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The use of mixed oxide (MOX) fuel to partially fill the cores of commercial light water

reactors (LWRs) gives rise to a reduction of the radioactive waste and production of more

energy. However, the use of MOX fuels in LWRs changes the physics characteristics of

the reactor core, since the variation with energy of the cross sections for the plutonium

isotopes is more complex than for the uranium isotopes. Although the neutron diffusion

theory could be applied to reactors using MOX fuels, more emphasis on treatment of

the energy discretization should be placed. This energy discretization could be typically

4-8 energy groups, instead of the standard 2 energy group approach. In this work, the

authors developed a finite volume method for discretizing the general multigroup neutron

diffusion equation. This method solves the eigenvalue problem by using Krylov projection

methods, in which the size of the vectors used for building the Krylov subspace does

not depend on the number of energy groups, but it can solve the multigroup formulation

with upscattering and fission production terms in several energy groups. The method was

applied to MOX reactors for its validation.
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1. Introduction

The mixed oxide (MOX) fuel was designed to be used in liquid-metal fast breeder

reactors (LMFBRs), as well as in light water reactors (LWRs), if reprocessing and recycling

are used. Although it has been used for research purposes, it is more important to utilize

it to partially fill the cores of commercial LWRs[1]. Actually, reprocessing and recycling

of spent fuels give rise to a reduction of the radioactive waste and production of more

energy.

First, the potential energy content of the fissile and fertile isotopes remaining in spent

reactor fuel constitutes a substantial fraction of the potential energy content of the initial

fuel loading. About 96% of this energy content remains in the discharged spent fuel in the

form of uranium, plutonium, and higher-actinide isotopes. Only about 1% of the energy

content of the uranium used to produce the fuel is extracted in a typical LWR fuel cycle[2].

Second, all the nuclides that can contribute to the potential radiotoxicity of the spent

fuel are retained together, resulting in a large volume of high-level activity waste (HLW).

Thus, this large volume has to be stored in geological repositories for hundreds of thou-

sands to millions of years[2].

However, the use of MOX fuels in LWRs changes their physics characteristics, since the

variation with energy of the cross sections for the plutonium isotopes is more complex than

that of the uranium isotopes[2]. Although the neutron diffusion theory could be applied to

reactors with MOX fuels, more emphasis on treatment of the energy discretization should

be placed. Thus, multigroup neutron diffusion equation with 4-8 energy groups should be

applied to these reactors, instead of the classical 2 energy group approach.

Moreover, numerical methods are required to discretize the neutron diffusion equation

applied to heterogeneous reactors. There are lot of methods, but those that can be applied

to unstructured grids are more interesting, because they can model any kind of geometry

∗Corresponding author. Email: abernal@iqn.upv.es
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and can be applied to reactors without a homogenization approach. Examples of these

methods are the finite element and the finite volume method. The authors are interested in

the finite volume method because the transported quantity is conserved in the discretized

cells. Several works applied the finite volume method to the neutron diffusion equation[3–

5]. Among these works, those developed in[4, 5] can calculate multiple eigenvalues, but

the results are accurate in fine meshes. For improving the solution in coarser meshes, the

authors developed a polynomial expansion method in[6,7]. This method works accurately

in LWR, but it was applied to the 2 energy group approach, without upscattering and

with fission production in the first group.

The goal of this work is to develop an algorithm for calculating multiple eigenvalues of

the multigroup neutron diffusion equation and validate it in MOX reactors. The algorithm

is based on Krylov subspace methods. The major novelty of this algorithm is that the size

of the vectors used for building the Krylov subspace does not depend on the number of

energy groups, as can be seen in Equation (31), but it can solve the multigroup formulation

with upscattering and fission production terms in several energy groups. Thus, one obtains

better computational times with this method in comparison with the solution of the

generalized eigenvalue problem. For these reasons, this algorithm is not only an extension

of the method developed in[6,7], but also an improvement. It should be pointed out that

this algorithm can be applied to any number of energy groups with upscattering, but

there is one restriction: no upscattering to the first energy group.

The outline of the paper is as follows. Section 2 explains the multigroup discretization

of the neutron diffusion equation with the finite volume method. Section 3 defines the

reactors used for the validation of the method and shows the results. Section 4 summarizes

the conclusions about this work.
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2. Materials and methods

The steady-state multigroup neutron diffusion equation for the g energy group is

written in Equation 1. The neutron current in Equation 1 ( ~Jg) is calculated by means of

Fick’s Law, as expressed in Equation 2.

