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Mixed-dual formulations of the finite element method were successfully applied to the

neutron diffusion equation, such as the Raviart-Thomas method in Cartesian geometry

and the Raviart-Thomas-Schneider in hexagonal geometry. Both methods obtain system

matrices which are suitable for solving the eigenvalue problem with the preconditioned

power method. This method is very fast and optimized, but only for the calculation of the

fundamental mode. However, the determination of non-fundamental modes is important

for modal analysis, instabilities and fluctuations of nuclear reactors. So, effective and

fast methods are required for solving eigenvalue problems.The most effective methods are

those based on Krylov subspaces projection combined with restart, such as Krylov-Schur.

In this work, a Krylov-Schur method has been applied to the neutron diffusion equation,

discretized with the Raviart-Thomas and Raviart-Thomas-Schneider methods.

Keywords: neutron diffusion equation; finite element method; Krylov-Schur; Raviart-

Thomas; reactor physics
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1. Introduction

The neutron diffusion equation is the easiest and fastest way to determine the neutron

flux distribution inside nuclear reactors, but it requires the use of numerical methods. A

lot of methods have been applied to the diffusion equation, but the finite element method

has two interesting properties. First, it can be applied to any geometry. Second, it is a

consistent discretization technique[1]. As regards finite element formulations, mixed-dual

formulations are particularly interesting, since they have many of the characteristics of

nodal techniques, which are more computationally efficient than classical finite elements

formulation. These mixed-dual formulations were successfully applied to the neutron dif-

fusion equation, such as the Raviart-Thomas method in Cartesian geometry[1] and the

Raviart-Thomas-Schneider in hexagonal geometry[2]. Both methods obtain system ma-

trices compatible with the Alternating Direction Implicit (ADI) procedure, which made

them suitable for solving the eigenvalue problem with the preconditioned power method[3].

These methods are implemented in TRIVAC code.

TRIVAC[4] is a computer code intended to compute the neutron flux in a fractional

or in a full core representation of a nuclear reactor. It can solve the multigroup and multi-

dimensional form of the diffusion equation or simplified Pn equation. Moreover, it allows

the discretization of 1-D geometries (slab and cylindrical), 2-D geometries (Cartesian,

cylindrical and hexagonal) and 3-D geometries (Cartesian and hexagonal).

The preconditioned power method implemented in TRIVAC is very fast and optimized,

but only for the calculation of the fundamental mode. However, the determination of

non-fundamental modes is important for modal analysis, instabilities and fluctuations in

nuclear reactors[5,6]. In fact, stability analysis calculation may require the calculation of

several modes (a minimum of five). Therefore, fast, effective and accurate methods are

required. On the one hand,the current version of TRIVAC uses the Hotelling deflation

∗Corresponding author. Email: abernal@iqn.upv.es
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technique for calculating these modes. This technique is a decontamination operation

of the power method so as to converge on non-fundamental modes of the eigenvalue

problem[7]. The advantage of this technique is the use of the optimized power method,

but its convergence rate is not as fast as that of the fundamental mode. In addition,

this technique cannot calculate those modes belonging to a multiple eigenvalue, because

convergence depends on the magnitude of the eigenvalue ratio being calculated and the

next one[7].

Although several eigenvalue problems can be defined, the eigenvalue problem most

commonly used for commercial reactors is the λ-eigenvalue problem. The α-eigenvalue

problem is also relevant, but for sub-critical systems, like accelerator driven sub-critical

systems (ADS). Several authors used more effective methods than the Hotelling deflation

technique, for calculating non-fundamental modes of these eigenvalue problems. Examples

of these methods are the sub-space iteration method (SSI) and the implicit restarted

Arnoldi method (IRAM).

Döring et al. [8], Verdú et al. [5] and Modak and Jain [9] introduced SSI for calculat-

ing the λ-eigenvalue problem of the neutron diffusion equation discretized with different

methods: finite element method (FEM), nodal collocation method (NCM) and finite dif-

ference method (FDM). Singh et al. [10] applied SSI to the neutron diffusion equation for

the α-eigenvalue problem. Other works applied SSI to the α-eigenvalue problem of the

transport equation using discrete ordinates, but with different spatial methods: Gupta

and Mudak used diamond differences (DD) [11] and Kópházi and Lathouwers used FEM

[12].

Verdú et al. applied IRAM to the neutron diffusion equation for the α-eigenvalue

problem [13]. This method was also used in the α-eigenvalue problem of the transport

equation discretized with different methods: Lathouwers [14] used spherical harmonics and

FEM, Kópházi and Lathouwers [12] used discrete ordinates and FEM. As it was mentioned
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earlier, Kópházi and Lathouwers tested both methods IRAM and SSI in [12], and they

concluded that the first one was superior in terms of computational time. Other works

applied IRAM to λ-eigenvalue problem: Warsa et al. [15] solved the transport equation

and Verdú et al. [16] solved the diffusion equation discretized with NCM.

