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Abstract— Continuous monitoring of chronic patients improves their quality of life and reduces the economic 
costs of the sanitary system. However, in order to ensure a good monitoring, high bandwidth and low delay are 
needed. The 5G technology offers higher bandwidth and lower delays and packets loss than previous 
technologies. This paper presents an architecture for smart eHealth monitoring of chronic patients. The 
architecture elements include wearable devices, to take measures from the body, and a smartphone in the 
patient side and a DataBase with an intelligent system which is able to send an alarm when it detects that it is 
happening something anomalous. The intelligent system uses machine learning in BigData taken from 
different hospitals and the data taken from the patient to diagnose and generate alarms. Experiment tests have 
been done to simulate the traffic from many users to the DataBase in order to evaluate the suitability of 5G in 
our architecture. When there is low number of users, like 100 or 200 users, we do not find big differences of 
round trip time between 4G and 5G, but when there are more users, like 1000 users, it increases considerably 
reaching 4 times more in 4G. The Packet Loss is almost null in 4G until 300 users while in 5G is possible to 
keep it null until 700 users. Our results point out that in order to have high number of patients continuously 
monitored, it is necessary to use 5G network because it offers low delays and guarantees the availability of 
bandwidth for all users.  
 
Index Terms— eHealth architecture, continuous monitoring, machine learning, 5G 
 

 

I. INTRODUCTION  

The number of people that need continuous monitoring because of health issues, has been increased 
hugely  last decades. Chronical diseases, also known as non-communicable diseases, are characterized by 
their long duration and require systematic approaches and long –term treatments [1]. Some examples are: 
heart disease, cancer, chronic respiratory diseases, bone disorders, diabetes, mental disorders, 
vision/hearing impairment and genetic disorders among others. In 2012, in USA, the 24.3% of 
noninstitutionalized adults present 1 chronic condition, 13.8% present 2 and 11.7% present 3 or more [2]. 
Patients with chronic diseases need to spend long time periods hospitalized, being monitored. These 
hospitalizations suppose a reduction of the quality of life of the patients, an oversaturation of the sanitary 
systems and huge economic costs. According to WHO [1], the 60% of deaths in 2005 in the world were 
related to chronical diseases. 

Because of this, several countries started different programs to promote the health self-management. 
These programs improve the self-care and ensure an easy interaction between doctor and patient in order 
to increase the quality of life of the patient [3]. Different self-management programs were developed for 
different chronic diseases such as obstructive pulmonary disease [4], diabetes [5], arthritis [6], cancer [7] 
or heart disease [8], among others. Nowadays, the self-management consists of an essential component of 
the chronic care [9]. The reduction of economic cost with the current self-management programs was 
estimated in [10], obtaining $364 cost saving per participant.  
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United States Department of Health and Human Services pointed 4 main pillars to prevent chronical 
diseases. The first one is the enhanced surveillance [11]. The eHealth can increase the possibilities of 
patient surveillance. It is expected that eHealth becomes an essential part of the future self-management 
programs. With the concept of Internet of Things (IoT), which embeds computing and communication 
function into common objects, eHealth and other different possibilities will be benefited [12]. 
Nevertheless, the possibilities of wide use of sensors, the generation of Big Data, the use of artificial 
intelligence, the machine learning or the Cloud Computing are still generating more challenges than 
giving solutions.  

