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ABSTRACT. Adsorption of H2/D2 on graphene (G), graphene oxide (GO), single walled carbon 

nanotube (SWCNT), N-doped graphene [(N)G], and a sample of active carbon (C) has led to the 

detection of HD, indicating dissociative chemisorption of hydrogen on the surface of the 

material. The amount of HD detected follows the order G>SWCNT>GO~(N)G~C, G giving 

about five-fold higher H2/D2 adsorption and HD exchange level than SWCNT and about ten-fold 

larger values than that of the other samples. Quantum-chemistry calculations modeling a carbon 

atom vacancy on a G cluster estimates an activation barrier for H2 dissociation of ca. 84 kJ/mol 

for a mechanism involving under coordinated carbon atoms at the defect site. 

http://www.itim-cj.ro/
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1. Introduction. 

For the sake of sustainability, there is much current interest in developing graphene and 

related materials as metal-free catalysts.1-4 The use of graphenes as carbocatalysts could be an 

alternative to catalysts containing noble or critical metals. While ideal graphene is devoid of 

active centers, the presence of carbon vacancies, oxygenated functional groups or heteroatoms as 

well as the periphery of graphene sheets can act as catalytic sites for certain reactions.3 One of 

the targets in the area of carbocatalysis by graphene is to show that, by engineering of the 

material and generation of defects, active sites of the required nature can be produced in high 

density in graphenes to increase their activity achieving catalytic performances in the range of 

those typically promoted by transition metals.  

Although there are a few scattered examples of organocatalysts,5-7 hydrogenations of 

multiple bonds is commonly performed using transition metals, frequently noble and precious 

metals, as catalysts.8, 9 Recently, it has been reported that defective graphene can act as 

carbocatalysts for hydrogenation of alkenes, acetylene and nitro groups.10 In these 

hydrogenations, the key elementary reaction is activation of the strong, apolar H-H bond. 

Previous thermogravimetric data reported in the literature have found that the H2 uptake of 

thermally exfoliated graphene (with a specific surface area of 500 m2×g-1) is about 0.5 wt% at 77 

K and 1 bar.11 This low H2 uptake indicates that the interaction between graphene and H2 should 

be very weak and it has been determined that the isosteric heat of H2 adsorption on graphenes is 

about 5 kJ×mol-1.12  

Considering the interest of H2 storage, modified graphenes have also been prepared with 

the aim of increasing the H2 adsorption capacity of these materials.13-15 However, although 
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formation of graphane by hydrogenation of graphene has attracted considerable attention,16, 17 the 

absence of studies proving the possibility to promote H/D isotopic exchange by graphenes is 

remarkable. 

Considering the importance of hydrogenation, both from the fundamental and industrial 

point of view, it is of interest to gain understanding on how graphenes can catalyze 

hydrogenations, particularly, how molecular hydrogen can become activated by defects on 

graphenes and what can be the active sites for this process. This study presents the results of an 

experimental study of the occurrence of H/D scrambling and H2 activation on various graphene-

type materials, combined with theoretical calculations of how this scrambling can occur by the 

interaction of H2 with carbon atom vacancies. 

Catalysts. 

The list of materials submitted to evaluation with regard to their activity in H/D isotopic 

exchange, including their origin and main physicochemical characterization are provided in 

Table 1. The series includes a defective graphene (G) derived from pyrolysis of alginate at 1000 

oC that was found in our previous study among the most active C-C multiple bond hydrogenation 

catalysts.10 G contains a residual percentage of O that was determined by chemical analysis as 

well as carbon vacancies generated by CO2 evolution during the pyrolytic formation of G. 

Raman spectroscopy shows the presence of the 2D, G and D bands characteristic of this type of 

defective graphene with an IG/ID intensity ratio of 1.13, that gives a quantitative estimation of the 

presence of defects. 