IRAM belongs to a class of methods called Krylov subspace methods. There are sev-

eral software and libraries containing the algorithm of Krylov subspace methods, which

have been widely used, like ARPACK [17]. Several neutron codes used ARPACK for cal-

culating the eigenvalue problem, such as DALTON [18]. Currently, the state of the art

for calculating eigenvalue problems is the SLEPc library. SLEPc, the Scalable Library for

Eigenvalue Problem Computations[19, 20], is a software library for the solution of large,

sparse eigenproblems on parallel computers. It provides projection methods or other meth-

ods with similar properties, such as Krylov-Schur or Jacobi-Davidson. SLEPc is built on

top of PETSc (Portable, Extensible Toolkit for Scientific Computation)[21] and extends it

with all the functionality necessary for the solution of eigenvalue problems, which includes

matrix operation and solution of linear systems.

In this work, a Krylov-Schur method has been applied to the λ-eigenvalue problem

of the neutron diffusion equation, discretized with the Raviart-Thomas and Raviart-

Thomas-Schneider method. An algorithm has been developed combining the Krylov-Schur

method from SLEPc and the Raviart-Thomas and Raviart-Thomas-Schneider method

from TRIVAC,extending the capabilities of it. The novelty of this work is not only the

use of SLEPc in TRIVAC, but also an analysis of four issues. First, the condition number

of the system matrices obtained with the Raviart-Thomas method. Second, the precondi-

tioners and linear system solvers of PETSc applied to these matrices. Third, the type of

integration used in the Raviart-Thomas method of TRIVAC and its effect on the condi-

tion number. Fourth, a comparison of the convergence of the Hotelling deflation technique

and the Krylov-Schur method.
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The outline of the paper is as follows. Section 2 describes the theory and methods

discretizing the neutron diffusion equation and solving the eigenvalue problem. Section

3 defines the reactors used for validating the method and shows the results. Section 4

summarizes the conclusions.

2. Theory

2.1. Dual variational formulation

The one-speed formulation of the steady state neutron diffusion equation and the Fick

law can be written as in Equations (1) and (2). In these equations, φ(r) is the neutron flux,

~J(r) is the neutron current, D(r) is the third-order diagonal matrix containing directional

diffusion coefficients, Σr(r) is the removal cross section, and S(r) is the fission and out-

of-group scattering source.

∇ · ~J(r) + Σr(r)φ(r) = S(r) (1)

~J(r) = −D(r)~∇φ(r) (2)

Boundary conditions are applied on the surface surrounding the domain (∂V ), which

is split into three components: the surface with a zero flux boundary condition (∂V0),

the surface with a reflective boundary condition (∂V1) and the surface with a P1 albedo

boundary condition (∂Vβ). This last boundary condition is expressed in Equation (3),

where ~N(r) is the normal unit vector pointing out of ∂Vβ and β(r) is the albedo at r.

[
D(r)~∇φ(r)

]
· ~N(r) +

1

2

1− β(r)

1 + β(r)
φ(r) = 0 if r ∈ ∂Vβ (3)

A dual variational formulation exists such that the diffusion equation is a stationary

point of dual functionals in a Sobolev space. A stationary point of these functionals in a
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polynomial space will be used as a numerical approximation to the diffusion equation. In

this formulation, the neutron current ~J(r) is forced to be continuous across any surface

element in the domain, as explained by Lautard in[22]. Trial functions used to represent

the neutron flux can therefore be discontinuous across some boundary in the domain. This

functional is written in Equation (4), where φ(r) ∈ L2 (V ) and ~J(r) ∈ H∂V1 (div;V ), a

Sobolev space defined in Equation (5).

Fb

{
φ, ~J

}
=

1

2

∫
V

d3r{− ~J(r) ·
[
D(r)−1 ~J(r)

]
+ 2φ(r)∇ · ~J(r) + Σr(r)φ(r)2

−2φ(r)S(r)} −
∫
∂Vβ

d2r
1 + β(r)

1− β(r)
×
[
~J(r) · ~N(r)

]2
(4)

H∂V1 (div;V ) =
{
v; v ∈

[
L2 (V )

]3
and ∇ · v ∈ L2 (V )

}
(5)

This Sobolev space contains functions with L2-integrable components over domain V ,

which possess an L2-integrable divergence over domain V and a scalar product ~J(r) · ~N(r)

equal to zero on ∂V1 for a unit vector ~N(r) normal to ∂V1. If a function ~J(r) is an

element of this Sobolev space, the function ~J(r) has continuous components normal to

any interface in V.

