

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1016/j.compeleceng.2017.08.004

http://hdl.handle.net/10251/101883

Elsevier

Achieving Autonomic Web Service Compositions with

Models at Runtime

Germán H. Alféreza,⇤, Vicente Pelechanob

a
Facultad de Ingeniería y Tecnología, Universidad de Montemorelos, Apartado 16-5,

Montemorelos N.L., Mexico

b
Centro de Investigación en Métodos de Producción de Software (ProS), Universitat

Politècnica de València, Camí de Vera s/n, E-46022, Spain

Abstract

Several exceptional situations may arise in the complex, heterogeneous, and
changing contexts where Web service operations run. For instance, a Web ser-
vice operation may have greatly increased its execution time or may have be-
come unavailable. The contribution of this article is to provide a tool-supported
framework to guide autonomic adjustments of context-aware service composi-
tions using models at runtime. At runtime, when problematic events arise in the
context, models are used by an autonomic architecture to guide changes of the
service composition. Under the closed-world assumption, the possible context
events are fully known at design time. Nevertheless, it is difficult to foresee all
the possible situations arising in uncertain contexts where service compositions
run. Therefore, the proposed framework also covers the dynamic evolution of
service compositions to deal with unexpected events in the open world. An
evaluation demonstrates that our framework is efficient during dynamic adjust-
ments.

Keywords: Web service compositions, models at runtime, autonomic
computing, dynamic software product lines, dynamic adaptation, dynamic
evolution

1. Introduction

In nature, adaptation contributes to the survival of individuals to cope with
the weather, enemies, or any hazards. As organisms live in intricate, chang-
ing environments, software is executed in complex, heterogeneous, and highly-
intertwined computing infrastructures in which a diversity of events may arise.
For example, security threats, network problems, performance reduction in one

⇤Corresponding author.
Email addresses: harveyalferez@um.edu.mx (Germán H. Alférez), pele@dsic.upv.es

(Vicente Pelechano)

Preprint submitted to Computers and Electrical Engineering July 10, 2017

of the servers, etc. Thus, it is desirable to translate the ideas of adaptation in
the natural world to software in order to solve these situations.

In fact, adaptability is emerging as a necessary underlying capability of
highly-dynamic context-aware systems [1]. The context is any information that
can be used to characterize the situation of an entity [2]. Context-aware systems
are concerned with the acquisition of context, the abstraction and understand-
ing of context, and application behavior based on the recognized context [3].
Adaptability is specially relevant in systems built upon Web service operations.
Several exceptional situations may arise in the complex, heterogeneous, and
changing contexts where they run. For instance, a Web service operation may
have greatly increased its execution time or may have become unavailable. Cases
like these make evident the need for dynamic adaptations in critical systems that
are based on Web service compositions (or simply called service compositions).
However, implementing dynamic adaptations with variability constructs at the
language level can become complex and error-prone, specially in large systems
[4].

This article provides a framework based on models at runtime to guide dy-
namic adjustments of context-aware service compositions. Models at runtime
can be defined as causally connected self-representations of the associated sys-
tem that emphasize the structure, behavior, or goals of the system from a prob-
lem space perspective [5]. Our framework tries to solve the following gaps found
in related work on autonomic service compositions: 1) need for designing the
autonomic behavior of context-aware service compositions by means of easy-to-
understand abstractions; 2) need for facing unanticipated context events (unseen
at design time) in the open world; 3) need for transparent solutions that do not
require changes in the orchestration engine; and 4) need for means of verifying
autonomic adjustments to achieve safe reconfigurations.

In our approach, in response to changes in the context, the system itself can
query models during execution to determine the necessary modifications in the
underlying service composition. When a problematic event arises in the context,
models are leveraged for decision-making. The activation and deactivation of
features in a variability model result in changes in a composition model that
abstracts the service composition. Our approach verifies new possible config-
urations before they are applied to the running service composition. Changes
in the models are reflected into the service composition by adding or removing
fragments of Web Services Business Process Execution Language (WS-BPEL)
code, which can be deployed at runtime. Our solution does not require the
modification of the orchestration engine. If model adaptations are not enough
to solve uncertainty at runtime, we provide a solution to guide the dynamic evo-
lution of the supporting models to preserve high-level requirements. We present
novel evaluation results of our framework that demonstrate its potential.

The rest of this article is organized as follows: Section 2 presents the state
of the art. In this section, a taxonomy is proposed to facilitate the analysis of
related work. Section 3 describes the main building blocks of our framework.
Section 4 presents our framework for autonomic service compositions. Section
5 presents the evaluation of our framework. Section 6 presents conclusions and

2

future work.

2. Research on Autonomic Service Compositions

This section examines related work proposed during a period of thirteen
years to achieve autonomic service compositions in the following areas: vari-
ability constructs at the language level, brokers, models at runtime, and dy-
namic software product lines (DSPLs). These areas are covered in this section
because of their relevance in the state of the art of autonomic service compo-
sitions and their closed relationship with our approach. The aim of studying
these approaches is to answer the following questions:

• Question 1 (Q1): Which approaches have been proposed in recent years
to achieve autonomic service compositions by means of variability con-
structs at the language level, brokers, models at runtime, and DSPLs?

• Question 2 (Q2): How to characterize the approaches for autonomic
service compositions according to desirable properties of Self-Adaptive
Systems (SAS)?

• Question 3 (Q3): What are the gaps to be faced in the field of autonomic
service compositions?

In order to answer Q1, we identified 31 approaches on autonomic service com-
positions classified in the four studied areas of research (see Table 1). WS-BPEL
has become the de facto language to orchestrate service compositions. However,
there are two main drawbacks when using WS-BPEL in enterprise systems: 1)
WS-BPEL has an inherent static nature; and 2) WS-BPEL does not provide any
means for monitoring the context. Therefore, research works in the first area
are particularly focused on extending WS-BPEL to guide dynamic adjustments
according to collected context data. Intrusive and non-intrusive strategies have
been proposed to specify these extensions. On one hand, an intrusive strategy
has been to define variation points, variants, and configurations for a process in-
side the service composition specification (i.e., the composition schema). On the
other hand, non-intrusive strategies have been proposed by means of aspect ori-
entation, Event-Condition-Action (ECA) rules, and language-based monitoring
and recovery strategies.

In another area of research, a system works as a broker that is in charge
of selecting or binding partner service operations at runtime. To this end, the
broker intercepts service messages. Then, it exchanges service operations by
invoking the most adequate set of service operations (e.g. according to Quality
of Service (QoS) attributes) to accomplish a task.