Broadband wireless access technologies have been evolved spectacularly. 5G [13] technology, as next 
generation of mobile networks, will be deployed with dense small cells. It will offer significantly 
increased bandwidth and guarantee high Quality of Service (QoS) to the users [14]. These advantages 
promote 5G to provide services as IoT, cloud computing, HD 3D video streaming and interactive 
applications for mobile users. However, the evaluation of this technology is focused on increasing data 
transfer rate. Therefore, it is expected to reach 50 billion ubiquitous devices connected to the cellular 
network by the end of the year 2020. Furthermore, the traffic from mobile devices will account about 
two-thirds of the total IP traffic [15]. Therefore, the capacity of the networks must be considerably 
increased to satisfy these high data rates and meet excessive demands of the users without reducing the 
quality of service. Many applications have been designed to be adaptive and avoid to degrade the network 
parameters (e.g. adaptive video streaming). These applications are more flexible in order to provide 
integrated services in heterogeneous networks [16]. The 5G  network architecture includes multiple sizes 
of: Femtocells, Picocells, Microcells, and Macrocells, the cover range of these cells converge from 10-20 
meters, 200 meters, 2 kilometres, to 30-35 kilometres respectively and generally use diverse access 
technologies (UMTS, HSPA, WiMAX, LTE, and WiFi). 

Wearable devices for e-health monitoring using 5G will bring several benefits to current self-management 
programs. The benefits for chronic patients include an enhancement of their quality of life by reducing the 
hospitalization time and improve their life expectancy by generating fast response alarms. The doctors 
will be able to review remotely their recent vital sings and physical activity in case of an alarm. Finally 
the reduction of hospitalization time of chronic patients will suppose a reduction of the patient’s costs. 
The fast response to the alarms supposes a reduction of necessary surgeries due to medical complications 
and also a fast reply to any disease complication. 

The aim of this paper is to develop an architecture for smart continuous eHealth monitoring of chronic 
patients using 5G.  The elements of the architecture include wearable sensors and smartphones that sense 
the vital signs of the patient and transmit these data over the 5G network to a DataBase station where an 
intelligent engine is able to diagnose the current status of the patient. The data input of the machine 
learning are divided into (i) health meters such as heart rate, breathing rate or electrocardiogram from a 
smartphone or wearable devices, (ii) activity meters such as velocity or position from the wearable 
devices or smartphone, and (iii) environment parameters such as geolocation, environmental temperature, 
light intensity or time from the smartphone. An alert can be triggered and sent to the doctor and the 
intelligent engine by the patient using the alarm button. Comparing the gathered data from the patient 
with the BigData taken from several hospitals and the clinical history of the patient, the intelligent engine 
is able to diagnose the current status of the patient and generate alarms if needed. Experimental results are 
presented to expose the need of the 5G network in our architecture. Simulations of a specific scenario 
with different number of users are performed. Finally, machine learning experimental validation is 
performed in order to ensure its operability.  

The rest of the paper is structured as follows. The related work is presented in Section II. Section III 
shows the proposed architecture for smart continuous eHealth monitoring over 5G network. The 
description of our artificial intelligence system applied to Big Data is detailed in Section IV. Section 5 
presents the experimental results of 5G and 4G network simulations and the machine learning 
experimental validation. Finally the conclusions and future work are shown in Section VI.  



 

 

II. RELATED WORK 

In this section a summary of the published applications of e-health using sensor devices and 5G 
monitoring systems are shown.  