0 = −∇ ~Jg(~r)−

Σa,g(~r) +
G∑

g′=1
g′ 6=g

Σs,g→g′(~r)

φg(~r) +

+
G∑

g′=1
g′ 6=g

Σs,g′→g(~r)φg′(~r) +
1

k
χg(~r)

G∑
g′=1

νΣf,g′(~r)φg′(~r) (1)

~Jg(~r) = −Dg(~r)~∇φg(~r) (2)

In Equation (1), Σa,g is the absorption macroscopic cross section of the g energy group,

Σs,g→g′ is the scattering macroscopic cross section from the g to g′ energy groups, νΣf,g is

the nu-fission macroscopic cross section of the g energy group, χg is the fission spectrum

for the g energy group, k is the eigenvalue, φg is the neutron flux of the g energy group,

~Jg is the neutron current of the g energy group. In Equation (2), Dg is the diffusion

coefficient of the g energy group.

For discretizing the derivatives terms of Equations 1-2, the geometry is divided in cells,

containing uniform cross sections. If one applies the finite volume method to Equations

1-2 in the the discretized geometry, one obtains Equations 3-4. In Equation 3, Sj is the

area of face j, Jg,i,j is the face averaged value of Jg in cell i and on face j, nf is the number

of faces of the cell, Vi is the volume of cell i, Σi
a,g is the value of Σa,g in cell i, Σi

s,g→g′ is the

value of Σs,g→g′ in cell i, φg,i is cell averaged value of φg in cell i, χig is the value of χg in cell

i, νΣi
f,g is the value of νΣf,g in cell i. Moreover, additional face equations are required.

First, boundary conditions are imposed on boundary faces. Second, the heterogeneous

neutron flux continuity and the current continuity should be accomplished at the inner
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faces of the discretized geometry. The heterogeneous flux continuity can be calculated

by using the Assembly Discontinuity Factors (ADFs) as explained in[7]. These continuity

conditions are expressed in Equations 5-6, for the cells i and l, which are adjacent to face

j. In these equations, Di
g is the value of Dg in cell i, ~∇φg,i,j is the face averaged value of

~∇φg in cell i and on face j, φg,i,j is the face averaged value of φg in cell i and on face j,

ADFg,i,j is the value of ADF of the g energy group, in cell i and on face j.

nf∑
j=1

SjJg,i,j +Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

φg,i−Vi
G∑

g′=1
g′ 6=g

Σi
s,g′→gφg′,i =

1

k
Viχ

i
g

G∑
g′=1

νΣi
f,g′φg′,i (3)

Jg,i,j = −Di
g
~∇φg,i,j (4)

Jg,i,j = −Jg,l,j (5)

ADFg,i,jφg,i,j = ADFg,l,jφg,l,j (6)

Equations 3-6 contain face and cell averaged values of the neutron flux and current.

These values can be calculated by means of a polynomial expansion method[6,7]. In this

method, the neutron flux in each cell is expressed as a finite sum of polynomial terms,

as shown in Equation 7. In this polynomial expansion, the polynomial terms (pt(x, y, z))

for each cell were assigned previously and the coefficients of the expansion (ag,i,t) are de-

termined by solving the eigenvalue problem. The authors performed a sensitivity analysis

for determining the best set of polynomial terms xαtyβtzγt , as discussed in Section 3. In

the cited reference[6], it is demonstrated that the number of polynomial terms should be

equal to the number of faces of the cell plus one. Since the polynomial terms are known,

one can easily calculate the cell and face averaged values of the neutron flux and current
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with Equations 8-10. In Equation 10, ui,j,x, ui,j,y and ui,j,z are the direction cosines of the

normal to face j.