In the third area of research, models at runtime extend the applicability
of models produced in Model-driven Engineering (MDE) approaches to execu-
tion time [40]. Since models at runtime provide up-to-date and exact informa-
tion about the runtime system, they can offer a rich semantic base for runtime
decision-making in order to achieve system adaptation. Thus, the system itself

3

Year Variability
Constructs at the
Language Level

Broker Models at Runtime DSPL

2016 Multi-Agent
Reinforcement Learning

[6], and Trustworthy
Stigmergic-based

Self-Organization[7]
2015 MoDAR [8], LIOM[9],

and Dynamic Evolution
[10]

Requirements-Driven
Self-Optimization [11]

2014 QoS-Gasp[12]
2013 Chemistry-Inspired

Middleware [13]
Runtime Evolution [14] FM-DAMASCo [15]

2012 MUSIC [16] and
MOSES [17]

2011 Self-Supervising
WS-BPEL Processes

[18]

SASSY [19], MAESoS
[20], and QoSMOS [21]

2010 Percentile-Based SLAs
[22]

SOPL [23]

2009 VxBPEL [24] BPEL’n’Aspects
[25, 26]

CAPucine [27]

2008 VieDAME [28],
Transparent Runtime
Adaptability [29], and

QoS-Aware Binding [30]
2007 AO4BPEL [31] Robust-BPEL2 [32],

and Paws [33, 34]
2006 SCENE [35] WSQoSX [36]
2005 DySOA [37, 38]
2004 AgFlow [39]

Table 1: Compendium of primary research works on autonomic service compositions from
2004 to 2016.

can query the models at runtime to make adaptation decisions, to choose the
adaptation strategy, and to control the adaptation process.

Also, Dynamic Software Product Line Engineering (DSPLE) has been pro-
posed as a way to achieve autonomic service compositions. In DSPLs, variation
points are bound initially when software is launched to adapt to the current
context, as well as during operation to adapt to changes in the context [41].

According to Table 1, brokers have been the most widely used mechanism to
achieve autonomic service compositions among the areas covered in this section.
Also, it is interesting to see that variability constructs at the language level
were a popular way to achieve autonomic service compositions during several
years (from 2006 to 2011). Nevertheless, this interest has moved in recent years
towards models at runtime or even DSPLE.

In order to answer Q2, we propose a taxonomy to facilitate the analysis
of research works. This taxonomy has a set of dimensions that describe sev-
eral expected facets of autonomic service compositions (see Table 2). We have
grouped the identified key dimensions into five groups: 1) the dimensions asso-
ciated with causes of self-adaptation – the “what”; 2) the dimensions associated

4

with the mechanisms to achieve self-adaptability – the “how”; 3) the dimension
about the frequency, duration, and anticipation of changes – the “when”; 4) the
dimensions related to the object of change – the “where”; and 5) the dimensions
related to the maturity of the approach. Several dimensions were taken from
previous taxonomies for SAS [42, 43] because they are general enough to be
applied to autonomic service compositions. However, autonomic service compo-
sitions have certain particular dimensions, which require to extend these generic
taxonomies. Specifically, we have added the following dimensions: transparency,
anticipation, generality, change level, and the dimensions that are related to the
maturity of the approaches for autonomic service compositions. For details on
how these research works have been organized according to the proposed tax-
onomy, see supplementary material 1.

Table 3 presents a summary of the research works in the four areas presented
in this section. This table shows that adaptations are caused by exclusively
external factors in the 54.84% of works, by exclusively internal factors in the
6.45% of works, and by both external and internal factors in the 22.58% of
works. The nature of change is related to non-functional requirements in the
54.84% of works, to functional requirements in the 9.67% of works, and to both
functional and non-functional requirements in the 29.03% of works.

The vast majority of the presented works propose fully automated solutions
for service compositions (83.87%). Also, the most of the approaches localize the
necessary adaptations (77.41% of works have local scope and 9.67% of works
have both local and global scopes). Moreover, the 70.96% of works trigger
adaptations to face events (event-triggered) and 6.45% of works are both event-
triggered and time-triggered. 51.61% of works have a decentralized architecture
for adaptation. There are several works that do not provide information about
the frequency of changes (38.71%). Nevertheless, the 45.16% of works show
a high tendency to carry out adaptations at arbitrary intervals. The adapta-
tion time of the presented solutions is short in the 41.93% of works. However,
the 35.48% of works do not provide any information about adaptation time.
The majority of research works deal with autonomic adjustments of service
compositions that are implemented with Web service operations – non-generic
SOA-related solutions (70.96%).

According to the maturity-related dimensions, the 61.29% of the studied
approaches provide support for autonomic service composition development
throughout the life cycle (from design time to runtime or from implementa-
tion to runtime). Therefore, we can conclude that the most widely-accepted
way to develop autonomic service compositions is when there is guidance dur-
ing the life cycle. Nevertheless, we cannot conclude the maturity level of the
presented approaches because of lack of information: 1) the 54.83% of studied
approaches do not specify the enterprise orchestration engines that were used
to execute the adjusted service composition; and 2) the 93.54% of works do not
provide demonstrability means (such as source code or video demonstration).

1http://www.harveyalferez.com/StateOfTheArt_AchievingAutonomicWebServiceCompositionsWithModelsAtRuntime/

5

However, we cannot conclude it is a sign of immaturity. Instead, it may be
caused by other facts, such as protection of intellectual property. Finally, al-
though the 51.61% of works provide evaluation results that are uniquely based
on examples, there is a significant percentage of works (45.16%) that use strong
evaluation mechanisms (such as simulations or industrial case studies).

Dimension Degree Definition
WHAT change is the cause for adaptation

Source External (context) or
internal

Where is the source of change?

Type Functional or non-functional What is the nature of change?
HOW the service composition faces changes

Autonomy Automated, partially
automated, manual

What is the degree of outside
intervention during adaptation?

Organization Centralized to decentralized Is the adaptation done by a single
component or distributed among several

components?
Scope Local to global Is the adaptation localized or involves

the entire system?
Triggering Event-trigger or time-trigger Is the change that triggers adaptation

associated with an event or a time slot?
Safety Verified or unverified

configurations
Are the possible configurations verified?

Transparency The orchestration engine
needs to change or not

(transparent)

Does the orchestration engine have to
change?

WHEN changes are carried out
Frequency Continuously, periodically,

at arbitrary intervals
What is the frequency of change?

Adaptation
time

Short, medium, long How long does the adaptation last?

Anticipation Foreseen or unforeseen
context events

Are context events foreseen at design
time?

WHERE changes are carried out
Generality Service-Oriented

Architecture (SOA) in a
generalized manner or Web

services

Is the solution related to SOA in a
generalized manner?

Change level Abstract, language, SOA
message

Where are changes carried out?

MATURITY of the approach
Applicability

scenarios
None, prototypes, industrial

orchestration engines
Has the approach been applied on

matured scenarios?
Demonstrability None, tool, running

examples
Is there any available demonstration?

Life-cycle
support

Analysis to runtime Which software life-cycle phases are
covered?

Evaluation None, example, simulation,
experiments in industry,

case study

How was the evaluation carried out?

Table 2: Taxonomy to classify research works on autonomic service compositions.