First, we review the related work of eHealth monitoring using the sensors of the smartphone or wearable 
sensor devices. A review of multimedia sensors included in smartphones for eHealth monitoring and 
ambient assisted living was done by Parra et al. in [17]. This review shows a complete picture of what 
type of multimedia data can be gathered and how can be used for patient monitoring. A shoe-based 
wearable sensor system was presented by Sazonov et al. in [18]. Their system was able to recognize the 
activity of the patient, e.g. sit/stand motionless, walking, ascend/descend stairs, cycling, etc. In [19], 
Sendra et al. proposed a smart collaborative system to monitor disabled or elderly people. Their proposal 
allowed recognizing the status of a person according to what was happening in his/her environment. The 
system was able to analyze the data of one person in conjunction with his neighbors. Lorincz et al. 
developed a Wireless Body Area Sensor Network (WBASN) for long-term remote monitoring of epileptic 
patients in [20]. Their system offered long battery lifetime and high data fidelity allowing the long-term 
monitoring. The WBASN was able to sense accelerometers and gyroscopes data from 8 different points 
of the body. A mobile phone-based pervasive fall detection system was proposed by Dai et al. in [21]. 
The system was implemented on an Android G1 phone. Authors compared their system with the existing 
ones and obtained better detection performance and power efficiency. In [22], Bravo et al. proposed a 
frailty monitoring by controlling daily activities. In their system, elderly people were continuously 
monitored using the data of the accelerometers enabled in their smartphones. By controlling their activity, 
the system was capable to do some recommendations for rehabilitation exercises and gave a frailty index 
to detect risk situations. Aminian et al. presented a monitoring system based on WBASN in [23]. Their 
system senses vital signals such as heart rate and the blood pressure, among other, and sends them to a 
base station. When abnormal conditions are detected, an alarm is generated and a sms or e-mail is sent to 
the caregivers. A WBASN based on a smart shirt for activity monitoring and ubiquitous health was 
proposed by Lee and Chung in [24]. Their system was capable to obtain an electrocardiogram and 
acceleration data for real time monitoring. The data was transmitted over an ad-hoc network to a base-
station for remote surveillance. Gay and Leijdekkers presented a system to monitor patients with cardiac 
risk in [25] using WBASN and smartphone. The real-time the electrocardiogram (ECG) data was 
analyzed by the smartphone allowing determining if the person needs external help. The smartphone can 
alert the caregivers or contact with an ambulance. Moreover the system can also offer advices to the 
patients in order to reduce its risk (e.g. exercise more). Some systems have been proposed specifically to 
avoid the hospitalizations by monitoring the patient from home as in [26] and [27]. Both of them are 
based on WBASN.  

The proposal in [26] includes a remote panic button that allows alerting the caregivers. In [28], Lloret et 
al. presented a smart communication architecture for ambient assisted living. The inclusion of an 
alert/panic button was a priority in that proposal, because although the sensors monitor the patient, some 
strange events cannot be detected, so it can be dangerous for the patients. In that case, the manual 
activation of the alert button can trigger the alarm. However, in some applications such as the one 
presented in [26], the alert button directly generates an alarm, but this is not efficient because sometimes 
the patient can activate accidentally the button generating a false alarm. To review the data in case of the 
alert button is pushed will help to avoid false alarms, thus saving costs, and will give better attention to 
the patient. 

Several authors point out the amount of chances that offer 5G in conjunction with Big Data and Machine 
Learning to monitoring systems. In [29], Kadir et al. presented a Big Data Analytics Architecture 
Framework that operates under 5G. In the related literature we can find different proposals focused on 



eHealth. West presented in [30] an exhaustive summary of the benefits offered by 5G to eHealth. They 
are (i) new imaging techniques and the possibility of a second opinion thanks to high-speed transmission 
of X-rays or scans, (ii) tele-monitoring, which helps to obtain better diagnostics, and (iii) data mining 
applied to medical data, which helps to adjust the treatment among others.  

We can also find some examples of proposals for eHealth operating under 5G networks. An architecture 
with 5G for a typical Wireless Body Area Network (WBAN) was presented by Mishra and Agrawal in 
[31]. Philip et al. introduced a new concept in [32], the 5G-Health as the next generation of eHealth. They 
discussed the possibilities of Medical Video Streaming thanks to the high speed reached in 5G networks. 

To the best of our knowledge, there is no architecture for continuous patient monitoring over 5G that 
include a smart system to diagnose the status of the patient based on Big Data taken from different 
sanitary centres as the one that proposed in this paper. 

III. SMART CONTINUOUS EHEALTH MONITORING SYSTEM DESCRIPTION  

In this section, the developed system is presented. First, we show the design of the data gathering 
architecture. Then, we include the message flow and the decision algorithm for the system operation. 
Finally, the operation of the system when the alarm button is activated is described.  

