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Abstract: Seven Romanian salt-tolerant species were histo-anatomical investigated. These species 
have been classified by the authors of the present study as “amphibious” halophytes, related to the field 
observations and anatomical considerations. All the analyzed taxa present bulliform cells at the foliar 
epidermis level. Despite the fact that there are different interpretations regarding the bulliform cells role 
and functional significance, we correlate these structures with the ecological factors, salinity and, 
respectively, drought conditions. 
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Introduction 

 
 There are so many definitions of halophytes, but often they are defined as those 
species that are able to survive and reproduce in environments where the salt concentration 
is around 200 mM NaCl or more [24]. As heterogeneous complex ecological class, an 
ecological interpretation of some anatomical features is far away to be easy to make. 
Besides many controversial discussions, it seems however like anatomical and 
morphological features typical of halophytes are usually considered to be adaptations to 
salinity [45]. 
 In a nowadays, salt stress is the most intensely studied of all abiotic stress types, 
because the salinity is considered the main constraint for the agriculture worldwide [41; 42; 
39; 6; 36; 50; 5]. As a rule, salinization and aridization are complementary phenomena, 
through some common pedologic processes, as well as by the fact that stress caused by 
salinity is both dehydration stress and ionic stress [51]. In fact, drought and salinity are two 
major environmental factors determining plant productivity and plant distribution. These 
two major stressful factors affect more than 10 percent of arable land; desertification and 
salinization are rapidly increasing on a global scale decreasing average yields for most 
major crops by more than 50 percent [8]. Plant responses to salt and water stress have much 
in common. Salinity reduces the ability of plants to take up water, and this quickly induces 
reduction in growth rate, along with a suite if metabolic changes identical to those caused 
by water stress.   
 Bulliform cells are structural features found especially on species included in 
Poaceae [19; 29; 30; 31; 60; 4; 44; 55; 34; 35; 25; ], Cyperaceae [18; 7; 38; 39] and 
Juncaceae [18]. Bulliform cells, sometimes named in various ways by different authors 
over time, are large, regularly with thin walled cell. Despite that they were recognized for 
many years, their ecological significance in plant adaptation to salinity remains unclear.  
 It is well know that many leaves are capable of rolling up in dry, unfavourable, 
conditions and reopening again under conditions when there is no water stress, have 
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special, thin-walled water-containing cells enable them to make these movements [16]. 
These are the bulliform or motor cells, which under conditions of water deficit lose turgor 
and thus constrict in upon themselves, causing lamina to fold or roll inward edge to edge 
[17]. 
 Although bulliform cells also occur on non-halophytic monocotyledons species – 
suggesting probably an origin in a common ancestor – their presence on species exposed 
both on drought and salinity conditions requires a detailed and prudent analysis in 
accordance with environmental factors. 
 The aim of this work is to find some correlations between bulliform cells occurring 
on halophytes and ecological conditions of saline habitats.  
  

Material and methods 
 

 The sample material subjected to our analysis is represented by leaves of  
halophytes, collected from saline habitats, in plants anthesis phenophase. The investigated 
taxa that were anatomically investigated are: Bolboschoenus maritimus (L.) Palla ssp. 
compactus (Hoffm.) Dobrow, Carex distans L., Carex vulpina L. (Cyperaceae), Juncus 
gerardi Loisel. (Juncaceae), Agrostis stolonifera L., Alopecurus arundinaceus Poir. and 
Puccinellia distans (L.) Parl. ssp. limosa (Schur) Jáv (Poaceae). J. gerardi and B. 
maritimus were collected from saline areas on Valea lui David (Iaşi), and other taxa - from 
Valea Ilenei (Iaşi), during years of 2007-2008.  
  With reference to halophytic character of these species and considering also the 
categories in which these halophytes may be included, it goes without saying that here is no 
uniformity in this question. Anyway, these halophytes have been classified as amphibious 
halophytes [27], in a classification system which is based on halophytes anatomical features 
and their relation with ecological factors. The above mentioned taxa are regularly 
hygrophylous species, but in some circumstances the habitats where they live can be 
exposed to more or less prolonged drought short seasons.  
 Thus, B. maritimus is a neohalophyte species [12], preferential one [58], being 
included in the second category by Prodan [47]; C. distans is a preferential halophyte [58], 
mezohygrophyte, facultative halophyte [14]; C. vulpina was characterized as a 
neohalophyte [12]; J. gerardi was described as a euhalophyte [11], preferential halophyte 
[58], mezohygrohalophyte [14], included in the first category of Prodan [47]. A. stolonifera 
is a neohalophyte [12], supporting to salinity [58] and introduced in the first category by 
Prodan [47]; A. arundinaceus is a preferential halophyte [58], neohalophyte [12] and 
mezohygrophyte, facultative halophyte [14]. P. distans is considered a euhalophyte [11], 
preferential halophyte [58], first category including by Prodan [47]. It is obvious, 
considering the above exposed information that these taxa have been differently 
characterized by various plant biology researchers. For further explanations and comments 
regarding the terminology used by these botanists, different classifications and 
equivalencies between them, see the Grigore’s work [26]. 