The information in Table 3 allows to answer the following question: Q3,
What are the gaps to be faced in the field of autonomic service compositions?
Our analysis is as follows:

• Need for transparency: Only 35.48% of the studied research works
offer a transparent solution (they do not require changes in the orchestra-
tion engine). The 58.06% of the studied research works do not provide

6

Dimension Summary of Research Works
WHAT change is the cause for adaptation

Source 17 external, 2 internal, 7 external and internal, 4 N/S,
and 1 N/A

Type 17 non-functional, 3 functional, 9 functional and
non-functional, 1 N/S, and 1 N/A

HOW the service composition faces changes
Autonomy 26 automated, 2 manual, 1 automated or manual, and 2

N/S
Organization 16 decentralized, 7 centralized, 7 N/S, and 1 N/A

Scope 24 local, 2 global, 3 local and global, and 2 N/S
Triggering 22 event-trigger, 1 time-trigger, 2 event- and

time-trigger, 1 manual, 4 N/S, and 1 N/A
Safety 6 verified and 25 unverified

Transparency 11 transparent, 2 no transparent, and 18 N/S
WHEN changes are carried out

Frequency 14 at arbitrary intervals, 4 periodically, 12 N/S, and 1
N/A

Adaptation time 13 short, 1 medium, 5 long, 11 N/S, and 1 N/A
Anticipation 25 foreseen, 3 unforeseen, 1 foreseen and unforeseen, 1

N/S, and 1 N/A
WHERE changes are carried out

Generality 7 SOA, 22 Web services, 1 Web services and API
recommenders, and 1 services

Change level 4 at the language level, 16 at the service message level, 8
at the abstract level and in underlying mechanisms (e.g.

service message), 1 aspect injection, 1 bricks
(components), and 1 bind/unbind components

MATURITY of the approach
Applicability

scenarios
1 PXE, 1 BPWS4J, 7 ActiveBPEL, 1 OSGi, 1 Apache

ServiceMix and XTEAM, 1 Riftsaw, 1 WSO2 Enterprise
Service Bus, 1 Oracle BPEL Process Manager, and 17

N/S
Demonstrability 1 has available code and demonstrations, 1 has available

source code, and 29 N/S
Life-cycle
support

16 cover design time and runtime, 3 cover
implementation and runtime, and 12 cover runtime

Evaluation 16 use examples, 2 use simulations, 2 case studies, 1 uses
an example and industrial experiments, 2 use

simulations and examples, 6 experiments, 1 experiments
and case study, and 1 N/S

Table 3: Summary of the approaches that support autonomic service compositions (N/A
means No Applicable, N/S means Not Specified).

information about transparency. In any case, there is a need for trans-
parent solutions to guide dynamic adjustments. A transparent solution
can result in higher flexibility to adopt autonomic computing in service
compositions.

• Need for facing unanticipated context events: The vast majority of
research works foresee the possible context events at design time (80.64%).
In other words, they can anticipate the possible adaptations for these
events a priori. This result indicates the need for mechanisms to allow
the service composition to face unknown (unanticipated) context events
in the open world.

• Need for safe reconfigurations: The vast majority of related work does
not provide means to verify autonomic adjustments (80.64%). As a result,

7

there is a need for verifying autonomic adjustments to achieve safe config-
urations at runtime. Otherwise, the benefits of autonomic computing will
be diminished with erroneous adjustments.

• Need for abstract mechanisms to guide dynamic adjustments: On
one hand, the use of variability constructs at the language level can hinder
reasoning about adaptation with complex and error-prone scripts [4]. On
the other hand, brokers have been widely used to implement QoS-aware
Web service compositions. Although QoS-aware Web service compositions
have proven to be effective, the selection of Web services maximizing the
QoS of the overall service composition leads to an optimization problem
that is NP-hard [30].
In order to reach an easier-to-understand and more flexible solution for
autonomic service compositions, several approaches based on models at
runtime have appeared in recent years. In these research works, the knowl-
edge in models created at design time is used to reason about the problem
and solution domains during execution. Nevertheless, in order to materi-
alize the industrial adoption of models at runtime as a feasible option to
achieve autonomic service compositions, we believe that it is important to
consider the following challenges found in the presented eight approaches
based on models at runtime: 1) among the set of research works, just
one of them describes a transparent solution, which does not require the
orchestration engine to be modified; 2) models at runtime are causally con-
nected to the underlying service composition (i.e., if this model changes,
then the service composition changes and vice versa). Therefore, a logical
benefit of using models at runtime is to verify new configurations of the
service composition first at the model level to ensure safe configurations.
Nevertheless, just the half of the presented approaches offer mechanisms
for verifying new configurations of the service composition; 3) just two
approaches offer mechanisms for facing unanticipated context events at
runtime. Most of them are focused on the closed world; 4) three research
works were applied on industrial orchestration engines and none of them
offer demonstrations. These facts may negatively impact the adoption of
models at runtime in industry; and 5) half of the research works do not
provide information about adaptation time. This fact implies the need
for stronger evaluations that show the feasibility of models at runtime to
solve self-adjustments of the service composition in a reasonable time.

3. Main Building Blocks of Our Framework

The feature model in Figure 1 presents the main building blocks of our
framework for achieving autonomic service compositions from a conceptual point
of view. The approach is divided into two main building blocks: Design Block
and Runtime Block. At the Design Block, we propose the creation of a
set of models that are used to support dynamic adjustments of the service
composition. At the Runtime Block, the models created at design time are

8

queried in response to context events to reconfigure the service composition.
The building blocks of our approach are described in the following subsections.

Approach

Design Runtime

Variability
Modeling

Service
Composition

Modeling

Context
Modeling

Requirements
Modeling

Configurations
Generation

Verification Tactics
Modeling

Dynamic
Adaptation

In the
Closed World

Dynamic
Evolution

In the
Open World

requires

requires

Models at
Runtime

Autonomic
Computing

requires

DSPL

Figure 1: Main building blocks of the approach from a conceptual point of view.

3.1. Design-Related Building Blocks
The following blocks support the creation of abstractions at design time to

guide autonomic service compositions during execution:

• Service Composition Modeling: In our approach, dynamic adjust-
ments are carried out first at the modeling level and then injected into
the running service composition. Therefore, it is necessary to count on an
abstraction of the underlying service composition. To this end, we propose
the creation of a composition model that is causally connected to the un-
derlying service composition. The Business Process Model and Notation
(BPMN) was chosen to represent the elements in the service composi-
tion because BPMN is a user-friendly notation that is suitable to express
sequences and dependencies among Web services and composite services.
Atomic Web service operations are abstracted as BPMN tasks. Composite
service operations are abstracted as BPMN subprocesses. The workflow
that is followed by the service composition is abstracted by BPMN gate-
ways and sequence flows that connect BPMN tasks and subprocesses.