A. Architecture description 

In this subsection we present the architecture of our smart continuous eHealth monitoring system over 
5G. The architecture is composed by wearable devices, a smartphone and a database placed in a server. 
Several wireless technologies are used in the architecture. On one hand we used Bluetooth to connect 
sensor devices with the smartphones. On the other hand, we use 5G to connect the smartphones with the 
Data Base (DB) server. 

The system procedure is as follows. The body sensors collect information from the patient. This 
information is sent to the mobile device through a Bluetooth connection. The mobile device sends this 
information to the server through the 5G network. The DB server collects the data from the sensors. Other 
data are collected from hospitals, such as the medical analytics plus the decisions of the doctors. Then, the 
system analyses the data gathered from the sensors and the Smart Engine, using the data taken from the 
Big Data, decides if the data gathered are Typical Data (TD) or Abnormal Data (AD). When the system 
detects an abnormal situation, an alarm is generated and the server sends the last 30 minutes of data to the 
doctor. The doctor will verify or deny the alarm. This procedure can also be initiated by the patient 
through the inclusion of an alarm button. The proposed architecture is represented in Figure 1. 



 
Figure 1. Proposed architecture for smart continuous monitoring 
 

B. System operation with data gathered 

This section describes the system operation when the data are sent to the Smart Engine and the different 
actions taken according to the result of the data analysis.  

The message flow chart presented in Figure 2 shows the message flow in the case of TD detection and 
AD detection. At the beginning of the connection, the patient is registered in the DB and an 
acknowledgement (ACK) is sent from the DB to the patient to confirm the registration. From this moment 
the data of the wearable sensors (i.e.: heart rate, oxygen saturation, blood pressure or respiration rate 
among others) and of the smartphone (location, acceleration or temperature among others) are sent to the 
DB each second. The data from the DB are sent to the Smart Engine. A data analysis is performed by the 
Smart Engine using the data from the DB. The analysis offers a result. The gathered data can be TD or 
AD. If the Smart Engine predicts that gathered data are TD, the message flow ends at this point. However 
if the Smart Engine predicts that gathered data are AD, the gathered data are sent to the doctor to verify 
the alarm. From this point there are two possibilities, in the first one the doctor verifies de alarm and in 
the second one the doctor denies the alarm. If the doctor examines the data and concludes that the alarm 
corresponds to a real sanitary emergency, the alarm is verified and it is considered as a Positive Alarm 
(PA). A verification message is sent from the doctor to the Smart Engine and the data are tagged as AD in 
the DB. Moreover the Smart Engine sends an alarm to the patient in order to indicate him/her the problem 
detected (e.g. high blood pressure detected). The message flow ends at this point in case of PA. In the 
second case, if the doctor concludes that the AD sent by the Smart Engine does not correspond to a real 
sanitary emergency, the alarm is denied and it is considered as a False Positive Alarm (FPA). A denial 
message is sent from the doctor to the Smart Engine and the data are tagged as TD in the DB. Then, the 
message flow ends at this point.  



 
Figure 2 Message flow diagram  

Figure 3 presents the decision algorithm. This algorithm is created to decide the actions to be taken after 
the data reception. When the gathered data are considered by the Smart Engine as TD, no further actions 
are taken and the data reception continues. During an episode of sanitary emergence, such as high blood 
pressure, the gathered data will be considered as AD by the Smart Engine, then, an alarm is created and 
tagged with its cause (i.e. High blood pressure detected). In order to avoid continuous messages asking 
for the doctor verification during a sanitary emergence event, this algorithm is able to detect if the 
previous data were TD or AD. If the previous data were TP it indicates the beginning of a sanitary 
emergence event and then the verification process will start as it is shown in Figure 2. The data are sent to 
the doctor in order to verify the alarm. If the alarm is verified, the data are tagged as AD. Then, the alarm 
is sent to the patient and the data reception continues. If the alarm is denied, the data are tagged as TD and 
the data reception continues. However if the previous data were already considered as AD, there are two 
possibilities, the current alarm can be caused by the same cause of the previous alarm or not. If both 
alarms have been tagged by the same cause, the new data indicate that the previous sanitary emergence 
event continues ongoing and it is no necessary to ask for the doctor verification, and the data reception 
continues without taking any action. Nevertheless if the cause of current alarm is different from the cause 
of the previous alarm, it indicates a new sanitary emergence event (e.g. the cause of the previous alarm is 
high blood pressure and the cause of the new alarm is low breathing rate) and it is necessary to ask for the 
doctor verification as shows Figure 2. With this algorithm it is possible to distinguish between two 
different sanitary emergence events and the alarm verification will be asked only when a new sanitary 
emergence event is detected in order to avoid repeated messages to the doctor.  