Another related sample [(N)G in Table 1] was obtained by pyrolysis of chitosan at 1000 oC and 

besides residual O, (N)G also contains N in its composition. For the sake of comparison the 
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study includes also a graphene oxide (GO) obtained from graphite by Hummers oxidation to 

graphite oxide and subsequent exfoliation. In the related precedent, it was found that GO was 

unable to promote C-C hydrogenation.10  

The series of carbocatalysts also includes a sample of single walled carbon nanotube 

(SWCNT). In principle SWCNT could behave similarly to graphene in those cases in which the 

curvature of the wall does not play a role. There are in the literature abundant examples showing 

a similar behavior of SWCNT and graphenes as carbocatalysts.3, 4 However, since the 

preparation procedure and precursors of SWCNT are totally different to those of graphenes, 

other factors such as metal impurities present in SWCNT due to the incomplete removal of the 

large catalyst amount, the wall curvature and aspect ratio or the lower O content of SWCNT 

compared to G have to be considered as potential sources of a contrasting behavior between G 

and SWCNTs.  

Other material that was included in the study is a commercial active carbon (C), whose 

structure and composition are ill-defined and different from that of 2D graphenes or 1D 

cylindrical SWCNT. Overall, the set of samples was selected to include not only an active 

hydrogenation catalyst of C-C multiple bonds as G, but also to determine the influence of N-

doping and the presence of O, as well as to allow comparison with SWCNT and active carbon 

for the H/D isotopic scrambling. G and (N)G have been characterized in the literature18, 19 as it 

happens also for GO,20, 21 while SWCNT and C are commercial samples. The main analytical 

and textural data of the materials tested are provided in Table 1. 
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Table 1. List of carbon containing materials used in the present study, their preparation 

procedure and main analytical and textural properties. 

Material Preparation 
Composition, 

wt.% 

Surface area, 

m2g-1 

G Pyrolysis of alginate at 1000 oC O: 15 250 

GO 
Hummers oxidation of graphite 

and exfoliation 
O: 46 246 

(N)G Pyrolysis of chitosan at 1000 oC N: 5; O: 13 257 

SWCNT  O: 3 1014 

C NORIT A SUPRA, purchased O: 17 952 

 

Isotopic H/D scrambling 

H/D exchanged experiments were performed in a capillary reactor that was connected 

through a three-way valve to a quadrupolar mass spectrometer (MS) acting as detector. A 

diagram of the setup used is presented in the experimental section. Comparison of the H/D 

exchange activity of the samples was made based on sample weight (see Table 2), although it 

should be noted that the specific surface area varies depending on the material (see Table 1). 

Initially, the samples were pretreated at 200 oC under Ar flow for sufficiently long time until no 

signal is detected in MS, this lack of MS signal taken as indication that the surface of the 

material has been cleaned up. Then, each sample was submitted to a series of consecutive steps 

of which the initial ones were performed at 25 oC and the last ones at 200 oC. The steps consist in 

exposing the clean sample to pulses of D2, then to H2 and finally Ar purging (Figure 1). Each 

step was prolonged for the required time to have a stationary response in MS for 5 min. The 
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experimental section provides the detailed list of all the steps to which the samples were 

sequentially submitted. 

MS not only allows continuous monitoring of H2, HD and D2, but also provides a quantitative 

value of the concentration of each molecular hydrogen isotopomer, being possible to calculate 

the amount adsorbed or desorbed in each step based on the integration of the signal 

corresponding to each isotopic hydrogen and the known gas flow. As an example Figure 1 shows 

the signals measured for G during the change from D2 adsorption to H2 adsorption showing the 

temporal evolution of H2, HD and D2. Figure 1 gives an indication of the signal to noise ratio and 

the accuracy of the measurements of the amounts of HD formed. A complete set of data of 

adsorption/desorption of H2 and D2 and the isotopic exchange level is summarized in Table 2. 