• Variability Modeling: The composition model by itself lacks semantics
for variability. Therefore, it is necessary to count on feasible, semantically-
rich, and coarse-grained variability representations of service composi-
tions. A feature model is used to describe the variants in which the service
composition can self-adapt. We argue that in response to changes in the
context, the system itself can query this model to determine the necessary
modifications in the service composition. We propose to appoint certain
features in the feature model as variants that may be used to solve context
events and preserve the functionality of the service composition at runtime.
The feature model also has variation points that express decisions leading

9

to different variants at runtime [44]. The current configuration expresses
the set of features in the feature model with “active” state at a particular
time. Thus, the current configuration indicates the functionalities that
are provided by a composite service at a specific moment.
A service composition dictates an ordered main workflow that has to be
preserved in the composition model after adaptations have taken place.
Nevertheless, the feature model does not provide this sequence-related
information. Therefore, we propose the creation of the following models
[44]: 1) a BPMN base composition model extends the composition model
with semantics for variability and preserves the main workflow during
adaptations; and 2) a set of variant BPMN models to be bound into the
variation points of the base composition model during execution.
There are two optional sub-blocks related to variability modeling:

– Configurations Generation: The configuration of a service-based
system is the set of all active features in its related variability model
at a particular moment. At runtime, the system queries the adapta-
tion space with all the possible configurations of the variability model
in order to adapt from one configuration to another.

– Verification: Even though it is possible to use an unverified vari-
ability model at runtime to guide dynamic adaptations, it is a very
error-prone task. We argue that a best practice for SAS is to ensure
that system configurations are not invalid in a given contextual situa-
tion. Therefore, we propose to verify the variability model, expressed
as a feature model, and its possible configurations prior execution to
ensure safe service recompositions.

• Context Modeling: In order to carry out dynamic adjustments in the
service composition to face arising context events, first it is necessary to
count on an abstraction of the context. This abstraction can be used at
runtime to reason about the current contextual situation. We propose
an ontology-based context model that leverages Semantic Web technol-
ogy. The following datatype properties are used in the context model
[44]: 1) the isAvailable data type property indicates whether the ser-
vice operation is currently available (it is a Boolean value); and 2) the
hasExecutionTime datatype property observes the current execution time
in milliseconds that a service operation takes to execute a job.
Adaptation policies are in charge of activating or deactivating features in
the variability model at runtime to guide dynamic adjustments on the ser-
vice composition. In order to define adaptation policies, first it is necessary
to define the context conditions that may trigger adaptations. Context
conditions are extracted from the context model as Boolean expressions
to solve the need for examining the compliance of certain situations in the
context. Each context condition is represented as a Resource Description
Framework (RDF) triple in the form of (subject, predicate, object) [44].

10

The subject (i.e., an ontology individual) denotes a resource (i.e., a Web
service or a composite service operation) and the predicate expresses a re-
lationship between the subject and the object (i.e., the value of a datatype
property).
We propose to use the resolution concept to represent the set of changes
in a feature model triggered by a context condition [44, 45]. Resolutions
are the adaptation policies that express the transitions among different
configurations of the service composition in terms of activation or deacti-
vation of features. Resolutions materialize the vision of DSPLE by binding
variation points with the activation of variant features at runtime.

• Requirements Modeling: A requirements model describes the require-
ments that the service composition must preserve at runtime. These re-
quirements have to be fulfilled despite arising unknown context events.
Since the requirements model is leveraged during dynamic evolutions in
the open world, it is considered an optional block. We are particularly
interested in keeping non-functional requirements at runtime. Therefore,
the Goal-oriented Requirements Language (GRL) [46] has been used for
requirements modeling because it is focused on non-functional require-
ments [47, 48, 49].

• Tactics Modeling: In our approach, tactics are last-resort surviving ac-
tions to be used when the service composition does not have predefined
adaptation actions to deal with arising problematic context events in the
open world. Writing complex scripts to specify tactics can be cumber-
some. Therefore, highly-abstract tactic models can be used to express the
tactical functionality to be triggered on the underlying service composition
to preserve affected requirements [47, 48, 49].
Since tactics inject new variant functionalities into the service composition
to preserve requirements, tactic models are expressed as feature models
that can be merged into the variability model at runtime. In this way,
the evolved variability model includes the tactical functionality. During
execution, all the features in merged tactic models are activated to indi-
cate that all the means for the preservation of requirements are at hand.
Nevertheless, features in the merged tactic model lack information about
the workflow that service operations have to follow. Therefore, we propose
to count also on tactic models that reflect these workflows. To these end,
for each tactic model expressed as a feature model, there is a tactic model
expressed as a composition model.
At runtime, the evolved variability model has to be synchronized with the
evolved composition model to accurately reflect the current situation of the
underlying service composition. To this end, we propose the creation of a
weaving model to reflect the activation of features in tactic models, which
are expressed as feature models, on composition models, which abstract
the workflow among service operations in tactics. Each link (or mapping)
in the weaving model has the following endpoints: the first endpoint refers

11

to features in all the tactic models, which are expressed as feature models;
the second endpoint refers to elements in all the tactic models, which are
expressed as composition models.

3.2. Runtime-Related Building Blocks
In literature, it is common to find cases in which the terms “dynamic adap-

tation of software” and “dynamic evolution of software” (including other terms
in between) are used interchangeably. This mixture of terms arises the following
questions: Are these terms interchangeable? Or, Are there semantic differences
between these terms that can affect the meaning of what really happens in
the underlying software? The Oxford dictionary2 defines these terms as follows:
Adaptation: the action or process of adapting or being adapted. Adapt: become
adjusted to new conditions. Evolution: the gradual development of something.

These definitions clearly indicate that these terms are not interchangeable.
In fact, they offer an important basis to specify the differences between adap-
tation and evolution of software. On one hand, adaptation is about adjusting
to arising conditions (e.g. context events). Therefore, it is possible to say that
dynamic adaptations of software are carried out to make punctual changes to
face particular events (e.g. by activating or deactivating features of the system).

On the other hand, evolution is about gradual or continuous growth. Dy-
namic evolution does not imply just punctual adaptations to punctual events
but a gradual structural or architectural growth into a better state. This idea
goes in line with Lehman’s eight laws of software evolution [50]. These laws
essentially characterize the software evolution process as a self-stabilizing and
self-regulating system, subject to continuing growth and change.

Figure 2 exemplifies a dynamic adaptation and a dynamic evolution of soft-
ware. At the left, it presents the initial system configuration with active and
inactive features. At the middle, it presents the adapted system configura-
tion with features that have been activated and deactivated. At the right, it
presents the evolved systems configuration with features that have been added
to the system. In addition, this evolution required the adaptation (activation
or deactivation) of some features.

Inactive Active Active

Active Active

InactiveActive Active

Inactive Active

Active

InactiveActive Active

Inactive

Inactive ActiveActive

Inactive Active

Active

InactiveActive Active

Inactive

Inactive Active

Inactive Active

Active

InactiveActive Active

Active

Active

Active

Active

Active

Active

Active

Active

adapts evolves

Figure 2: Dynamic adaptation vs. Dynamic evolution of software.