φg,i(x, y, z) =

nf+1∑
t=1

ag,i,tpt(x, y, z) =

nf+1∑
t=1

ag,i,tx
αtyβtzγt (7)

φg,i =
1

Vi

∫
Vi

φg,i(x, y, z)dV =

nf+1∑
t=1

ag,i,t
1

Vi

∫
Vi

pt(x, y, z)dV =

nf+1∑
t=1

ag,i,tp
Vi
t (8)

φg,i,j =
1

Sj

∫
Sj

φg,i(x, y, z)dS =

nf+1∑
t=1

ag,i,t
1

Sj

∫
Sj

pt(x, y, z)dS =

nf+1∑
t=1

ag,i,tp
Si,j

t (9)

~∇φg,i,j =
1

Sj

∫
Sj

~∇φg,i(x, y, z)dS

=

nf+1∑
t=1

ag,i,t

(
ui,j,x

1

Sj

∫
Sj

dpt(x, y, z)

dx
dS + ui,j,y

1

Sj

∫
Sj

dpt(x, y, z)

dy
dS

+ui,j,z
1

Sj

∫
Sj

dpt(x, y, z)

dz
dS

)
=

nf+1∑
t=1

ag,i,t~∇pt
Si,j

(10)

For each energy group, one has one Equation 3 for each cell, one boundary condition

for each boundary face and two Equations 5-6 for each inner face. However, one can define

the boundary conditions and the current continuity (Equation 5) implicitly, as explained

in[7]. Thus, the equations are reduced to Nc Equations 3 and Nf Equations 6, where Nc

is the number of cells and Nf is the number of inner faces. In addition, the unknowns will

be φg,i, Jg,j and φg,i,j instead of ag,i,t. Now, Jg,i,j = ui,jJg,j, with ui,j = ±1. However, φg,i,j

can be calculated from φg,i and Jg,j. For this purpose, Equations 8-10 are considered to

build the linear system defined in Equation 11, in which the matrix will be named Ii. In

Equation 11, Fg,i,j and fi,j,t are defined in Equations 12-13. So, one can calculate the ag,i,t

coefficients by calculating the inverse of Ii as expressed in Equation 14.
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
pVi1 · · · pVinf+1

fi,1,1 · · · fi,1,nf+1
...

...
fi,nf ,1 · · · fi,nf ,nf+1


 ag,i,1

...
ag,i,nf+1

 =


φg,i
Fg,i,1

...
Fg,i,nf

 (11)

Fg,i,j =


φg,i,j if face j is a boundary face of zero flux condition

−ui,j ~∇φg,i,j the rest of cases

(12)

fi,j,t =


p
Si,j

t if face j is a boundary face of zero flux condition

−ui,j ~∇pt
Si,j

the rest of cases

(13)

 ag,i,1
...

ag,i,nf+1

 = I−1i


φg,i
Fg,i,1

...
Fg,i,nf

 (14)

If one combines Equations 9 and 14, φg,i,j can be calculated with Equation 15, with

Xi,j,k defined in Equation 16. One can see that each Xi,j,k represents the contribution of

each unknown to φg,i,j.

φg,i,j = Xi,j,1φg,i +

nf∑
t=1

Xi,j,t+1Fg,i,t (15)

Xi,j,k =

nf+1∑
t=1

p
Si,j

t I−1i (t, k) (16)

If a boundary face has a reflective boundary condition, the current at this face will be

zero. However, if the boundary condition is zero flux, the current has to be calculated.

For calculating it, one may combine Equations 10 and 14 to obtain Equation 17, which

calculates ~∇φg,i,j, with Ri,j,k defined in Equation 18. One can see that each Ri,j,k represents

the contribution of each unknown to ~∇φg,i,j.
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−~∇φg,i,j = Ri,j,1φg,i +

nf∑
t=1

Ri,j,t+1Fg,i,t (17)

Ri,j,k = −
nf+1∑
t=1

~∇pt
Si,j

I−1i (t, k) (18)

It is better to multiply Equations 15 and 17 by Di
g, as expressed in Equations 19-20,

because Di
gFg,i,j is related to the current, as Equation 21 shows.