Importantly, blank controls in the absence of catalyst show no H/D exchange due to any possible 

activity of the reactor walls upon simultaneous admission of H2 and D2, this indicating that the 

signal at 3 amu corresponds really to HD formed by H-H bond activation. 
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Figure 1. Temporal MS profiles of H2, HD and D2 monitored for G exposed at room 

temperature to a flow of D2 and, then, H2. 
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Control measurements showed that the amount of H2 or D2 adsorbed on each sample at two 

temperatures is very similar, indicating that both isotopomers exhibit the same adsorption 

behavior. Importantly, as it can be seen in Table 2, the amount of D2 adsorbed on each sample 

after a pulse of the same amount of D2 is very different depending on the material. The amount 

H2/D2 adsorbed follows the order G>SWCNT>GO,(N)G, C. G adsorbs about five-fold more than 

SWCNT and about ten-fold higher than the other samples. Importantly, H/D exchange was 

observed for all the samples based on the formation of HD, following the same relative reactivity 

order for H/D exchange as the one observed for adsorption, G forming HD amounts about five 

times higher than SWCNT and about ten times more active than GO, (N)G or C. This 

coincidence gives a hint suggesting that the adsorption sites are also responsible for activation of 

the H-H bond. Quantification of the amount of HD formed at 25 oC in G was 0.1 ml×m-2, while 

at 200 oC the amount of HD measured was 0.135 ml×m-2. 

 

 
Table 2. Data of H/D exchange activity for the different carbon materials under study. 
 
Chemisorption 

stepa 

 

 

Sample 

G SWCN GO (N)G C 

mL/m2 mL/g mL/m
2 mL/g mL/m2 mL/g mL/m2 mL/g mL/m2 mL/g 

V  H2
b 0.060 15.08 0.013 3.230 0.004 0.900 0.007 1.643 0.006 1.399 

   HDc 0.130 32.48 0.029 7.140 0.003 0.650 0.014 3.437 0.014 3.456 

 D2
d 1.788 446.9 0.332 83.00 0.197 49.25 0.177 44.25 0.214 53.46 

VI  H2
b      -     - 0.013 3.180      -     -      - 1.640 0.005 1.326 
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    HDc 0.100 25.06 0.021 5.360 0.013 3.200 0.007 2.642 0.013 3.167 

 D2
d 1.610 402.6 0.338 84.44 0.198 49.56 0.011 42.11 0.170 42.46 

VIII  H2
b 1.975 493.7 0.376 94.06 0.206 51.60 0.182 45.40 0.172 42.88 

   HDc 0.135 33.84 0.030 7.390 0.008 2.040 0.014 3.535 0.015 3.780 

 D2
d 1.843 460.8 0.358 89.58 0.207 51.83 0.189 47.35 0.253 63.26 

IX  H2
b      -     - 0.012 2.960      -     - 0.006 1.486 0.005 1.234 

   HDb 0.115 28.65 0.022 5.490 0.012 3.030 0.011 2.737 0.013 3.166 

 D2
c 1.832 457.9 0.342 85.44 0.180 45.12 0.171 42.78 0.155 38.74 

 
a The complete sequence of steps (desorption, adsorption, etc.) to which the samples were 
submitted is indicated in the experimental section: Step V) Injection of D2 in Ar at 25 oC; Step 
VI) The flow of D2 is stopped and a stream of Ar is flushed at 25 oC; Step VIII) Injection of D2 
in Ar at 200 oC; Step IX) Injection of D2 is closed and is followed by its desorption in Ar at 200 
oC; b amount formed during the whole step quantified by MS; c Amount adsorbed in the material 
during the whole step quantified by MS. 

 

Theoretical calculations. 

The experiments probing the activity of G to promote H/D exchange were complemented with 

DFT calculations determining a possible mechanism for H2 activation, the corresponding 

transition states and the structure of chemisorbed H2 on a G model having a C atom vacancy. 