2http://oxforddictionaries.com

12

In our approach, the following blocks support autonomic service composi-
tions during execution:

• Dynamic Adaptation in the Closed World: This block is focused on
the closed-world assumption, in which all context events are foreseen at
design time. Predefined actions in terms of the activation or deactivation
of features in a variability model guide adaptations in the service composi-
tion according to known (or foreseen at design time) context events. The
following sub-blocks are the underpinnings for the dynamic adaptation
of service compositions: 1) Autonomic Computing: In order to sup-
port the dynamic adaptation of service composition through autonomic
computing, we propose a computing infrastructure that implements the
components of IBM’s Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K) loop [51]; 2) Models at Runtime: In our approach, the set
of models that are created under the Design Building Block are used at
runtime to automatically determine how the service composition should
be adjusted; and 3) DSPL: DSPLE goes a step further from traditional
software product lines with the investigation of development issues for
reusable and dynamically reconfigurable core assets. When features are
activated or deactivated at runtime due to changes in the context, a DSPL
architecture supports the dynamic service recomposition.

• Dynamic Evolution in the Open World: Predefined adaptation ac-
tions for known context events in the closed world are not enough in the
open world where several unknown context events can arise. Despite the
recognized need for handling unexpected events in SAS [52, 53], the dy-
namic evolution of service compositions in the open world is still an open
and challenging research topic. In the open world, our approach tries to
reduce the impact of unknown context events on expected requirements
(described in a requirements model) with a group of tactics (described in
tactic models). Therefore, the open world can be seen as:

Open world = (
P

unknown context events that can be handled by
tactics)[(

P
unhandled unknown context events).

4. A Framework for Autonomic Service Compositions

We propose the following strategy to offer a solution for the dynamic ad-
justment of service compositions. First, the service composition is modeled at
design time. Then, we introduce mechanisms to express where and how service
compositions can be adapted or evolved to face arising context events. These
mechanisms are expressed as easy-to-understand and as highly-abstract as pos-
sible. At runtime, we provide an infrastructure that detects changes in the
context and enables dynamic adjustments. In order to make this strategy a
reality, we propose a framework that states the models, tools, and artifacts to

13

support dynamic adjustment of service compositions from design time to run-
time. This framework is depicted from an architectural point of view in Figure
3. This framework consists of three phases: Design, Dynamic Adaptation, and
Dynamic Evolution.

Adapted
Composition Model

Context
Model

Variability
Model

Weaving
Model

Composition
Model

updates

queries

2. Analyze Context
Information

analyzes

Adapted
Variability Model

v

xy

t r

4. Generate a
Reconfiguration

Plan

3. Execute
Adaptation Policy

uses

AA C D

5. Generate WS-BPEL
Code &

Hot Deployment

deploys

Model-Based Reconfigurator

activates/
deactivates
features

adapts

links links

1. Gather Context
Information

Context Monitor Execution Engine

Configuration
Generator generates Adaptation

Policies

uses
Verifier

checks

Reconfiguration
Plan

generates

uses

Variability Model
Configuration 1

v

xy

t r

Configuration 1

v

xy

t r

Variability Model
Configuration n

v

xy

t r

verifies

Was any SLA
violated?

yes

Dynamic Evolution

Evolution
Planner

Evolved
Variability Model

v

xy

t r Tactic

Requirements
Model

Tactic
Model

preserve

Design

Dynamic Adaptation

uses

Knowledge
Base

infers about
requirements

A

C

D

Model-Based
Reconfigurator

invokesevolves

Evolved
Composition Model

Tactic

+ +

deploys

Adapted
Composition

Schema

Evolved
Composition

Schema

Figure 3: A framework for the dynamic adjustment of service compositions.

4.1. Design Phase
In order to support dynamic adaptations in our framework, it is necessary

to count on abstractions that represent the context, the dynamic configurations
of the service composition, and the service composition itself. Also, it is nec-
essary to create the adaptation policies that move the service composition to
new configurations. To this end, the Design Phase covers the creation of a set
of models and other supporting artifacts. From a methodological point of view,
in order to organize the work of requirements engineers, systems analysts, and
developers in the creation of these assets for dynamic adaptation and dynamic

14

evolution, we propose two software process models. These process models are
supported by two method contents, which are based on the Software and Sys-
tems Process Engineering Meta-Model (SPEM) 2.0 [54]. In order to conserve
space, the method contents are available online3.

The models to be created at design time are summarized as follows. The
Systems Analyst role creates a composition model that describes the workflow
in the service composition and a variability model that describes the dynamic
configurations of the service composition in terms of activation or deactivation
of features. Thus, the knowledge that is captured by this model is the basis
for adaptation policies. Since the composition model may lack support for
variability, we propose to extend this model with variation points where variants
can be injected at runtime. The variability-related information to carry out this
extension is based on the variability model [44]. We also propose the creation of
two additional supporting models by the Systems Analyst role. First, a context
model formalizes the collected context knowledge. Second, since changes in
the variability model guide adaptations in the service composition, which is
abstracted in the composition model, we propose a weaving model to connect
these two models [44, 45].

Two tools provide variability reasoning at design time, the Configuration
Generator and the Verifier. The Configuration Generator uses the
variability model and the set of adaptation policies in terms of resolutions to
automatically generate the adaptation space of the service composition that
contains all the possible variability model configurations and migration paths
among configurations. In other words, the adaptation space shows the level of
autonomic behavior that can be achieved by means of a variability model. The
adaptation space can be abstracted as a highly-connected state machine where
states are the possible variability model. For example, the right-hand side of
Figure 4 shows the adaptation space that can be generated with a simple vari-
ability model with six features. The adaptation space contains twelve possible
service composition configurations (CC1 to CC12). The four resolutions at the
left express the transitions between different configurations in the adaptation
space in a declarative manner (without the need for an exhaustive definition of
each state transition). Resolutions are represented as arrows in the adaptation
space. For example, RC1 (i.e., the resolution R to face the context condition
C1), results in thirteen transitions in the adaptation space. The Configura-
tion Generator is implemented with our MOSKitt4SPL tool4.

The Verifier uses constraint programming to verify the variability model
and check that the generated configurations respect the constraints imposed by
the variability model. Verification of the variability model entails finding unde-
sirable properties, such as contradictory information or the impossibility to offer
a valid configuration for a particular context. If there are errors in the variabil-
ity model, they will inevitably spread to an undefined number of configurations,

3http://www.harveyalferez.com/thesis/method_contents.html
4https://tatami.dsic.upv.es/moskitt4spl/

15

A

B C

R
C1

 = {(B, Active)}

R
C2

 = {(C, Active)}

R
C3

 = {(E, Active)}

R
C4

 = {(B, Active), (C, Active)}

CC
1
 = {A}, CC

2
 = {A, B}, CC

3
 = {A, C},

CC
4
 = {A, D, F}, CC

5
 = {A, D, E, F},

CC
6
 = {A, B, C}, CC

7
 = {A, B, D, F},

CC
8
 = {A, B, D, E, F}, CC

9
 = {A, C, D, F},

CC
10

 = {A, C, D, E, F}, CC
11

 = {A, B, C, D, F},

CC
12

 = {A, B, C, D, E, F}

CC
2

CC
3 CC

4

CC
5

CC
6

CC
1

E

D

F

CC
9

CC
12

CC
8

CC
7

CC
11

CC
10

Variability Model

Resolutions

Configurations

Adaptation Space

Figure 4: Adaptation space with a simple variability model and a set of resolutions.

which can drastically diminish the quality and outcome of the entire adaptation.
This Verifier is not attached to any specific tool. Therefore, we have chosen
FAMA-FW5 and GNU Prolog6 to implement the Verifier depending on the
desired verification operations. Specifically, four verification operations are im-
plemented in GNU Prolog: accuracy of the variability model, non-existence
of dead features, stability, and semi-aliveness [44].