Di
gφg,i,j = Xi,j,1D

i
gφg,i +

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t (19)

Jg,i,j = −Di
g
~∇φg,i,j = Ri,j,1D

i
gφg,i +

nf∑
t=1

Ri,j,t+1D
i
gFg,i,t (20)

Di
gFg,i,j =


0 if face j is a boundary face

Jg,i,j = ui,jJg,j if face j is an inner face

(21)

Finally, Equations 3 and 6 can be transformed into Equations 22-23, which will be the

equations of the eigenvalue problem.

nf∑
j=1

Sjui,jJg,j + Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

φg,i − Vi
G∑

g′=1
g′ 6=g

Σi
s,g′→gφg′,i =

1

k
Viχ

i
g

G∑
g′=1

νΣi
f,g′φg′,i

(22)

0 = ADFg,i,jφg,i,j − ADFg,l,jφg,l,j

=
ADFg,i,j
Di
g

(
Xi,j,1D

i
gφg,i +

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t

)

−ADFg,l,j
Dl
g

(
Xl,j,1D

l
gφg,l +

nf∑
t=1

Xl,j,t+1D
l
gFg,l,t

)
(23)
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Next, the matrix form of Equations (22)-(23) is shown in Equation (24) for a simple

case: 2 energy groups, cells i and l, face j and boundary conditions of reflective flux.



Vi
(
Σi
a,1 + Σi

s,1→2

)
0 Sjui,j −ViΣi

s,2→1 0 0
0 Vl

(
Σl
a,1 + Σl

s,1→2

)
Sjul,j 0 −VlΣl

s,2→1 0

ADF1,i,jXi,j,1 −ADF1,l,jXl,j,1
ADF1,i,j

Di
1

Xi,j,kui,j − ADF1,l,j

Dl
1

Xl,j,kul,j 0 0 0

−ViΣi
s,1→2 0 0 Vi

(
Σi
a,2 + Σi

s,2→1

)
0 Sjui,j

0 −VlΣl
s,1→2 0 0 Vl

(
Σl
a,2 + Σl

s,2→1

)
Sjul,j

0 0 0 ADF2,i,jXi,j,1 −ADF2,l,jXl,j,1
ADF2,i,j

Di
2

Xi,j,kui,j − ADF2,l,j

Dl
2

Xl,j,kul,j




φ1,i

φ1,l

J1,j
φ2,i

φ2,l

J2,j



= 1
k


Viχ

i
1νΣi

f,1 0 0 Viχ
i
1νΣi

f,2 0 0
0 Vlχ

l
1νΣl

f,1 0 0 Vlχ
l
1νΣl

f,2 0
0 0 0 0 0 0

Viχ
i
2νΣi

f,1 0 0 Viχ
i
2νΣi

f,2 0 0
0 Vlχ

l
2νΣl

f,1 0 0 Vlχ
l
2νΣl

f,2 0
0 0 0 0 0 0




φ1,i

φ1,l

J1,j
φ2,i

φ2,l

J2,j

 (24)

If one considers the whole geometry and G energy groups, the eigenvalue problem will

be that of Equation (25), in which the authors considered that the first energy group con-

taining upscattering terms is energy group u. In this eigenvalue problem, the eigenvector

is composed of vectors Φg, which are defined in Equation (26), for each energy group g.



L1,1 0 · · · 0
...

. . . . . .
...

Lu−1,1 · · · Lu−1,u−1 0 · · · 0
Lu,1 · · · · · · Lu,u · · · Lu,G

...
...

...
...

...
...

LG,1 · · · · · · LG,u · · · LG,G


Φ1

...
ΦG

 =
1

k

M1,1 · · · M1,G
...

...
...

MG,1 · · · MG,G

Φ1
...

ΦG


(25)

Φg =



φg,1
...

φg,Nc

Jg,1
...

Jg,Nf


(26)

MatricesMg,g′ contain the fission terms, which are the same except the fission spectrum

(χg). Therefore, Mg,g′ can be expressed as in Equation 27. By using this relation, one can

multiply Equation 25 by matrix P , defined in Equation 28, so one obtains the eigenvalue

problem of Equation 29. The submatrix I appearing in matrix P is the identity matrix.

Matrices L̄g,1 are calculated as in Equation 30.
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Mg,g′ = diag

(
χ1
g

χ1
1

, · · · ,
χNc
g

χNc
1

, 0, · · · , 0

)
·M1,g′ = CgM1,g′ (27)

P =


I 0 · · · · · · 0

−C2 I
. . .

...

−C3 0 I
. . .

...
...

...
. . . . . . 0

−CG 0 · · · 0 I

 (28)



L1,1 0 · · · 0
...

. . . . . .
...

L̄u−1,1 · · · Lu−1,u−1 0 · · · 0
L̄u,1 · · · · · · Lu,u · · · Lu,G

...
...