Carbon vacancies have been widely deemed as catalytic sites due to the existence of dangling 

bonds.3 

The first reaction pathway explored corresponds to the chemisorption of molecular hydrogen 

on a carbon atom vacancy graphene model where H2 approaches the site perpendicular to the 

graphene surface. In this pathway only one H atom of H2 attacks a carbon atom peripheral to the 

vacancy (Figure 2, top), minimizing the unfavourable interaction of two H atoms approaching 
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the G surface at the defect site. The results for the H2 dissociation on the graphene model 

calculated with the functional PBE1PBE and the basis set 6-311+G(d,p) are shown in Table 3 

and Figure 2. 

 

 

Table 3. Calculated (PBE1PBE/6-311+G(d,p)) relative energies (kJ/mol) and geometry (Å) of 

the reactants, products, and transition state of the H2 dissociation on a vacancy defect of a cluster 

of graphene as indicated in Figure 2. 

         Reactants     Transition State Products 

 C-H 3.07        1.46, 1.61             1.11, 1.11 

 C-C 1.92            1.89                1.87 

 H-H 0.76           0.96                     1.92 

      Energy 0.0                124.1                 -67.7 

 

A high activation energy of 124.1 kJ/mol was estimated. The adsorption of H2 in the graphene 

surface is very weak, as shown by the large H2-graphene distance of 3.07 Å (Table 3), which 

means that H2 is weakly activated, and hence the large uphill energy until the transition state is 

reached. 
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Figure 2. Calculated (PBE1PBE/6-311+G(d,p) geometries of the: reactants (top); transition 

state (middle); and products (bottom), corresponding to the reaction of dissociation of H2 on a 

defective graphene surface. The highlighted (dashed line) relevant distances are: d(C-C) = 1.92 
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Å, d(C-H) = 3.07 Å, d(H-H) = 0.76 Å (top); d(C-C) = 1.89 Å, d(C-H) = 1.46, 1.61 Å, d(H-H) = 

0.96 Å (middle); d(C-C) = 1.87 Å, d(C-H) = 1.11 Å, d(H-H) = 1.92 Å (bottom). 

 

The influence of the basis set was investigated by making new calculations using the less 

sophisticated 6-31G(d,p), without diffuse functions, obtaining an activation energy of 157.8 

kJ/mol. This higher activation energy is an expected result since the inclusion of diffuse 

functions gives more capability to the carbon atoms to form certain bonding with the incoming 

H2 through the unoccupied orbitals that are better modelled when including diffuse functions. 

The reaction products (Figure 2, bottom), show a C-H bond which can be easily activated for 

further reaction due to two main reasons. One of them is that the C-H bond is perpendicular to 

the graphene plane, far from the equilibrium geometry where a hybridisation for the 

corresponding carbon in between sp2 and sp3 can be expected. The second reason is that, in these 

formed C-H bonds, the two hydrogen atoms are at a distance of 1.92 Å, this implying a certain 

H-H bonding, weakening the C-H bonds. Accordingly, the newly formed C-H bonds after H2 

dissociation should exhibit an enhanced reactivity that will facilitate hydrogenation of upcoming 

reactants. 

Notably, when the same calculations are repeated allowing the graphene model to curve, it was 

found that the transition state becomes relaxed by resembling the convex surface of a SWCNT 

and not longer a flat graphene surface (Figure 3). The convex curvature is responsible for a 

shorter C-C distance (1.66 Å) than in the previous case (1.89 Å, Figure 2). This leads to a small 

elongation of the H-H bond of the hydrogen molecule in the transition state (Figure 3), making 

less favorable the interaction with both C atoms to begin the formation of the C-H bonds, all of 
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this resulting in an earlier transition state, giving a lower activation barrier of 102.3 kJ/mol. This 

result, obtained with the less accurate basis set, 6-31G(d,p), should be compared with the 

activation barrier value of 157.8 kJ/mol obtained for the same basis set in the flat surface. This 

comparison indicates a clear reduction of the activation barrier due to the curvature of the 

surface. While this curvature is unrealistic for graphene sheets because it would require a 

considerable distortion, calculations with this model indicate that H/D exchange should be faster 

for carbon nanotubes, thus, contributing to explain the higher reactivity of SWCNT in this 

reaction compared to GO, (N)G and C as shown in Table 2 compiling the experimental values 

for H/D exchange. 

