaluation of
same direction test. The Kalman filter used here is a
simple one that just takes into account the location
data. From this graph, we can see that the average
angle evaluated by the same direction test using unfil-
tered data for highway and urban scenarios are 9.83°
and 8.73°. While, using Kalman filter, similar values of
10.95 and 10.73 are observed for highway and urban
scenarios, respectively. Since for both scenarios, it can
be observed that the worst-case values are within 12.5°.
Thus, 12.5° is selected as the threshold « used for the
same direction test in our application.

Figure 16(b) summarises the angles measured by the
validation condition used to detect if the two cars are

travelling one ahead of the other on the same lane; this
condition is also know as the same lane test. Closely
observing this particular plot we can see that, for the
highway scenario, using unfiltered GPS data gives an
average value of 15.37°, and the use of Kalman filtered
data gives a result of 19.30°. However, experiments
done in the urban scenario show less variation in the
results obtained, where using unfiltered GPS data gives
an average of 20.10°, while Kalman filtered locations
gives a value of 20.74°. Thus, in the case of same lane
test, the threshold 8 has to be 25°, which would include
values with 95% confidence interval. However, we were
expecting a much lower value for this test as it is very
sensitive and is used to detect if a car is located just
ahead of another.

Thus, we see that the designed application worked
when tested in real scenarios involving mobility. The
study of the validation conditions used by the applica-
tion for choosing the video server and client, as well as
to start and stop the video streaming, reveals that the
same direction test performed as per our liking.
However, results of the more sensitive same lane test
were greatly affected by the accuracy of the GPS hard-
ware available to the smartphones.

Conclusion

In this article, we have introduced an application that
is able to provide drivers with a real-time visual over-
taking aid. The developed system makes use of smart-
phones to capture and display the video stream. The
video provided by the vehicle ahead is visible without
user intervention at the vehicle just behind it making
use of the smartphone display. Hence, our application
provides drivers with useful information about the traf-
fic situation ahead, based on which the decision to
overtake can be taken. This is specially useful when the
view of the driver is blocked by a larger vehicle ahead.
Also, since transmission of data takes place between
the vehicles just ahead to the one following it, there is
no multihop relaying required, which makes us opti-
mistic regarding its scalability and use in regions with
high-traffic density. The application functions correctly
and was tested in both laboratory and outdoor scenar-
i0s. The tests performed within the laboratory involved
choosing the best video settings for our application. In
particular, it involved a comparison between the
MIPEG and H.264 video codecs. MJPEG was chosen
as the default compression scheme due to its simplicity,
better performance under losses and lower encoding
delay. We also introduced two validation conditions,
namely, the same direction and same lane test, to choose
the most adequate video server and client, as well as to
initiate or terminate video streaming. These validation
conditions were kept as simple as possible to achieve
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Figure 15. Routes used during the outdoor evaluation: (a) highway scenario and (b) urban scenario.
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Figure 16. Evaluation of the validation tests used by the application: (a) results of the same direction test and (b) results of the

same lane test.

low delays and enhance the usefulness of the developed
system. Our outdoor experiments demonstrate that a
threshold of 12.5° is applicable to the same direction
test. Concerning the same lane test, it was rendered use-
less due to the inaccuracy of the GPS technology avail-
able in smartphones. Despite this issue, we do
acknowledge that the collaboration of vehicular net-
works and smartphones does open a new horizon for
ITS application. Finally, we are currently focusing on
ways to replace the same lane test by the use of image
processing techniques to help in the correct selection of
the video source and destination.
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