The dynamic adaptation of context-aware service compositions is possible
by adjusting models at runtime through predefined adaptation actions. This ap-
proach can work fine under the closed-world assumption. However, predefined
adaptation actions are not enough in the open world where several unforeseen
context events can arise. These unknown events create uncertainty in the way
the system should face them. Therefore, we propose to manage problematic
unknown context events through the dynamic evolution of the service composi-
tion.

The corrective actions to deal with uncertainty are expressed as abstract
tactic models. Specifically, the Systems Analyst role specifies tactics that trig-
ger the dynamic evolution of the service composition to preserve requirements
at runtime. Requirements are represented in an abstract way in a requirements
model. At runtime, an artificial intelligence mechanism looks for the require-
ments that can be affected by an unknown context event. Therefore, the Systems
Analyst role also defines in this phase a set of rule premises to evaluate arising
context facts against them at runtime. These rules are kept in a knowledge base

5http://www.isa.us.es/fama
6http://gprolog.univ-paris1.fr

16

[47, 48, 49].

4.2. Dynamic Adaptation Phase
In the Dynamic Adaptation Phase, the models and adaptation policies that

are created in the Design Phase are used to guide the self-adaptation of the
service composition. This phase is framed in the closed-world assumption, in
which possible context events, and the necessary adaptations for those events,
are fully known at design time.

The proposed infrastructure carries out the following steps to support dy-
namic adaptations. First, the Model-Based Reconfigurator queries the
context information that is collected by the Context Monitor and updates
the context model accordingly. In our approach, the Model-Based Recon-
figurator is materialized by our Model-based Reconfiguration Engine for Web
Services (MoRE-WS) tool, which implements the components of the MAPE-K
loop [55]. For the sake of flexibility, the Context Monitor is not attached
to any specific implementation. In fact, the Context Monitor works as a
plugin that can be connected or disconnected from the system, or replaced by
other implementations.

The Context Monitor counts on sensors to monitor the context and
to get the measures for basic metrics of quality attributes. Specifically, our
prototype has a sensor for Availability that measures the availability of a Web
service operation. Also, it has a sensor for Execution Time that measures the
current execution time in milliseconds that a Web service takes to execute a
job. The sensors implement the ping/echo approach by sending requests to
service operations and waiting for a response. Requests are sent continually,
periodically, and sequentially to each service operation to be observed. Several
sensors can be chosen at the same time. Also, they can be extended according
to particular needs (e.g. a sensor to monitor security). As soon as the Context
Monitor starts running, it creates an XML file to store the observed context
information. Each record in this document keeps an increasing identification
number for each context observation, the name of the observed service operation,
and the timestamp of the observation.

The XML file that is updated with the measures taken from the context
needs to be queried to determine if any change has to be made in the service
composition. This task is in charge of MoRE-WS, which periodically queries
this file to find new contextual information. In order to count on a fresh rep-
resentation of the context, MoRE-WS periodically updates the context model
according to the information that has been collected by the Context Mon-
itor. After inserting the events in the context model, MoRE-WS evaluates
the values in this model to find out if any context condition has been fulfilled.
If a context condition is fulfilled, then an adaptation is triggered on the service
composition to deal with the arising situation. We have implemented the op-
erations to insert context information into the context model and reason about

17

context conditions by means of SPARQL7.
As soon as an adaptation has been requested (i.e., after a context condition

has been fulfilled), MoRE-WS carries out three steps to plan the adaptation
of the service composition:

1. MoRE-WS triggers a resolution associated to a context condition, which
has occurred. To this end, MoRE-WS carries out the following actions
(see Figure 5):

1. Look for a
Resolution

Context Condition

Specific Resolution

input

output

CC1 CC2 CC3

Adaptation Space'

res1 res2look in

2. Trigger the
Resolution

input (res1)

A

B C

E

D

F

CC1 CC2 CC3

Adaptation Space''

res1 res2

transit (from CC1 to CC2)

A

B C

E

D

F

Current Configuration 1 (CC1) Current Configuration 2 (CC2)

Figure 5: Execute a resolution.

(a) Look for the resolution that is triggered by the context condition: In
this action, MoRE-WS uses the information of the context condition
that has been fulfilled in order to find the resolution that is triggered
by this condition. To this end, MoRE-WS looks in the adaptation
space for a transition, which represents a resolution, for the context
condition. This operation is possible because every transition in the
adaptation space encapsulates the information of the resolution and
its related context condition. The main benefit of this approach is
that MoRE-WS has full control of the different possible variability
model configurations and the transitions among them. The output
of this action is a resolution to be triggered on the feature model,
which abstracts the variability model.

(b) Trigger the resolution: In this action, MoRE-WS triggers the res-
olution to modify the configuration of the feature model by acti-
vating/deactivating its features. The current configuration in the
adaptation space transits to a new configuration thanks to the ap-
plication of a resolution (i.e., transition in terms of the adaptation
space). According to this change, MoRE-WS updates the current
configuration in the adaptation space in order to use this information
for subsequent adaptations.

7http://www.w3.org/TR/rdf-sparql-query/

18

2. MoRE-WS creates a reconfiguration plan, which contains a set of re-
configuration actions to adapt the composition model according to the
new configuration of the variability model (which has been modified by
a resolution). Reconfiguration actions are stated as composition model
increments (CM4) and composition model decrements (CMr). These
operations take a new configuration of the variability model as input,
and they calculate the modifications to the composition model by adding
(CM4) or removing (CMr) variant models (see Figure 6).

input

uses

Features

Weaving Model

output

Variant Models
(encapsulated in

BPMN subprocesses)

maps

A

B C

E

D

F

Current Configuration

Reconfiguration
Plan

(CMΔ & CM∇)

Generate a
Reconfiguration Plan

Figure 6: Generate a reconfiguration plan.

In order to generate reconfiguration actions, MoRE-WS queries a weaving
model to realize the mappings between the features that are active in
the new configuration of the feature model and a set of related BPMN
subprocesses, which abstract BPMN variant models that can be injected
into a BPMN base composition model [44]. In this way, a given service
operation, which is represented in the composition model, will be invoked
in the adapted service composition if and only if its related feature in the
feature model configuration is active. That is, the composition model is
adapted through the activation or deactivation of features. The currently
active features, which have not been deactivated in the new configuration
of the variability model, still active.