 

Figure 3. Calculated (PBE1PBE/6-31G(d,p) geometry of the transition state of the H2 

dissociation reaction on a defective graphene surface. Unlike Figure 2, in this reaction path the 

borders of the graphene model were allowed to curve. Relevant distances: d(C-C) = 1.66 Å, d(C-

H) = 1.47, 1.48 Å, d(H-H) = 0.99 Å. 
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A second reaction path has been explored in which the H2 molecule approaches two different 

carbon atoms in the same vacancy, this resulting in a different C-C distance (Table 4). Figure 4 

presents the geometries of the transition state and products. The transition state obtained (Figure 

4, top) indicates an earlier transition state than in the case of Figures 2 and 3, as demonstrated by 

the smaller elongation of the H-H bond, 0.88 Å in this case, compared to 0.96 or 0.99 Å in the 

previous cases for flat or curved surfaces. This requirement of smaller H-H elongation is a 

consequence of the larger distance between the two relevant C atoms involved that are further 

apart to each other (2.69 Å in this case, against 1.89 Å in the previous mechanism), increasing 

their affinity to create C-H bonds due to the lower coordination of the two active C atoms. For 

this second pathway the activation barrier is 83.9 kJ/mol (Table 4). However, on the other side, 

the C-H products seem more stable than in the previous path, this making less favourable the 

upcoming isotopic H-D exchange. This second pathway appears as more reasonable considering 

its lower activation energy, which suits better with the occurrence of room temperature H/D 

isotope exchange observed experimentally. 

 

Table 4.  Calculated (PBE1PBE/6-311+G(d,p)) relative energies (kJ/mol) and geometry (Å) of 

the reactants, products, and transition state of the H2 dissociation on a vacancy defect of a cluster 

of graphene as indicated  in Figure 4. 

  Reactants Transition State Products 

 C-H   3.07  1.51, 1.76  1.11, 1.12 

 C-C   2.72  2.69     2.69 
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 H-H   0.76  0.88   1.48 

        Energy       0.0  83.9   -249.7 

 

 

Figure 4. Calculated (PBE1PBE/6-311+G(d,p) geometries of the transition state (top); and 

products (bottom), corresponding to the reaction of dissociation of H2 on a defective graphene 

surface. The highlighted (dashed line) relevant distances are: d(C-C) = 2.69 Å, d(C-H) = 1.51, 

1.76 Å, d(H-H) = 0.88 Å (top); d(C-C) = 2.69 Å, d(C-H) = 1.11, 1,12 Å, d(H-H) = 1.48 Å 

(bottom). 
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In summary, experimental evidence of the room temperature H-H bond dissociation on 

defective graphene has been provided by H/D isotopic exchange. It has been shown that H2 

activation depends on the nature of the graphene, the most active sample of the series being a 

defective graphene. DFT calculations suggest that H2 activation can take place at carbon atom 

vacancies, the activation energy depending on the way in which H2 approaches the site and the 

steric encumbrance for the allocation of C-H bonds. A short nonbonding C-C distance in the 

defect results in a high barrier and activated products, while a short C-C distance results in a low 

barrier and less reactive products. 

 

EXPERIMENTAL SECTION. 

Materials 

GO was obtained from commercial graphite by Hummers-Offeman oxidation with 

permangate, followed by exfoliation by sonication as reported.21 G and  (N)G samples were 

obtained by pyrolysis at 1000 oC in an electrical horizontal furnace powders of commercial 

alginic acid and chitosan, followed by exfoliation by sonication of the resulting graphitic 

carbonaceous residues.19 SWCN and AC were commercial samples.  