The functional of Equation (4) has a stationary point defined by the set of Equations

(6). From this set, Equations (7) and (8) are obtained.

δδ ~JFb = lim
ε→0

{
d

dε
Fb

{
φ(r), ~J(r) + εδ ~J(r)

}}
= 0

δδφFb = lim
ε→0

{
d

dε
Fb

{
φ(r) + εδφ(r), ~J(r)

}}
= 0

(6)

δδ ~JFb =

∫
V

d3r{−δ ~J(r) ·
[
D(r)−1 ~J(r)

]
+ φ(r)∇ · δ ~J(r)}

−
∫
∂Vβ

d2r
1 + β(r)

1− β(r)

[
~J(r) · ~N(r)

] [
δ ~J(r) · ~N(r)

]
= 0 (7)
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δδφFb =

∫
V

d3r δφ(r)
{
∇ · ~J(r) + Σr(r)φ(r)− S(r)

}
= 0 (8)

Equations (7) and (8) are the stationary conditions and the ones used with the Raviart-

Thomas method. These conditions are to be distinguished from the forced conditions, such

as the reflective boundary condition on ∂V1 or the ~J(r)· ~N(r) continuity, which are imposed

on the trial functions.

2.2. The Raviart-Thomas method

The Raviart-Thomas method is a finite element method based on a search of a station-

ary point [φ(r), ~J(r)] of Equations (7) and (8) in a Raviart-Thomas polynomial subspace

of L2(V ) × H∂V1(div;V ). This stationary point will not be the exact solution, but the

optimal approximation (in the variational sense) of the diffusion equation, which is an

element of this subspace.

The finite element method can be applied to various types and forms of subvolumes or

elements. Cartesian and hexagonal elements are the most widely used in reactor physics

for full-core calculations. A Cartesian domain is first partitioned into parallelepipeds over

which the nuclear properties are assumed to be uniform. An hexagonal domain is parti-

tioned into lozenges and a Piola transformation is performed, as depicted in Figure 1 and

described by Hébert in[2]. The reference finite element is a unit cube with−1/2 ≤ u ≤ 1/2,

−1/2 ≤ v ≤ 1/2 and −1/2 ≤ w ≤ 1/2. A polynomial basis is defined over each element

by using full tensorial products of 1D polynomials up to a given order.

[Figure 1 about here.]

The Raviart-Thomas polynomial basis proposed in this work uses tensorial products

of Legendre polynomials for representing the neutron flux over the reference element.

Polynomial expressions of the Legendre polynomials P̃k(u) defined over −1/2 ≤ u ≤ 1/2

are given in Appendix A in[2]. An order K expansion of φ and δφ is shown in Equations
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(9) and (10).

φ(u, v, w) =
K−1∑
k1=0

K−1∑
k2=0

K−1∑
k3=0

φk1,k2,k3P̃k1(u)P̃k2(v)P̃k3(w) (9)

δφ(u, v, w) =
K−1∑
k1=0

K−1∑
k2=0

K−1∑
k3=0

δφk1,k2,k3P̃k1(u)P̃k2(v)P̃k3(w) (10)

The expansion of the currents proposed in this work uses tensorial products of La-

grange and normalized Legendre polynomials, in order to be consistent with the choice

made for the flux and force the continuity of ~J(r) · ~N(r). Polynomial expressions of the

Lagrange polynomials Lk(u) defined over −1/2 ≤ u ≤ 1/2 are also given in Appendix A

in[2]. An order K expansion of Ju, δJu and Jv is shown in Equations (11)-(13). Similar

expressions are obtained for δJv, Jw and δJw.

Ju(u, v, w) =
K∑

k1=0

K−1∑
k2=0

K−1∑
k3=0

Ju,k1,k2,k3Lk1(u)P̃k2(v)P̃k3(w) (11)

δJu(u, v, w) =
K∑

k1=0

K−1∑
k2=0

K−1∑
k3=0

δJu,k1,k2,k3Lk1(u)P̃k2(v)P̃k3(w) (12)

Jv(u, v, w) =
K−1∑
k1=0

K∑
k2=0

K−1∑
k3=0

Jv,k1,k2,k3P̃k1(u)Lk2(v)P̃k3(w) (13)

Equations (7) and (8) can be written as Equations (14) and (15). More explanations

about the integration of these terms can be found in[1, 2], for Cartesian and hexagonal

geometry. In this work, the authors used the following methods of integration: analytical

integration, Gauss-Lobatto quadrature and Gauss-Legendre quadrature. More details of

these two quadratures can be found in Appendix A in[2].
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δδ ~JFb = 〈δ ~J,A ~J〉+ 〈δ ~J,Rφ〉 = 0 (14)

δδφFb = 〈δφ,R ~J〉+ 〈δφ, Tφ〉 − 〈δφ, Sφ〉 = 0 (15)

If one considers the G-group energy approach, the source distribution for each energy

group g is calculated as in Equation (16). In this equation, φi(r) is the i-energy group

flux, Σs,i→g(r) is the scattering cross section from i to g energy group, νΣf,i(r) is the

production cross section due to fission of i-energy group flux, χg(r) is the fission spectrum

for the g energy group and keff is the multiplication factor.