...
...

...
...

L̄G,1 · · · · · · LG,u · · · LG,G


Φ1

...
ΦG

 =
1

k


M1,1 · · · M1,G

0 · · · 0
...

...
...

0 · · · 0


Φ1

...
ΦG


(29)

L̄g,1 = Lg,1 − CgL1,1 (30)

From Equation 29, the eigenvalue problem is reduced to the eigenvalue problem of

Equation 31, which is solved by using an iterative process, for several eigenpairs. In this

iterative process, Φ1 is the iterative eigenvector and Φg for g > 1 are calculated with

Equations 32-33. Equation 32 is used for calculating sequentially Φg, for g = 2, . . . , u −

1, because there is no upscattering for these energy groups. Once they are calculated,

Equation 33 is used for calculating Φg, for g ≥ u. Then, Φg is substituted in the right-

hand-side of Equation 31. Equations 32-33 are linear systems and are obtained from

Equation 29. It is important to highlight that the inverse of L1,1 is not calculated in

Equation 31, but instead the linear system is solved in each iteration of the eigensolver.

kΦ1 = L−11,1

G∑
g=1

M1,gΦg (31)

10
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Lg,gΦg = −L̄g,1Φ1 −
g−1∑
g′=2

Lg,g′Φg′ , 2 ≤ g < u (32)

Lu,u · · · Lu,G
...

...
...

LG,u · · · LG,G

Φu
...

ΦG

 =


−L̄u,1Φ1 −

∑u−1
g′=2 Lu,g′Φg′

...

−L̄G,1Φ1 −
∑u−1

g′=2 LG,g′Φg′

 (33)

The eigenvalue problem of Equation 31 is solved with the Krylov-Schur algorithm[8],

implemented in the SLEPc library and for several modes. SLEPc, the Scalable Library

for Eigenvalue Problem Computations[9,10], is a software library for the solution of large,

sparse eigenproblems on parallel computers. It provides projection methods or other meth-

ods with similar properties, such as Krylov-Schur or Jacobi-Davidson. SLEPc is built on

top of PETSc (Portable, Extensible Toolkit for Scientific Computation)[11] and extends it

with all the functionality necessary for the solution of eigenvalue problems, which includes

matrix operation and solution of linear systems. PETSc includes several linear systems

solvers, such as: Conjugate Gradient, BiConjugate Gradient, GMRES, Generalized Con-

jugate Residual, BiCGSTAB and Conjugate Gradient Squared. The authors tested these

solvers, but the fastest solver for this method was Generalized Minimal Residual (GM-

RES)[12], using the Additive Schwarz preconditioner. These solvers are based on iterative

methods, which require less computational resources than direct methods. However, this

is true if the system matrix is well-conditioned; for ill-conditioned matrices it is better to

use direct solvers, as discussed in Section 3.1. In particular, the authors used the version

3.7 of both PETSc and SLEPc.

3. Results

The authors tested the method in two MOX benchmarks. The first one is C5G7 MOX

Benchmark[13]. In particular, only the 2D benchmark was tested. The second one is PWR

11
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MOX/UO2 Core Transient Benchmark[14], which is a 3D benchmark; but only the steady

state was tested.

Both benchmarks were modeled and meshed by means of Gmsh code[15], version

2.16.0, which is a 3D finite element grid generator with a built-in CAD engine. The

C5G7 MOX Benchmark was meshed with an unstructured grid composed of quadrangles

and the PWR MOX/UO2 Benchmark was meshed with unstructured grids composed of

hexahedra.

The Power Errors (PE) and Eigenvalue Error (EE) are used to evaluate the results

and are defined in Equations 34 and 35. The power for each cell (Pi) is defined in Equation

36. With the aim of reducing the extension of this paper, the Mean Power Error (MPE)

will be used to assess the power results, and it is defined in Equation 37.