Isotopic H/D exchange 

Isotopic H-D exchange measurements were carried out in a home-made isotopic 

hydrogen-deuterium (H/D) exchange setup whose diagram is shown in Figure 5.  
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Figure 5. Schematics of the home-made set up for isotopic H/D exchange setup used in the 

present study: 1,2,3, - electromagnetic taps, 4,5,6,- flow controllers,7- electric oven, 8-reactor, 9 

–capillary, 10- three way tap, 11- Q MS mass quadrupolar spectrometer (Pfeiffer Vacuum). 

The samples were introduced in a chromatography-like column reactor and pre-treated 

under a 50 cm3/min argon (99.999% purity) flow at 300 oC till MS shows that the sample does 

not desorb any impurity. Then the reactor was cooled at the measurement temperature and pulses 

of 2 cm3/min of hydrogen (99.9998% purity) or deuterium (isotopic purity 96 at.% of D) were 

injected in the argon flow. The process was monitored following the evolution of the 2(H2), 

3(HD) si 4(D2) mass peaks. A full experiment consisted in a series of consecutive steps 

numbered from I to XI. The steps were the following: I – Degassing the samples under the argon 

flow (where mainly the desorption of the physisorbed water is monitored); II – D2  is injected in 

the Ar flow taking place the chemisorption of this isotope;  III – Injection of D2 is stopped 

concomitantly with the  admission of H2 in Ar (where a simultaneous desorption of D2 and 

chemisorption of H2 takes place); IV – Injection of H2 is closed and continues the desorption of 

physisorbed H2; V – Injection of D2 in Ar with the aim to control the amount of H2 that is 

chemisorbed on the surface and of the H2 substituted by D2; VI –Injection of D2 is closed and is 

followed by its desorption in Ar; Experiments VII – X were identical with experiments III-VI 
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except that the reactor temperature was 200oC; XI – Admission of H2 was stopped and the 

reactor cool down at 25oC flow of Ar. Every step was considered ended when after at least 5 min 

the MS intensity of the lines assigned to the three components remained unchanged. 

Quantification of the hydrogen isotopic compounds (H2, HD, D2) was made by integration 

of the curves collected from the MS analyses vs. time, which multiplied by the flow of hydrogen 

(or deuterium) entered in the reactor provides the volume adsorbed (Vads) or desorbed (Vdes) for 

each isotopomer on/from the investigated samples (Eqs.1-2).  

Vads= 𝑄𝑄𝐻2(𝐷2) ∫ (1 − 𝐼(𝑡)
𝐼𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
0 )𝑑𝑡          (1) 

Vdes= 𝑄𝑄𝐻2(𝐷2) ∫
𝐼(𝑡)
𝐼𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
0  𝑑𝑡              (2) 

where 𝑄𝑄𝐻𝐻2(𝐷𝐷2) – is the hydrogen, and deuterium flow, respectively. The normalized volumes were obtained by 

dividing the calculated Vads and Vdes values to the mass of the samples and surface areas. 

 

Computational methods. 

Long-range interactions, such as those involved in physisorption, are poorly described in most 

of the presently available exchange-correlation functionals within Density Functional Theory 

(DFT). It is known, however, that no DFT functional accurately describes all the characteristics 

of molecular interactions, in particular van der Waals (London dispersion) interactions, which 

are, in part, due to electronic correlation. 

New DFT functionals where an improved description of the long range dispersion interactions 

is included22 have been employed in this study. Current GGA (generalized gradient 

approximation) functionals, that take into account the gradient of the electron density at the point 

of evaluation, such as PW91 or PBE, seem to perform reasonably well, while LDA functionals 
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seem not appropriate for the treatment of systems dominated by London dispersion forces. PW91 

and PBE are two of the GGA type functionals which give better results for weakly bound 

systems because they are free from some of the repulsive contributions (both functionals satisfy 

the Lieb-Oxford bound) that make other GGA functionals unable to capture weak interactions.23 

In this case, PBE0 has been used,24 together with the 6-311+G(d,p)25, 26 basis set, within the 

Gaussian0927 software package.  
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