Sg(r) =
G∑
i=1
i 6=g

Σs,i→g(r)φi(r) +
1

keff
χg(r)

G∑
i=1

νΣf,i(r)φi(r) (16)

Equations (15) and (14) can be written in matrix form as in Equation (17) or (18), for

each g energy group. In Equation (18), Φg is the combination of φg and ~Jg as shown in

Equation (19). Finally, if one considers all the energy groups, one obtains the eigenvalue

problem expressed in Equation (20), with A, B and Φ defined in Equations (21)-(23).

(
Tg RT

R Ag

)(
φg
~Jg

)
=

G∑
i=1
i 6=g

(
Ss,i→g 0

0 0

)(
φi
~Ji

)
+

1

keff

G∑
i=1

(
Sf,g,i 0

0 0

)(
φi
~Ji

)
(17)

Ag,gΦg =
G∑
i=1
i 6=g

Ag,iΦi +
1

keff

G∑
i=1

Bg,iΦi (18)

Φg =

(
φg
~Jg

)
(19)

9
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AΦ =
1

keff
BΦ (20)

A =


A1,1 −A1,2 · · · −A1,G

−A2,1 A2,2
. . . −A2,G

...
. . . . . .

...
−AG,1 −AG,2 · · · AG,G

 (21)

B =

B1,1 · · · B1,G
...

...
...

BG,1 · · · BG,G

 (22)

Φ =

Φ1
...

ΦG

 (23)

The eigenvalue problem of Equation (20) has been solved efficiently by Hébert in[1,2],

by using a symmetric variational acceleration technique (SVAT). This techniques is a

preconditioned power method explained in[3], which uses an ADI scheme for Cartesian

and hexagonal geometries. The Cartesian scheme is explained in[1] and the hexagonal one

in[2].

2.3. The Hotelling deflation technique

The Hotelling deflation technique is a decontamination operation of the power method

so as to converge on non-fundamental harmonics of the eigenvalue problem[7]. A basic

algorithm will be explained in the context of the inverse power method, which consist

in computing one harmonic at a time, while decontaminating A−1 from the previously

calculated harmonics.

To compute eigenvalues and eigenvectors of the eigenvalue problem of Equation (20),

the inverse power recurrence of Equation (24) is employed. This recurrence is used only

for the first eigenvalue; once the fundamental mode has converged, subsequent modes are

obtained with a modified recurrence, Equation (25), that includes the decontamination

10
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operation that purges the components that the current iterate Φ
(n+1)
l has in the direction

of already converged eigenvectors.

Φ
(n+1)
l =

1

k
(n)
l

A−1BΦ
(n)
l (24)

Φ
(n+1)
l =

1

k
(n)
l

(
A−1 −

l−1∑
j=1

kj
Φj · Φ∗j

Φ∗j · BΦj

)
BΦ

(n)
l (25)

2.4. The Krylov-Schur method

The Krylov-Schur method is an Arnoldi method which uses an implicit restart based

on a Krylov-Schur decomposition[23].

The method of Arnoldi is a Krylov-based projection method that computes an or-

thonormal basis of the Krylov subspace of order m associated with matrix A and initial

vector x0. This Krylov subspace is given in Equation (26). Projection methods for eigen-

value problems are intended for computing a partial eigensolution, that is, given a square

matrix A of order N , the objective is to compute a small number of eigenpairs, λi , xi

, i = 1, · · · ,m, with m � N . The Arnoldi method computes not only this orthonormal

basis (Vm), but also the projected matrix H at the same time and in an efficient and

numerically stable way.

Km(A, x0) = span
{
x0,Ax0,A2x0, · · · ,Am−1x0

}
(26)

This projection method calculates the eigenvalue problem Hyi = θiyi, of order m,

instead of Axi = λixi, of order N . Taken into account that (H = V T
mAVm) and (V T

mVm =

Im), one concludes that the pair (λi,Vmyi) can be taken as an approximation of the

eigenpair (λi,xi) of matrix A. This method will converge very fast, if the initial vector

x0 is rich in the direction of the wanted eigenvectors, which is usually not the case. So,
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many iterations may be required, which implies a growth in storage requirements and

computational time. A solution for this problem is to stop after some iterations and

restart the method, by using a new initial vector computed from the recently obtained

spectral approximations.