PEi(%) =
|Pi − Pi,ref |

Pi,ref
· 100 (34)

EE(pcm) =
k− kref

kref
· 105 (35)

Pi = constant ·
G∑
g=1

Σi
f,gφg,i (36)

MPE(%) =

∑
i PEi(%)|Pi|Vi∑

i |Pi|Vi
(37)

The reference results (ref) for the C5G7 MOX Benchmark were obtained with MCNP

code[16], which is a Monte Carlo code. These results are given in the mentioned bench-

mark. On the other hand, for the PWR MOX/UO2 Benchmark, the reference solution

was obtained with TRIVAC code[17], which is a diffusion code. TRIVAC can solve the

neutron diffusion equation with several methods, but in this work the authors used the
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Nodal Collocation Method[18], with Legendre polynomials of third order. In addition, the

authors used a version of TRIVAC based on its version 5, but including an eigensolver

based on the SLEPc library[19].

Moreover, five eigenmodes were calculated and all the CPU time values have been

obtained on an Intel Core i7-3770 CPU (3.4GHz), with the CentOS 6.8 operating system.

3.1. 2D C5G7

The geometry and composition of this benchmark[13] is shown in Figure 1. The overall

dimensions of the 2D configuration of Figure 1 are 64.26 cm × 64.26 cm, while each

assembly is 21.42 cm × 21.42 cm. Each fuel assembly is made up of a 17 × 17 lattice of

square pin level cells, as shown in Figure 2. The side length of each pin cell is 1.26 cm and

all of the fuel pins and guide tubes have a 0.54 cm radius. For this benchmark problem,

a single moderator composition is provided for use in all of the pin cells and for use in

the water moderator (reflector) surrounding the assemblies. The composition layout for

all four assemblies is provided in Figure 3. This benchmark uses 7 energy groups and the

cross sections for each material are given in Appendix A in[13]. As regards the ADFs,

they have a value of 1.0. The boundary conditions are shown in Figure 1.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

This benchmark was modeled with the mesh of Figure 4. A zoom of the mesh is given

in Figure 5, which shows the mesh in the pin cells. One can see in Figure 5 that the

fuel-clad circle was modeled as a regular hexadecagon. The radius of this polygon (Rp)

was calculated to obtain the same area as the circle of radius (Rc) 0.56 cm, so the reaction

rates are conserved. The analytical expression for Rp is shown in Equation 38.

[Figure 4 about here.]
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[Figure 5 about here.]

Rp = Rc ·
√

π

8 sin
(
π
8

) = 1.013 ·Rc (38)

As the cells of these meshes are quadrangles, the number of faces of each cell (nf ) is 4.

Thus, the polynomial expansion is limited to 5, as discussed in[6, 7]. There are infinitely

many possible polynomial sets, so the authors restricted the sets to monomials xαtyβt of

order 2, that is, αt+βt ≤ 2. There are six 2D monomials of order 2: 1, x, y, x2, y2 and xy.

Thus, there are six possible 5-combinations of the set composed of these six monomials.

The authors tested these six combinations, and only one of them gave valid results:1, x,

y, x2, y2.

Although there are only reference results for the first mode (fundamental mode), the

authors calculated five modes. It is important to highlight that this benchmark was solved

by using direct solvers for the linear systems, because the matrices were ill-conditioned,

and consequently GMRES solver was slower than a direct solver. In particular, the au-

thors used the LU decomposition of the MUMPS library[20]. The computational time

was 34 seconds and the five eigenvalues are: 1.182958, 0.903905, 0.859309, 0.702847 and

0.562519. These eigenvalues corresponds to a quarter of the core, but they are not the

five largest ones. For calculating them, the full core should be calculated. Thus, the au-

thors also made the calculation of the full core, which required 2 minutes and 38 seconds,

obtaining the following eigenvalues: 1.182958, 1.038667, 0.949189, 0.903905 and 0.859309.

The eigenvalue error (EE) was -302.75 pcm, the mean power error (MPE) was 7.33%

and the maximum power error was 13.17%. In addition, Figure 6 displays the power errors

(PEi). In this figure, one can see high errors at the boundaries of MOX assemblies. These

errors are high, even the minimum error, but it is normal, because the reference solution

is obtained with a Monte Carlo method. Although these errors are high for a transport

code, the results are acceptable for a diffusion code.
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[Figure 6 about here.]

3.2. PWR MOX/UO2

This case is a PWR reactor composed of 224 fuel assemblies of different compositions

and burnup[14]. The assembly pitch is 21.42 cm and the active fuel length is 365.76 cm,

which has been modeled with 20 axial levels. The reflector width is also 21.42 cm.