 
Figure 3. Decision algorithm  
 

C. System operation with alarm button activation 

In this section the process initiated by the activation of the alarm button is detailed. Current systems, that 
include an alarm button, use it to send an alarm to the caregivers, or to request help. However, in our 
system, we include the alarm button as an input of data after the doctor verification.  

The process performed by the activation of the alarm button is shown in Figure 4. If during the regular 
data transmission process, the patient feels sick and no alarm is communicated to him, he can use the 
alarm button to send his last vital signs to the doctor for an evaluation. The alarm button is used by the 
patient to indicate an abnormal condition that was not detected by the Smart Engine. The activation of the 
alarm button activates the transmission of current and previous data from DB directly to the doctor. At 
this moment the doctor has to verify if the data pattern indicates a sanitary emerge event or not. If the 
doctor considers that the data indicate a sanitary emergence event, that alarm is considered as PA and 
proceeds to communicate the alarm to the Smart Engine and tags the data as AD into the DB. In this case, 



no alarm is sent to the patient. Using this procedure, our system is able to recognize and prevent False 
Negative (FN) cases. However, if the doctor considers that the received data do not correspond to a 
sanitary emergence event, then the alarm is considered as a FPA and no further actions are taken. 
Although is not usual, it is possible that the patient can unintentionally activate de alarm button, so in 
these cases, the caregivers will not be advised.  

The decision algorithm presented in Figure 5 shows the procedure when the alarm button is activated. In 
this point, it is important to consider that some monitored patients can have mental diseases or other 
dysfunctionalities and may not be aware of the correct use of the alarm button and press it continuously. 

 

 Figure 4 Message flow diagram in case of alarm button activation  

To avoid continuous data exchange and continuous verification processes, the algorithm is able to discard 
the activation of the alarm button if it was already activated in the last 10 seconds and no further actions 
are taken. If the alarm was not activated in the last 10 seconds the system assumes that the patient is 
feeling sick and sends the data as Figure 4 shows in order to initiate the verification process. 



 

Figure 5. Decision algorithm in case of alarm button activation 

 

IV. ARTIFICIAL INTELLIGENCE SYSTEM APPLIED TO BIG DATA 

In this section, the artificial intelligence system is presented. Given a series of inputs that monitor the 
patient's health parameters, our system has to be able to detect certain circumstances that require sanitary 
intervention. 
 
Our system is based on inductive inference methods, that are able to anticipate the future based on past 
observed data. Our machine learning employs statistical techniques with the goal of enabling machines to 
understand the set of data. The system has been designed with a genetic algorithm, which can be applied 
to a wide variety of sensors and pathologies. The diagram of the developed machine learning system can 
be seen in Figure 6. In the following subsection, the 4 phases of our machine learning system are detailed. 
We select a case study focused on cardiopaty detection.  
 

A. Phase 1: Getting input data 

Input data in our system can be classified into four categories, three of them are obtained by the wearable 
sensors and the smartphone (health, activity and environmental parameters) and the last is the alarm 
button input: 
 

• Health parameters: These sensors obtain data from human body activity directly related to the 
human health to be monitored. Thus, they are the main input of the system. Typically, these 
parameters are Electrocardiography (ECG), body temperature, sweating, heart rate, oxygen 
saturation, photoplethysmography, blood glucose, blood pressure or respiration rate. Our study 
case is focused to cardiopaty detection, thus, we used ECG and heart rate. 