Different approaches can be used for the restart: explicit and implicit. Explicit algo-

rithms calculate the initial vector as a linear combination of the computed eigenvectors,

but it is difficult to choose the appropriate parameters. Implicit algorithms combine the

Arnoldi process with the implicitly shifted QR algorithm, in which an m-step Arnoldi

factorization is compacted into an (m - d)-step Arnoldi factorization, which retains the

relevant eigeninformation of the large factorization. The implementation of the implicit

restart in a numerically stable way is difficult, but it is solved by using a Krylov-Schur

decomposition. More information about this decomposition can be found in[23].

In this work, the authors have applied the Krylov-Schur algorithm implemented in

SLEPc[19, 20] to the Raviart-Thomas method of TRIVAC[4]. The system matrices of

Equation (20) are obtained with the Raviart-Thomas method and two types of eigen-

value problems are considered. The first type, without upscattering and producing only

neutrons in the first energy group from fissions, such as Equation (27). In this case, the

eigenvalue problem is defined in Equation (28), where φ1 is the iterative eigenvector and

φg, for g > 1, are calculated with Equation (29). The second type includes any upscatter-

ing and fission production, and is defined in Equation (30). It is important to highlight

that the inverse of the matrices (Ag,g or A) are not calculated, but linear systems are

solved: x = A−1b → Ax = b. These linear systems are solved by using iterative or direct

solvers, depending on the condition number of the matrices. Iterative solvers are faster

than direct solvers, if the matrices are not ill-conditioned. In both cases, the authors

have tried different methods implemented in PETSc[21]. As regards iterative solvers, the

fastest methods were Generalized Minimal Residual (GMRES) and BiConjugate Gradient

12
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Stabilized (BiCGSTAB), using the incomplete LU preconditioner. With respect to direct

solvers, the authors used LU factorization implemented in MUMPS solver.

The use of iterative or direct solvers depends on the condition number and size of the

matrices. For well-conditioned and large matrices, iterative solvers are faster and require

less memory resources than direct solvers. By contrast, for matrices with bad condition

numbers, iterative solvers might not converge, so one should use direct solvers. As a rule

of thumb, one should use iterative solvers at first time, but one should use direct solvers

if the iterative ones do not converge.

 A1,1 0
...

. . .
−AG,1 · · · AG,G

φ1
...
φG

 =
1

k

B1,1 B1,G

0

φ1
...
φG

 (27)

kφ1 = A−11,1

G∑
g=1

B1,gφg = Aφ1 (28)

φg = A−1g,g
g−1∑
i=1

Ag,iφi (29)

kΦ = A−1BΦ = AΦ (30)

3. Results

The authors evaluated the method in two reactors: one with Cartesian geometry and

another with hexagonal geometry. The reactor defined in Cartesian geometry is IAEA

3D[24]. The reactor in hexagonal geometry is VV1K3D, which is a Water-Water Energetic

Reactor (VVER) mockup. Both reactors do not include upscattering terms, so this section

evaluates the solution of the eigenvalue problem of Equation (28). The authors assessed

the solution of the eigenvalue problem of Equation (30) in a commercial PWR with

13
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upscattering terms, but they do not include these results due to the extent of them.

Twelve modes were calculated for each case. The Krylov-Schur solution is compared

with the Hotelling deflation technique. Only the eigenvalues are shown in this work due

to two reasons. The first is to reduce the extent of this paper. The second is that the

Raviart-Thomas method is the same in both eigen-solvers, so if the eigenvalues match

each other, the eigenvectors will do too.

A sensitivity analysis was performed for the integration type and polynomial order.

As mentioned in Section 2.2., the following types of integration were used: analytical

integration, Gauss-Lobatto quadrature and Gauss-Legendre quadrature.

The authors also tested several linear system solvers of PETSc. The fastest methods

were GMRES and BiCGSTAB, using the incomplete LU preconditioner. They produced

the same results and the computational time is similar.

All the CPU time values reported in this work have been obtained on an Intel Core 2

Duo CPU P8700 (2.53GHz) with the CentOS 6.8 operating system.

3.1. IAEA 3D

The IAEA 3D reactor[24] is a simplified representation of a PWR with one-eighth

symmetry in Cartesian geometry, as depicted in Figure 2. Although Figure 2 shows one-

eight symmetry of this reactor, the modal calculation was performed for the whole core.

Vacuum boundary conditions are set at axial levels z = 0 and z = 380 cm. A Cartesian

mesh of 9x9x4 was used. The length of each mesh in X and Y direction is 20 cm. The

length of the meshes in Z direction is: 20, 260, 80 and 20 cm. Table 1 shows the cross

sections of this reactor.

[Figure 2 about here.]

[Table 1 about here.]