3. In this step, MoRE-WS applies the reconfiguration plan (with CM4 and
CMr actions) on the composition model. Specifically, it carries out the
following actions:
(a) MoRE-WS loads the current version of the composition model (i.e.,

the one that reflects the current situation of the service composition).
Let us name the current version of the composition model “running
composition model ”. In order to keep track of the variation points
that can be rebound at runtime, the running composition model al-
ways keeps intact the information of the variation points.

(b) MoRE-WS deletes all the modeling elements in the variation points
of the running composition model that are affected by CMr actions.

(c) MoRE-WS loads the file in XML Metadata Interchange (XMI) for-
mat that contains the BPMN base composition model and the BPMN

19

variant models. The objective of this action is to count on the
abstract elements to be incremented into the running composition
model according to CM4 actions.

(d) MoRE-WS inserts BPMN variant models into variation points in
the running composition model according to CM4 actions.

(e) MoRE-WS saves the new version of the running composition model.

Finally, modifications in the composition model are reflected into the service
composition by adding or removing fragments of WS-BPEL code from a WS-
BPEL template. The adapted composition schema is hot deployed transparently
on the Execution Engine. In turn, the Execution Engine uses the adapted
WS-BPEL composition schema to orchestrate the service composition.

4.3. Dynamic Evolution Phase
In the Dynamic Evolution Phase, the knowledge in models is used to guide

the dynamic evolution of the service composition in the open world. To this
end, the Evolution Planner queries the context information in the context
model to find out if a requirement in the requirements model can be negatively
impacted by an unknown context event. In order to find the requirement(s)
that can be affected by unknown context events, the Evolution Planner
uses forward chaining [47, 48, 49]. This method evaluates arising context facts
(i.e., context events) against general rule premises in a knowledge base. A key
advantage of forward chaining in the open world is that new context events can
trigger new inferences.

Since we are interested in managing uncertainty that arises from the context
in which the service composition is deployed, our approach is related to external
uncertainty [56]. In order to preserve affected requirements, the Evolution
Planner chooses surviving tactics. According to the chosen tactics, MoRE-
WS evolves the variability and composition models by means of tactic models.
The following steps are carried out to reflect the changes in the evolved compo-
sition model into the WS-BPEL composition schema [49]: 1) MoRE-WS looks
for the tactic that has been added into the composition model; 2) with this
information, MoRE-WS looks for the WS-BPEL code fragment that invokes
the tactical functionality. Each tactic model maps to a WS-BPEL code frag-
ment, which is stored in a repository (i.e., a directory). Each code fragment has
an associated Web Services Description Language (WSDL) file, which is used
to invoke the tactic’s Web service; and 3) MoRE-WS injects the WS-BPEL
code fragment that invokes the tactic into the composition schema. A parallel
flow is dynamically created between the code that invokes the affected service
operation and the code that invokes the tactic’s Web service. In each evolution,
MoRE-WS puts the evolved composition schema and other required artifacts
into a deployment directory. This directory is hot deployed by the Execution
Engine.

20

5. Evaluation

This section presents a set of experiments to measure the following: 1) the
performance of the Context Monitor, which was not evaluated in our pre-
vious work. We believe that the efficient context observation is a requirement
to carry out self-adjustments on time; and 2) the performance of all the in-
ternal operations that are carried out in MoRE-WS and in the Evolution
Planner during dynamic adaptations and dynamic evolutions. We argue that
a comprehensive evaluation of these operations can help to demonstrate that
models at runtime are a feasible way to guide dynamic adjustments of service
compositions. We chose to evaluate execution time because SAS are expected
to offer prompt self-adjustments in response to arising context events. Also,
we evaluated memory consumption because models are loaded into memory to
make decisions.

In order to develop the evaluation metrics, we used the Goal/Question/Metric
(GQM) paradigm [57]. Each GQM model supports key aspects of our con-
tribution at the Dynamic Adaptation and Dynamic Evolution phases of our
framework. The GQM models in Section 5.1 present three GQM models that
are used to evaluate the Context Monitor and MoRE-WS during dynamic
adaptations. The GQM model in Section 5.2 presents one GQM model that is
used to evaluate the Evolution Planner and MoRE-WS to carry out dy-
namic evolutions. In the experiments, we used the online-book-shopping service
composition presented in our previous work [44]. Two video demonstrations of
our framework in action, one for dynamic adaptation and another for dynamic
evolution, are available online8.

The Web services in the experiments ran on Apache Axis29 version 1.6.1,
which is deployed as a WAR distribution on Apache Tomcat10 version 7.0.8.
Hot deployment is carried out by MoRE-WS on Apache ODE11 version 1.3.5,
which is deployed on a second instance of Apache Tomcat as a WAR distribu-
tion. The Context Monitor and the Evolution Planner are implemented
as Open Services Gateway Initiative (OSGi) bundles. The aforementioned pieces
run on a PC with an Intel Core 2 Duo 2.0 GHz processor, 4 GB RAM, 64-bit
Ubuntu version 12.10, and Kernel Linux version 3.5.0-37-generic.

5.1. Validation in the Dynamic Adaptation Phase
This section presents three GQM models, which are used to validate key

aspects of our implemented Context Monitor and MoRE-WS. These two
tools are used to support the Dynamic Adaptation Phase of our framework.

8http://www.harveyalferez.com/thesis/videos.html
9http://axis.apache.org/axis2/java/core

10http://tomcat.apache.org
11http://ode.apache.org

21

5.1.1. Context Observation Efficiency
Table 4 describes the GQM model for the following goal: “Efficient context

observation of service operations from the Context monitor’s viewpoint.”

Goal

Purpose Efficient

Issue context observation of

Object service operations

Viewpoint from the Context Monitor’s
viewpoint

Question Q1 Is the Context Monitor efficient to observe
service operations?

Metrics M1 - M5 (M1) execution time for observing service
operations, (M2) memory consumption when
observing service operations, (M3) number of
observed service operations, (M4)
observation period, and (M5) elapsed time

Table 4: GQM model for the “efficient context observation of service operations from the
Context Monitor’s viewpoint” goal.

In order to answer Q1, we measured the execution time (M1) and the
memory consumption (M2) of our implementation of the Context Moni-
tor. Measures were taken when the Context Monitor was observing the
context and updating a file with these observations. Specifically, the Context
Monitor observed a number of service operations (M3) measured in a period
of time (M4) during an elapsed time (M5). In our case, it observed the 15
service operations of our case study (common and variant operations) in se-
quence every five seconds (M4) during one hour (M5). In every observation,
the Context Monitor saved the observed data in a file. Figure 7 shows the
resulting execution time in this experiment. The execution time to carry out a
set of observations has a linear growth as the file with the observations grows.
There is always a peak at the very beginning of context observations because
resources are assigned to Apache Axis2.

22

Figure 7: Resulting execution time for the experiment to answer Q1.

Figure 8 shows the resulting memory consumption in this experiment. When
the heap reaches a minimum percentage of heap free after garbage collection,
the Java virtual machine increases the amount of free memory. Therefore, this
figure shows periodic and sudden memory improvements.

Figure 8: Resulting memory consumption for the experiment to answer Q1.