 
• Activity parameters:  Health parameters are correlated to the body activity. For example, if we 

are running, heart rate and respiration rate increase immediately. Using an accelerometer, we can 
know if the patient is standing, walking, running, etc. Using a pedometer, we can measure the 
amount of activity. 

 



• Environment parameters: Other sensors can measure several parameter of the environment in 
which the patient is located. These parameters can also affect the health parameters. For 
example, we can be interested in knowing if the patient is at home or at the street, the 
environmental temperature, or if it is day or night. For this purpose, we incorporate a location 
sensor, a thermometer and a real-time clock into the system. 

 
• Alarm button: This input is operated by the patients when they have a health problem. The 

medical service is warned, even if no triggers are detected. The data captured before the press 
can be of great help in the training phase. 

 
Figure 6. Machine learning diagram 
 

B.  Phase 2: Feature extraction 

Body sensors can obtain very much information. Instead of working with raw data, it is more convenient 
to process this data in order to extract the relevant information and make the learning process easier. 
Features are values, derived from initial data, intended to be informative and non-redundant, facilitating 
the learning process and the generation of the models.  
 
In our system, several input parameters can be passed to the next phase without pre-processing. For 
example, we can use heart rate, pedometer and temperature. However, other parameters must be 
transformed into a more understandable form. Below we describe the obtained features: 
 

• Arrhythmia: There are many works that describe how to detect arrhythmia pathologies from the 
ECG. In our system, we use an arrhythmia classificatory similar that described in [33]. For 
training the models we use the MIT-BIH database [34]. 

 
• Type of activity: Using an accelerometer we can detect the activity of the patient. Possible 

values for this feature are: standing, walking, running, cycling, driving or sleeping. Other 
sensors, like heart rate, can help to detect this feature [33]. 

 
• Place: The location of the patient can be relevant for the system. A location sensor gives us some 

position coordinates. However, a more concrete place can be more informative for the system. In 
a domestic implementation we can differentiate three places: home, outdoor, indoor. In a 
hospital implementation we can differentiate: patient room, WC and rest room of the hospital. 
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C. Phase 3: Learning  

As an initial learning phase, we propose a deductive learning method, using a system based on rules. The 
expert’s knowledge is directly included in the system through a series of decision rules. In order to make 
this rules we mainly consider the arrhythmia notification and, in some cases, the hearth rate and the type 
of activity. 
 
Even when the previous method works adequately, the process to set the umbral where the alarm must be 
triggered is a difficult process. It is necessary to consider many examples to be able to decide the best 
value. 
 
Furthermore, an expert can only consider a limited set of inputs. The time of day or the patient's location 
can be invaluable in order to establish a rule. Because of those reasons, we consider that an inductive 
method can obtain better results than the one based on rules. 
 
For this purpose, we use a multilayer perceptron (MLP). It is a feedforward artificial neural network. For 
training the perceptron, we use the data of different alarms, where it is annotated manually if it is a false 
positive or not. Data taken from situations with no alarm are also used. In a no supervised learning 
process, we use additional inputs, like pedometer, place, temperature and time. 
 

D. Phase 4: Prediction 

When the system is running, both the rule based and the inductive methods run in parallel. We may use 
one or other information depending on the degree of training of the system. We can configure the system 
to trigger the alarm when any of the learned cases happens. Even if no alarms are triggered, all patient 
data is stored for improve the training and for monitoring purposes. 

 

V. EXPERIMENTAL RESULTS 

In this section the obtained results are shown. First, a description of the simulated scenario is described. 
Then, the results of the simulations are presented and the suitability of 5G network is discussed. Finally, 
the verification of our proposed intelligent system is demonstrated.  