Time results are shown in Table 2. In this table, K is the polynomial order, Ag,g size
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is the size of the system matrices Ag,g and ti is the time for calculating i eigenvalues. In

addition, no entry in ti means that the calculation could not be performed. Eigenvalue

results are displayed in Table 3. In this table, ki is the i-eigenvalue. Likewise, no entry

in ki means that the calculation could not be performed. This table only shows the first

three eigenvalues.

The authors decided to give only the 12 largest eigenvalues calculated for one integra-

tion type and polynomial order; in particular, for the analytical integration and polynomial

order 3. The twelve eigenvalues calculated with the Krylov-Schur method for this case are:

1.028910, 1.014819, 1.002363, 0.994373, 0.990582, 0.990280 0.977587, 0.971420, 0.965838,

0.956518, 0.943951 and 0.938522.

[Table 2 about here.]

[Table 3 about here.]

From Table 2, one can draw three conclusions. First, the computational times are

similar for the calculation of three eigenvalues or less. Second, the computational time for

the calculation of five or twelve eigenvalues is higher for the Hotelling deflation technique,

because of the poor convergence of this technique. In fact, the authors had to increase the

inner iterations for this technique to calculate five or more eigenvalues, which increased the

computational time. Third, the Hotelleing deflation technique only calculated the twelve

eigenvalues for two cases. From Table 3, one can see that the third eigenvalue might differ

in some cases. This is due to the fact that this Hotelling deflation technique could not

calculate the largest eigenvalues in the correct order. Therefore, this technique does not

guarantee the calculation of the largest eigenvalues.

Another important issue is the quality of the system matrices. This matters for using

iterative methods for solving linear systems. The quality of the matrices for this purpose

can be evaluated with the condition number, but its calculation may be costly for large

and ill-conditioned matrices. This calculation can be easily performed for the IAEA 3D
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reactor, but not for the others presented in this work. The condition number for IAEA 3D

are shown in Table 4. The condition numbers of this table are not good, but the matrices

are small, so the linear systems can be calculated with iterative methods. In cases with

large matrices, the condition numbers will be even worse, so one may use direct solvers

instead of iterative ones.

[Table 4 about here.]

Moreover, the authors checked that the bi-orthogonal property 〈Φ∗i ,BΦj〉 = δi,j · Ci,j

is preserved. In the previous expression, δi,j is the Kronecker delta and Ci,j is a constant.

Table 5 shows the values of 〈Φ∗i ,BΦj〉 for the case with analytical integration and poly-

nomial order 3. In this table, the values are displayed in matrix form, in which each row

corresponds to index i and each column corresponds to index j.

[Table 5 about here.]

3.2. VV1K3D

VV1K3D is a Water-Water Energetic Reactor (VVER) mockup. It is composed of

1690 hexagonal prisms, distributed in 10 axial levels of 20 cm in length. All the hexagonal

prisms are regular and their flat-to-flat distance is 23.6 cm. A cross section of the reactor

is displayed in Figure 3, in which each number represents an assembly type. Assemblies

from 1 to 5 are composed of materials from 1 to 5, respectively. Composition of assembly 6

varies with the axial level: in the first five axial levels is composed of material 4 and in the

last ones is composed of material 3. The cross sections of the 5 materials and two energy

group are shown in Table 6[25]. Boundary conditions are zero flux for all boundaries.

[Figure 3 about here.]

[Table 6 about here.]

Time and eigenvalues results are shown in Tables 7 and 8, respectively. Time results

of Table 7 correspond to the calculation with iterative solvers. Table 7 shows good time

16



J. Nucl. Sci. & Technol. Article

results for the analytical integration and Gaus-Lobatto quadrature, but not for the Gauss-

Legendre quadrature. For the Gauss-Legendre quadrature, calculation with direct solvers

is faster than calculation with iterative solvers, as it is shown in Table 9.

For the analytical integration, polynomial order 2 and 3 lozenges per hexagon, the

12 largest eigenvalues calculated with the Krylov-Schur method are: 1.005450, 0.987368,

0.987360, 0.968519, 0.964399, 0.963050, 0.954743, 0.948942, 0.948283 and 0.946414,

0.934309, 0.930121.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

From Tables 7 and 8, one can draw similar conclusions as those of IAEA3D. In this

case, the computational times are similar for the calculation of two eigenvalues or less.

As in the previous reactor, the authors increased the inner iterations for the Hotelling

deflation technique to calculate three or more eigenvalues, which increased the computa-

tional time. In addition, it is important to highlight that the Hotelling deflation technique

only calculated the twelve eigenvalues in one case. Finally, Table 8 shows that the third

eigenvalue differs in all cases. Therefore, the Hotelling deflation technique might not cal-

culate the largest eigenvalues in the correct order, and consequently cannot guarantee the

calculation of the largest eigenvalues.