A quarter of the core characteristics is displayed in Figure 7. In this figure, the com-

position U 4.2 corresponds to UO2 fuel type and enrichment of 4.2%. By contrast, M 4.0

corresponds to MOX fuel type and enrichment of 4.0%. One can find further details of the

composition of these fuels in[14]. The core has uniform fuel composition in axial direction

with axial reflector of the same width as the fuel assembly pitch. Thus, the model includes

two more axial levels for the reflector, so it is modeled with 22 axial levels.

[Figure 7 about here.]

The cross sections were obtained for 8 energy groups and the following thermal-

hydraulic conditions: inlet coolant temperature of 560 K and inlet pressure of 15.5 MPa.

From Figure 7, one can conclude that there are 18 different sets of cross sections, so the

authors did not include them in this paper due to the extent of the data; yet it is impor-

tant to highlight that there are upscattering terms in energy groups 6 and 7. As regards

the ADFs, they have a value of 1.0.

All boundary conditions for this benchmark are zero flux. The reference results were

calculated with TRIVAC code, as mentioned in Section 3. The mesh used in TRIVAC is

shown in Figure 8. On the other hand, three meshes were used to validate the method of

this work and perform a sensitivity analysis. Mesh 1 is the same as that of Figure 8. Mesh

2 is obtained by generating 2 x 2 x 2 identical hexahedra in each hexahedron of Mesh 1.

Mesh 3 is obtained by generating 3 x 3 x 3 identical hexahedra in each hexahedron of

Mesh 1.
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[Figure 8 about here.]

As the cells of these meshes are hexahedra, the number of faces of each cell (nf ) is 6.

Thus, the polynomial expansion is limited to 7, as discussed in[6, 7]. There are infinitely

many possible polynomial sets, so the authors restricted the sets to monomials xαtyβtzγt

of order 2, that is, αt + βt + γt ≤ 2. There are ten 3D monomials of order 2: 1, x, y, z, x2,

y2, z2, xy, xz and yz. Thus, there are 120 possible 7-combinations of the set composed of

these ten monomials. The authors tested these 120 combinations, and only one of them

gave valid results:1, x, y, z, x2, y2, z2.

The computational time for TRIVAC calculation was 1 minute and 38 seconds and the

five eigenvalues are: 1.149530, 1.137884, 1.135261, 1.135259 and 1.124268. The computa-

tional time for the present method was: 8 seconds for Mesh 1, 1 minute and 18 seconds

for Mesh 2, and 5 minutes and 30 seconds for Mesh 3. As regards the results, Table 1

summarizes the results corresponding to the first mode, in which MEA is the maximum

power error per assembly; Table 2 shows the axial power errors for the first mode. In

addition, only eigenvalue errors for modes 2-5 are shown in Table 3, due to the extent of

the results. Finally, Figure 9 displays the assembly power errors corresponding to the first

mode and Mesh 3. This figure looks a little bit asymmetrical due to the fact that results

obtained with TRIVAC are a little asymmetrical, but they should not be asymmetrical.

The reason for this little asymmetry is round-off errors when cell averaged values are

calculated.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Figure 9 about here.]

In conclusion, this method obtains accurate results. Firstly, eigenvalue errors are excel-

lent, even for Mesh 1, with a maximum value of 42.25 pcm for the second mode. Secondly,

16



J. Nucl. Sci. & Technol. Article

power errors are also good, specially for Mesh 3, obtaining a maximum axial power error

of 0.86% and a maximum assembly power error of 1.56%. Finally, one can see that the

finer the mesh, the better the results. Although the maximum error increases in Mesh 2 in

comparison with Mesh 1, the mean power error (MPE) and axial power errors decrease,

except those of axial levels 2 and 21.

If one compares the axial power errors of Meshes 1 and 2, one can see that errors of

Mesh 1 are two or three times higher (or even more) than those of Mesh 2, except for axial

levels 2 and 21. Power errors are bigger next to the reflector. A possible reason might be

round-off errors. Round-off errors have more effect in power errors for low power values

than for high ones. In this reactor, the power calculated by TRIVAC in axial levels 2 and

11 are 0.2461 and 1.4849. A variation of the power of 0.005 in axial level 2 corresponds

to a percentage variation of 2.03%; the same variation in axial level 11 corresponds to a

percentage variation of 0.34%. This example justifies the big errors of axial levels 2 and

21. Furthermore, Figure 10 shows that the axial power for all meshes is virtually identical

to that of TRIVAC.