A. Scenario  

This subsection describes the experiments in 4G/LTE and 5G wireless network technologies. We have 
designed a topology that includes the wireless network, a high-performance HTTP, reverse proxy, and 
IMAP/POP3 proxy (NGINX) server and mobile users. The NGINX server is configured to receive HTTP 
requests. Specifically, we generate two types of traffic; TCP -based network traffic and ICMP -based 
network traffic. Moreover, tools such as Iperf, ping, curl and wireshark are used to generate traffic with 
different packet sizes and to activate the measurement of the Quality of Service (QoS) parameters. It 
reports the bandwidth, delay, packet loss and jitter.  

Therefore, in our experiments, we select several sizes of packets. Moreover we took measurements for 
different number of packets: 10 packets, 100 packets and 1000 packets. On the other hand, we generate 
arbitrary TCP traffic to demonstrate the available throughput of each studied technology.   

In order to evaluate the performance we send data packets from the mobile users to the database server 
through the 4G or 5G base stations. They have different available bandwidth, delay and packet loss ratio. 

B. 5G and 4G simulation results 

The simulation of the traffic between the client and the server using 4G and 5G technologies is presented 
in this subsection. Different tests are done in order to evaluate the performance of both networks when the 



number of users increases. The evaluated parameters are round trip time, bandwidth and packet lost.  

In the first experiment, the 4G network parameters includes; 4Mbps of available bandwidth, a delay of 20 
milliseconds and 0.001% packet loss rate. The network parameters of the 5G are 1000Mbps with a delay 
that ranges from 1 to 5 milliseconds with rate of 0.0001% packet loss. Mobile users upload data to the 
central server through different wireless characteristics. Moreover, we generate sensor data traffic from 
many mobile users, which range between 100 and 1000 users. These mobile users separately send data 
traffic, with different packet sizes, to the server. Figure 7 shows that 5G connection wastes less round trip 
time than 4G connections. On the other hand, the average delay in 5G for high-connected mobile users is 
less than 10ms. Otherwise, in 4G the delay has higher value. When there are 1000 users, for 10 packets 
we obtained 30ms, for 100 packets there was more than 40 ms and for 1000 packets about 80ms.    

 
Figure 7. Round trip time of packets in 4G and 5G base stations. 

In the second experiment, we set the 5G network parameters as: 1000Mbps of bandwidth, delay variation 
between 1 and 5 milliseconds and packet loss rate of 0.1%. In 4G, there is a bandwidth of 20Mbps, a 
delay variation between 2 and 40 milliseconds and a packet loss rate of 0.1%. The results of this test are 
shown in Figure 8. It shows number of lost packets per sample when data is sent using these technologies. 
On the one hand, we observe that in 4G all cases have a packet loss and these rates are increased when the 
number of mobile users increases, because the traffic increases. These cases present higher number of 
packet loss than 5G. However, in 5G technology there are more packets lost in the cases when there are 
more users sending data to the central server as shows the yellow line, range from 700 to 1000 users. 
Therefore, packet loss in 5G is smaller than the range of packet loss in 4G.    



 
Figure 8. Packet loss rate in 4G and 5G technologies. 

Figure 9 shows the number of packets retransmitted in the TCP connection experiment. We observe what 
happens when a mobile user sends data in both 4G and 5G technologies. In 5G, the variation of the 
throughput ranges from 1000Mbps to 500Mbps, the delay varies between 1 and 5 milliseconds and the 
packets lost rate is 0.01%. In the 4G technology, the throughput ranges from 20Mbps to 40Mbps, the 
delay varies between 2 and 40 milliseconds and the packet loss rate is 0.01%. The blue line of Figure 5 
shows the number of packets retransmitted by the TCP protocol. In 4G, the number of packets 
retransmitted is higher than the retransmission in 5G as depicted in the graph, the red line at the 35th 
second has only one packet lost. 

 
Figure 9. Packet retransmission in 4G and 5G. 