4. Conclusions

A Krylov-Schur method has been applied to the neutron diffusion equation discretized

with the Raviart-Thomas method.

The method was validated in two reactors, one in Cartesian geometry and another in

hexagonal. Twelve eigenvalues were calculated in each reactor. The method was compared

with the Hotelling deflation technique and the major conclusion is: the Krylov-Schur
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method guarantees the calculation of the twelve largest eigenvalues, but not the Hotelling

deflation technique.

The authors performed a sensitivity analysis of different type of integration and poly-

nomial order. In this analysis, direct and iterative solvers were used to evaluate the cal-

culation time in ill-conditioned cases. Iterative solvers require less memory resources than

direct ones and might be faster in some cases. However, system matrices of some reactors

in hexagonal geometry with the Gauss-Legendre quadrature may be ill-conditioned, so

iterative solvers could not calculate the linear systems.

As regards future work, additional preconditioners should be developed for accelerating

the calculation. Moreover, the Krylov-Schur method will be applied to the simplified Pn

equation.
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Table 1 Cross section data for IAEA 3D

Mixture Group Dg (cm) Σg,r (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)

1 1 1.5 0.03 0.0 0.02
2 0.4 0.08 0.135

2 1 1.5 0.03 0.0 0.02
2 0.4 0.085 0.135

3 1 1.5 0.03 0.0 0.02
2 0.4 0.13 0.135

4 1 2.0 0.04 0.0 0.04
2 0.3 0.01 0.0

5 1 2.0 0.04 0.0 0.04
2 0.3 0.055 0.0
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Table 2 Time results (seconds) of IAEA 3D

Hotelling Krylov-Schur

Integration K Ag,g size t1 t2 t3 t5 t12 t1 t2 t3 t5 t12
Analytical 1 1449 1 1 1 2 1 1 1 1 1

2 7176 1 1 3 9 28 1 1 1 2 2
3 19251 1 2 9 29 2 3 4 5 7

Gauss-Lobatto 1 1449 1 1 1 1 7 1 1 1 1 1
2 7176 1 1 3 11 1 1 1 2 2
3 19251 1 2 6 20 2 3 4 4 7

Gauss-Legendre 1 1449 1 1 2 1 1 1 1 1
2 7176 1 1 3 10 2 2 2 3 4
3 19251 1 2 9 275 5 6 8 9 12
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Table 3 Eigenvalues of IAEA 3D

Hotelling Krylov-Schur

Integration K k1 k2 k3 k1 k2 k3
Analytical 1 1.027948 1.009954 0.987201 1.027949 1.009953 0.997614

2 1.028483 1.013580 0.989918 1.028480 1.013579 1.000138
3 1.028916 1.014823 0.994372 1.028910 1.014819 1.002363

Gauss-Lobatto 1 1.033093 1.026220 1.008005 1.033096 1.026221 1.008005
2 1.028077 1.013743 0.993119 1.028069 1.013745 0.998752
3 1.028841 1.014759 0.994679 1.028841 1.014755 1.001911

Gauss-Legendre 1 1.027215 0.994432 0.989400 1.027216 1.007120 0.994432
2 1.029287 1.014653 0.991522 1.029285 1.014651 1.002558
3 1.028981 1.014956 0.994730 1.028980 1.014952 1.002960
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Table 4 Condition number of Ag,g of IAEA 3D

Condition number

Integration K A1,1 A2,2

Analytical 1 509.2 6876.8
2 394.9 3296.6
3 966.2 3388.0

Gauss-Lobatto 1 478.0 7286.9
2 347.6 3085.6
3 675.6 3122.0

Gauss-Legendre 1 3150.6 11413.0
2 961.4 3499.7
3 24410.0 5108.7
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Table 5 Bi-orthogonal property for IAEA 3D