For subsequent histo-anatomical investigations, the material was fixed and 
preserved in ethanol (70°).  
Sectioning of the leaf samples was made using a botanical razor and a microtome. The 
cross sections thus obtained have been subsequently subjected to the “classical” stages of a 
common histo-anatomical procedure: immersion in sodium hypochlorite for 20-30 min, 
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washing with acetic water and tap water, then staining: first with iodine green (for 1 
minute) and washing in ethylic alcohol (90°) bath then second with red carmine (for 20 
min.), washing with water and finally fixation in glycerol-gelatine.  

After obtaining permanent slides, micrographs have been taken using a NOVEX 
(Holland) photonic microscope, with a Canon photo digital camera. 
 

Results 
 

 After histo-anatomical analysis we found that all investigated taxa have bulliform 
cells, at epidermis level of the blade - if we are referring on Cyperaceae and Poaceae taxa – 
and the leaf sheath level – referring on Juncaceae species. These cells are regularly 
confined on upper epidermis, distributed in isolated groups or in long rows, forming bands 
of bulliform cells. 
 In Bolboschoenus maritimus, epidermis has isodiametric cells, the external cell 
wall being thicker than others and covered by a thin cuticle; here and there, some stomata 
could be also observed. In the midrib region, the epidermis presents larger cells, which 
remind the bulliform-like cell form. As we gradually are moving away from the midrib, 
bulliform cells become less prominent (Fig. 1).                     
 In Carex distans, the contour line of lamina has „V” letter general form, with 
largely opened two lateral parts, sometimes disposed even at the same level. The midvein is 
well protruding on lower surface of the lamina; at this level, the medial and the inferior 
epidermal cells have papillae like hair aspect, with thick wall cells. The upper epidermal 
cells are very big, forming a bulliform cells arch corresponding to the midvein (Fig. 2). 
  Carex vulpina has bulliform cells clustering in the midvein level, as in the case of 
previously mentioned species. They are forming a more restricted arch, regarding the 
number of cells (Fig. 3).  

 In Juncus gerardi, the upper epidermis of leaf sheath displays very large cells (Fig. 
4), with external wall cell a bit thicker than others. This kind of cells was not evidenced in 
the case of two other Juncus species: J. acutus L. and J. maritmus Lam. [13]; the first 
mentioned species has been collected from less wet sandy salinized soils, while the second, 
from more wet and salinized depressions, localized between maritime dunes of Sărăturile - 
Dobrogea. Contrariwise, the bulliform cells were observed on J. trifidus [57], a species 
collected from subalpine region of Ceahlău Mountains. 
 In Agrostis stolonifera, the bulliform cells (Fig. 5) are located in a small number at 
the bottom of some grooves (Fig. 6), having a variable depth; these grooves form, regularly, 
between the big vascular bundles. Moreover, these grooves are protected, in the top, by 
short protecting trichomes.                       
 Alopecurus arundinaceus has huge bulliform cells, disposed in clusters consisting 
of 3-5 cells (Fig. 7), at the bottom of small grooves (Fig. 8), localized between the 
mesophyll areas comprising vascular bundles.                        
  Puccinellia distans shows enlarged bulliform cells (Fig. 9), confined on upper 
epidermis, in the line of some grooves having various depth (Fig. 10).  
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Discussions 
 

We have underlined in the introductory part of this work that the function and 
ecological significance of these bulliform cells are still controversial and intensely 
discussed. 
 Haberlandt [28] included the Poaceae bulliform cells among motor, hygroscopic 
system of plants; the author stated that the leaves of many xerophilous grasses become 
folded, or curl up, when they are insufficiently supplied with water, in order to avoid 
excessive transpiration. Other botanists have also assigned a similar function of these cells, 
closely related with xerophytic environment value. Beal [7] called also these cells “blister” 
cells; according to him, when dry, these cells contract and aid in closing the leaf in two or 
three ways. When moist the leaf expands again. Sometimes, their role in leaves rolling in 
drought conditions is so intensely asserted, so authors such Mazel [38] refers to “cellules de 
plissement”, “appareil de plissement” or even “tissue d’articulation”, related to their role 
among some Carex species.  
 Brongniart [10] is among the first botanist which observed movements of leaves 
on a Poaceae species. Nothing is mentioned about bulliform cells, but it is interesting that 
the author was able to distinguish between this kind of movement and typical, motor 
movement of dicotyledons species. 

Duval-Jouve [19] has gone more deeply concerning the presence and the role of 
bulliform cells on Poaceae; moreover, he even proposed a classification system of grasses, 
according to the number and disposition of bulliform cells. This French botanist discerned 
exactly that the rolling movement of grasses leaves in drought conditions is different from 
that expressed on dicotyledons. The movement induced by bulliform cells is very slow and 
is involved in diminution of leaves transpiration surface.  