In the last experiment, we generate arbitrary traffic in both, 5G and 4G technologies. They have set the 
following parameters. 5G has 1000Mbps, delay from 1 to 5 milliseconds, with 0.0001% loss rate and 4G 
has 200Mbps, delay from 2 to 40 milliseconds, with 0.001% loss rate. Figure 10 shows the network 
throughput of both technologies for different amount of mobile users. The green line indicates the 
throughput of 5G. It shows that the throughput has been decreased with the increase of traffic nodes but, 
the range of throughput has not reached to threshold. On the other hand, the blue line arrives the threshold 
point when more than 300 users are connected to the base station sending data in the 4G network.  



 
Figure 10. 4G and 5G throughput. 
 

C. Machine learning experimental validation 

In this section the validation of our intelligent system is shown. To validate the system, we implemented a 
prototype focused in the detection of cardiopathies. Cardiopathies are one of the most important chronic 
diseases to monitor because its serious effects on the health and the possibility of death after a heart 
attack. Moreover, it is simple to monitor the cardiac signs of a patient. 
 
In order to perform the experimental validation of our systems, we have carried out a series of 
experiments. We have used as training corpus. The data was captured from 6 patients that suffered 
cardiological pathologies. The acquisition was performed from 7 to 12 days, depending on the patient. 
The data has been manually marked by medical experts. In total, 132 relevant events (arrhythmias, 
taquicardies, etc.) were obtained. Not all of those have to mean an alarm for the medical services. We 
estimated that only between 5 to 10% of those events correspond with an urgency that should be notified. 
 
In order to train the system, we used the data from one patient for testing and the other 5 patients for 
training. This procedure is repeated for the 6 patients. Figure 11 shows the results of the neural network 
(NN) and its comparison with the rule based (RB) system. Using the RB system we obtain a correct 
prediction in 80% of the cases. Using the NN the results improve up to 85%. This improvement can make 
a better fitting of the thresholds. In order to improve the prediction, we introduced new inputs. Adding the 
feature activity, the correct prediction, we have a successful prediction rate of 87%. Adding the feature 
place, temperature or time, no improvement was observed. 



 
Figure 7. Results of the neural network and its comparison with the rule-based system. 
 

VI. CONCLUSIONS 

The need of continuous patient monitoring is a well-known reality. However if we pretend to have a 
smart monitoring with high speed data exchange and fast response, 5G networks are needed. In this paper, 
we develop architecture and protocol for smart continuous eHealth monitoring. We create an intelligent 
system, which is able to diagnose patients and generate alarms based on artificial intelligence analysis 
over Big Data. We simulated 4G and 5G technologies in order to demonstrate the need of 5G technology 
in our architecture. 4G technology does not support huge traffic load especially when the number of users 
simultaneously send request data through the base stations. Moreover, high delay and many packet 
retransmissions produce high latency of packets, which affects the users because they will get late 
response of the requests. We also verified the developed intelligent system using a case study based on 
cardiac diseases.  

The main advantages of our system are: 

• The system can be triggered by an alarm button or by the detection of AD by the Smart Engine. 
• Two message flow diagrams and two decision algorithm have been designed for the proper 

operation of our system in case of data reception and in case of alarm button activation.  
• The Smart Engine learns from PA and FPA by asking the doctor about the verification of the 

gathered data. 
• The use of an alarm button by the patient, followed by the positive doctor verification will help 

our system to learn from FN.  
• The first algorithm created distinguishes when a new sanitary emergence event starts for its first 

time (it is not one previously repeated some seconds ago) from one that has been caused by other 
reason.  

• The second algorithm is able to detect the misuse of the alarm button and discard the alarm 

Our future work is focused on training the intelligent system with the data of each patient separately. We 
also want to include different types of alarms depending on the severity of the alarm. Moreover, a 
summary of different wearable devices and a study of their suitability for specific diseases monitoring 
will be done. Furthermore, we would like to let our system send recommendations to the patients when an 
alarm is sent (for example, low blood pressure is detected, the system sends a recommendation like 
“increase the liquids ingestion and avoid the abrupt changes of position”.  
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