7.1E+02 1.6E-11 6.5E-12 1.7E-11 9.4E-13 1.5E-11 1.8E-12 2.0E-12 1.1E-12 3.3E-12 3.5E-13 6.5E-12
1.9E-12 6.4E+02 6.8E-12 3.0E-12 1.5E-12 1.3E-12 5.1E-12 4.9E-12 4.5E-12 5.7E-13 4.2E-13 3.3E-12
3.0E-13 3.5E-11 6.7E+02 5.3E-11 4.4E-11 7.9E-11 1.4E-11 5.8E-12 1.0E-11 3.6E-12 1.8E-12 6.3E-12
1.6E-11 2.7E-11 3.9E-11 5.8E+02 1.0E-10 2.3E-10 1.5E-11 8.9E-13 3.1E-11 7.5E-12 2.9E-12 7.1E-12
2.2E-13 5.6E-12 1.2E-11 4.1E-11 6.0E+02 4.4E-10 1.9E-11 1.4E-11 2.4E-11 1.4E-11 9.8E-13 7.3E-12
1.8E-11 6.4E-12 8.0E-11 2.4E-10 1.8E-09 6.3E+02 2.0E-11 5.5E-12 1.3E-11 1.1E-11 2.8E-12 6.7E-12
4.4E-12 6.3E-13 1.9E-12 1.5E-11 2.6E-11 2.8E-11 5.7E+02 1.1E-10 3.6E-11 8.8E-12 2.6E-13 2.3E-12
4.7E-12 3.2E-12 7.6E-12 9.6E-12 9.2E-12 1.6E-12 4.7E-11 5.6E+02 1.6E-11 4.2E-11 1.0E-11 7.1E-12
1.2E-12 3.4E-12 1.4E-11 2.2E-11 1.5E-11 2.5E-12 3.9E-11 8.3E-12 5.6E+02 1.3E-11 2.2E-12 1.3E-11
2.3E-12 4.0E-12 7.5E-12 2.5E-13 1.2E-11 1.5E-11 2.0E-12 2.7E-11 3.3E-11 4.9E+02 8.1E-12 3.8E-11
1.6E-12 5.1E-13 1.6E-13 3.0E-14 9.2E-12 6.1E-12 6.5E-13 2.1E-11 2.5E-12 2.7E-12 5.5E+02 5.1E-12
4.8E-12 2.4E-12 5.3E-12 6.0E-13 2.0E-12 9.9E-13 1.2E-11 1.4E-11 1.4E-11 1.6E-11 1.6E-11 6.3E+02
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Table 6 Cross section data for VV1K3D

Mixture Group Dg (cm) Σg,r (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)

1 1 1.38320 2.48836E-2 4.81619E-3 1.64977E-2
2 3.86277E-1 6.73049E-2 8.46154E-2

2 1 1.38299 2.62865E-2 4.66953E-3 1.47315E-2
2 3.89403E-1 8.10328E-2 8.52264E-2

3 1 1.39522 2.45662E-2 6.04889E-3 1.56219E-2
2 3.86225E-1 8.44801E-2 1.19428E-1

4 1 1.39446 2.60117E-2 5.91507E-3 1.40185E-2
2 3.87723E-1 9.89671E-2 1.20497E-1

5 1 1.39506 2.46141E-2 6.40256E-3 1.54981E-2
2 3.84492E-1 8.93878E-2 1.29281E-1
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Table 7 Time results (seconds) of VV1K3D

Hotelling Krylov-Schur

Integration K L Ag,g size t1 t2 t3 t5 t12 t1 t2 t3 t5 t12
Analytical 1 3 21237 1 5 114 145 2 3 4 4 7

12 84048 4 19 80 102 470 10 21 22 25 49
2 3 145788 8 45 254 343 21 46 49 56 109

Gauss-Lobatto 1 3 21237 1 5 20 26 2 3 3 4 6
12 84048 4 19 58 75 8 17 17 21 37

2 3 145788 8 43 18 39 41 48 89
Gauss-Legendre 1 3 21237 2 6 230 326 5 10 10 12 20

12 84048 4 19 176 257 47 103 115 170 271
2 3 145788 13 70 94 219 224 235 488
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Table 8 Eigenvalues of VV1K3D

Hotelling Krylov-Schur

Integration K L k1 k2 k3 k1 k2 k3
Analytical 1 3 1.005633 0.987859 0.972650 1.005633 0.987868 0.987707

12 1.005399 0.987405 0.969676 1.005404 0.987439 0.987349
2 3 1.005450 0.987368 0.969726 1.005450 0.987368 0.987360

Gauss-Lobatto 1 3 1.008769 0.992112 0.979504 1.008769 0.992128 0.991786
12 1.006633 0.988897 0.974677 1.006625 0.988829 0.988791

2 3 1.005448 0.987465 1.005448 0.987466 0.987410
Gauss-Legendre 1 3 1.004073 0.985430 0.964917 1.004073 0.985508 0.985425

12 1.004793 0.986571 0.967143 1.004806 0.986726 0.986507
2 3 1.005477 0.987287 1.005478 0.987333 0.987287
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Table 9 Time results (seconds) of VV1K3D, using direct solvers in the Krylov-Schur method

Integration K L t1 t2 t3 t5 t12
Gauss-Legendre 1 3 3 3 4 7 10

1 12 20 28 28 34 53
2 3 65 95 95 118 162
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Figure Captions

Figure 1 The Piola transformation.

Figure 2 IAEA 3D reactor.

Figure 3 Assembly distribution in VV1K3D reactor.
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Figure 2 IAEA 3D reactor.
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Figure 3 Assembly distribution in VV1K3D reactor.
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