Kearney [33] identified bulliform cells on some grasses, observing that the 
margins of leaves become more or less involute, when the supply of water is small, 
becoming flat when moisture is plentiful. 

Britton [9] opined that the presence of bulliform cells, considered by him “water-
cells”, on grasses and sedges represent one of the most interesting and striking examples of 
special adaptations to xerophytic conditions. These cells are found at the bottom of the 
grooves of the upper surface of the leaf. The stomata are situated along the slopes of the 
groove and when the bulliform cells give up their water the grooves close up, thus 
preventing in a large extent the further escape of water through the stomata.  

Warming [62] considered that leaves’ rolling of Poaceae and Cyperaceae species 
represents a manner in which the transpiring surface is reduced. In these movements a part 
is played by bulliform cells (called by Warming “hinge-cells”) lying in furrows on the 
upper face of the leaves. These cells are deeper than the other epidermal cells and their 
cellulose walls are easily folded as the leaf curls. 

Fahn and Cutler stated that bulliform cells of grasses are a xeromorphic 
adaptation. Moreover, the bulliform cells were found to be more developed in desert 
ecotypes than in mesophytic ecotypes of some plants investigated [61], clearly suggesting 
that these cells are involved in plant adaptive response to water and salt stress. 

For other authors, these cells were considered as water storage [46; 20; 59] and 
can participate in the young leaf expansion. Their implication in leaf rolling and/or folding 
of mature leaves was discussed by some researchers [52; 32]. According to Esau [22], 
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during excessive water loss, the bulliform cells, together with or without colorless cells, 
became flaccid and enabled to leaf either to fold or to roll. Clayton and Renvoize (quoted in 
[2]), opined that bulliform cells favoured the light entrance in the mesophyll cells. In some 
species, bulliform cells were not actively or specifically related to unfolding and 
hygroscopic leaf movement, since they accumulated large amounts of silicon and their 
outermost walls might thicken and cutinize, becoming stiff [21]. 

It was shown that in water stress conditions, the activity of these cells become 
more intensely. For instance, Loudetiopsis chrysothrix and Tristachya leiostachya showed 
leaf rolling of mature and young leaves during water stress [2]. According to Moulia (1994) 
(quoted in [2]), the leaf rolling is a xeromorphic characteristic and has adaptive value, 
reducing light interception, transpiration and protecting the leaf from dehydration and 
overheating. This it would be a mechanism to minimize light exposition and water 
transpiration, thus keeping the stomata in a microclimate with higher humidity, preventing 
drought conditions [15; 54]. 

Other species exposed to water stress show, among different adaptations, 
bulliform cells, such as  Carex ligerica [56], Zea mays [48], common bean [53] and tomato 
[49]. 

Nawazish et al. [43] showed that on a species collected from xeric and saline 
habitat, Cenchrus ciliaris, the bulliform cells were well developed in severe drought; it was 
assumed that these cells are very crucial under moisture limited environments as these are 
responsible for leaf curling and ultimately checking water loss through leaf surface [1; 3]. 

But Ellis [21] suggested caution in assigning bulliform cells a role in leaf 
movement; Shields [52] described that the subepidermal sclerenchyma and other elements 
of mesophyll rather than bulliform cells contributed to involution in some xeric grasses.  

Our ecological short notes in the field sustain the above mentioned observations. 
Our investigated taxa are mainly hygrophilous, some of them being salt marshes species. 
The temporary characters of soil moisture and atmosphere humidity induce anyway the 
necessity of some xeromorphic adaptations, as a response to both water stress and salt 
stress. It was already stated that salt stress has a high dehydration component.  

 
Conclusions 

 
The results of our investigations, the ecological observations in the field and the 

interpretations made by many authors sustain the idea that bulliform cells are involved in 
the way that halophytes response to salt and water stress. These investigated taxa were 
nominated by us “amphibious halophytes”, because they regularly vegetate in wet habitats, 
but sometimes these environments could be exposed to drought conditions. It is an 
integrative way to see these bulliform cells as a logic adaptation to environmental factors. 

Anyway, an opened vision must be followed; we consider that some additional 
studies-mainly in experimental conditions - are required in order to obtain more exactly 
data regarding the role bulliform cells play in halophytes strategies.  
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Explanation of plates 
Micrographs of cross section through: 
 
Plate I: Fig. 1.  Lamina of  Bolboschoenus  maritimus  (X 200); Fig. 2.  Lamina of Carex 
distans  (X 200); Fig. 3. Lamina of Carex vulpina (X 200);  Fig. 4. Leaf sheath of  Juncus   
gerardi  (X 400); Fig. 5. Lamina of  Agrostis  stolonifera  (X 400); Fig. 6. Lamina of  
Agrostis  stolonifera  (X 200). 
Plate II: Fig. 7. Lamina of Alopecurus arundinaceus  (X 400); Fig. 8. Lamina 
ofAlopecurus arundinaceus  (X 200);  Fig. 9. Lamina  of Puccinellia distans  (X 400);  Fig. 
10. Lamina of   Puccinellia distans  (X 200). 
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