[Figure 10 about here.]

4. Conclusions

An efficient method has been developed for solving the multigroup neutron diffusion

equation, for any number of energy groups, including upscattering terms and using the

finite volume method for discretizing the spatial derivative terms.

The method can be applied to any geometry, since it uses the finite volume method,

which can be applied to unstructured grids. Moreover, the method assures the accom-

plishment of the current continuity and the continuity of the heterogeneous flux, by using

ADFs. The method is based on Krylov subspace methods. The major novelty of this

method is that the size of the vectors used for building the Krylov subspace does not de-
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pend on the number of energy groups, but it can solve the general multigroup formulation

with upscattering and fission production terms in several energy groups.

The authors applied the method to two MOX reactors to validate it. The first one

is C5G7 MOX Benchmark, with the aim of checking the application to any kind of ge-

ometries. This problem used 7 energy-groups, with upscattering terms in groups 4-7. The

second one is PWR MOX/UO2 Core Transient Benchmark, for testing the capabilities

of the method in PWR reactors. This problem used 8 energy-groups, with upscattering

terms in groups 6-8. The authors also performed a sensitivity analysis of the geometry

discretization in PWR MOX/UO2 Core Transient Benchmark, obtaining excellent results.

As regards future work, the parallelization of both geometry and solver will be per-

formed. In addition, the following nuclear applications will be the transitory state and

thermal-hydraulic coupling.
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Table 1 Results for the PWR MOX/UO2 and first mode.

Mesh EE(pcm) MEA(%) MPE(%)

1 39.85 3.89 1.55
2 4.45 3.98 1.25
3 2.89 1.56 0.43
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Table 2 Axial power errors (%) for the PWR MOX/UO2 and first mode.

Axial level Mesh 1 Mesh 2 Mesh 3

21 1.66 2.44 0.86
20 1.43 0.20 0.06
19 0.87 0.09 0.02
18 0.34 0.01 0.00
17 0.06 0.04 0.01
16 0.12 0.06 0.02
15 0.24 0.09 0.03
14 0.32 0.11 0.04
13 0.36 0.12 0.04
12 0.39 0.12 0.04
11 0.39 0.13 0.04
10 0.36 0.12 0.04
9 0.31 0.11 0.04
8 0.23 0.10 0.04
7 0.11 0.07 0.03
6 0.07 0.04 0.01
5 0.35 0.01 0.01
4 0.87 0.09 0.01
3 1.43 0.19 0.06
2 1.67 2.43 0.85
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Table 3 Eigenvalue errors for the PWR MOX/UO2 and modes 2-5.

Mesh EE2(pcm) EE3(pcm) EE4(pcm) EE5(pcm)

1 42.25 34.63 34.80 36.81
2 0.45 -8.63 -8.55 -17.80
3 1.57 -2.35 -2.23 -5.70
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Figure Captions

Figure 1 Core configuration for the 2D C5G7.

Figure 2 Pin cell geometry for the 2D C5G7.

Figure 3 Pin cell compositions for the 2D C5G7.

Figure 4 Mesh for the 2D C5G7.

Figure 5 Zoom of the mesh for the 2D C5G7.

Figure 6 Power errors for the 2D C5G7.

Figure 7 A quarter of the core for the PWR MOX/UO2.

Figure 8 Mesh for the PWR MOX/UO2.

Figure 9 Assembly power errors for the PWR MOX/UO2 and Mesh 3.

Figure 10 Axial power for the PWR MOX/UO2.
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Figure 1 Core configuration for the 2D C5G7.
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Figure 2 Pin cell geometry for the 2D C5G7.
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Figure 3 Pin cell compositions for the 2D C5G7.
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Figure 4 Mesh for the 2D C5G7.
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Figure 5 Zoom of the mesh for the 2D C5G7.
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Figure 6 Power errors for the 2D C5G7.
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Figure 7 A quarter of the core for the PWR MOX/UO2.
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Figure 8 Mesh for the PWR MOX/UO2.
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Figure 9 Assembly power errors for the PWR MOX/UO2 and Mesh 3.
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Figure 10 Axial power for the PWR MOX/UO2.
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