Our implementation of the Context Monitor can be used to store context
data for short periods of time without excessive execution time or memory
problems (e.g. out-of-memory errors). Moreover, the data collected by our
Context Monitor fulfills its main goal: to feed MoRE-WS with context
data, which can be analyzed at runtime. However, execution time and memory
consumption increase as the file with the observations grows. This situation

23

may require a further alternative approach, such as managing input data in a
stream database, which can handle continuous data streams.

5.1.2. Dynamic Adaptation Efficiency
Table 5 describes the GQM model for the following goal: “Efficient dynamic

adaptation of service compositions from MoRE-WS’s viewpoint.”

Goal

Purpose Efficient

Issue dynamic adaptation of

Object service compositions

Viewpoint from MoRE-WS’s viewpoint

Question Q2 Is MoRE-WS efficient to carry out the
dynamic adaptation of service compositions?

Metrics M6 - M10 (M6) average execution time of the
operations that are carried out by
MoRE-WS for dynamic adaptation, (M7)
average memory consumption of the
operations that are carried out by
MoRE-WS for dynamic adaptation, (M8)
CPU consumption in a time frame, (M9)
memory consumption in a time frame, and
(M10) time frame

Table 5: GQM model for the “efficient dynamic adaptation of service compositions from
MoRE-WS’s viewpoint” goal.

In order to answer Q2, we carried out two experiments. In the first experi-
ment, we measured the average execution time (M6) and the average memory
consumption (M7) of the operations that are carried out by MoRE-WS to
dynamically adapt the service composition to face one context condition. This
context condition is triggered when a composite service is currently unavailable.
In order to face this context condition, a resolution deactivates two Web service
functionalities. In turn, this resolution activates three Web service functionali-
ties. In the second experiment, we measured the CPU consumption (M8) and
the memory consumption (M9) during dynamic adaptations for four context
conditions. The problematic context events happened sequentially in a time
frame of less than a minute (M10). In both experiments, we used the following
files with models at runtime: a file with a feature model (23.0 kB); a file with
a BPMN base composition model and BPMN variant models (25.1 kB); and a
file with the weaving model that links the elements between the aforementioned
models (11.4 kB).

Results of the First Experiment
Table 6 shows the summary of the average execution time in milliseconds

and the average memory consumption in megabytes for MoRE-WS operations
during the dynamic adaptation. We ran the same adaptation three times and

24

calculated the average of the measures in order to give results as accurate as
possible.

Operation Execution Time
(ms)

Memory
Consumption

(MB)
Analyzing the Context

Creating an empty context model 487.6 16.1
Inserting context events into the

context model
486.6 24.3

Evaluating context conditions 154 16.5
Deleting the elements in the context

model
17.6 8.5

Planning the Adaptation
Looking for the resolution that is
triggered by the context condition

0.6 7.7

Executing a resolution 532.6 7.9
Updating the feature model 1.3 7.6
Querying the weaving model 2.4 9

Generating a reconfiguration plan 449 9
Adapting the composition model 430 12

Executing the Adaptation
Looking for the adapted variation
points in the composition model

340 8.5

Inserting WS-BPEL fragments into
the WS-BPEL template

107.3 35.2

Creating the deployment directory 16.3 8.5
Copying the WSDL files into the

deployment directory
2.3 8.3

Table 6: Summary of the dynamic adaptation results to answer Q2.

In the Analyzing the Context section of Table 6, the “creating an empty con-
text model” and “inserting context events into the context model” operations
got the highest execution time. Nevertheless, the “creating an empty context
model” operation is carried out just one time when MoRE-WS starts. The “in-
serting context events into the context model” operation covers two operations:
1) querying the file with the context observations; and 2) updating the context
model. Therefore, the efficiency of this operation depends on the number of
observations to be put into the context model. In order to make the query-
ing operation as efficient as possible, this operation was implemented with the
Streaming API for XML (StAX)12.

In the Planning the Adaptation section of Table 6, the operations that guide
model-driven dynamic adaptations got the highest execution time. First, the
“executing a resolution” operation triggers the activation and deactivation of
features in the variability model by invoking the “updating the feature model”
operation. Second, the “generating a reconfiguration plan” operation calculates
increments and decrements in the composition model (these operations take

12http://stax.codehaus.org

25

a new configuration of the variability model as input, and they calculate the
modifications to the composition model by adding or removing variant models).
Finally, the “adapting the composition model” operation looks for the variation
points that have to be rebound and does the necessary rebindings with BPMN
variant models. Nevertheless, each one of these operations was carried out in less
than 0.6 seconds. Also, memory consumption was very low in these operations.

In the Executing the Adaptation section of Table 6, the “looking for the
adapted variation points in the composition model” got the highest execution
time. This operation searches sequentially in the adapted composition model
for the variation points that have been rebound with variant models.

It is important to notice the following about the strategy of merging WS-
BPEL fragments into the WS-BPEL template: 1) this strategy got a fast exe-
cution time; and 2) the memory consumption of this operation was higher than
the other operations because of file management. Nevertheless, the required
memory can be easily supported by recent servers.

Overall, the resulting execution times and memory consumptions in Table 6
demonstrate that MoRE-WS is efficient to carry out dynamic adaptations.

Results of the Second Experiment
Figure 9 shows the percentage of CPU consumption of MoRE-WS during

four dynamic adaptations in a time frame of less than a minute. These results
were obtained with Java VisualVM13.

Figure 9: CPU consumption of MoRE-WS during four dynamic adaptations (line in orange).

The line in orange indicates the percentage of CPU consumption. The line
in blue is for the Garbage Collector (GC). On one hand, MoRE-WS does not
carry out any dynamic adaptation in the lower peaks. At these times, MoRE-
WS updates the context model and analyzes whether any context condition has
been fulfilled or not. MoRE-WS only spends around 20% of the CPU when
it is on context-observation mode. On the other hand, MoRE-WS carries out
the dynamic adaptations for the four fulfilled context events in the four higher

13http://visualvm.java.net

26

peaks. During dynamic adaptations, the CPU consumption grows up to 60%
for a few seconds.

In Figure 10, the line in blue shows the memory consumption of MoRE-
WS for the aforementioned four dynamic adaptations. The line in orange is
for the heap size, which is automatically assigned by the Java virtual machine.
Memory consumption is constant and low even during adaptations.

Figure 10: Memory consumption of MoRE-WS during four dynamic adaptations (line in
blue).

5.1.3. Operability under Stress
Table 7 describes the GQM model for the following goal: “Avoid saturation

under stress circumstances of MoRE-WS from MoRE-WS’s viewpoint.” In
order to answer Q3, we manually injected four problematic context events into
the file with the observations log (M11). These events are separated by very
small time frames of less than one second (M12).

In the fist run (or observation), MoRE-WS retrieved the aforementioned set
of problematic events at once because it queries the information collected by the
Context Monitor every five seconds (M13). Then, MoRE-WS evaluated
four context conditions that could be affected by these events (M14). Table
8 shows execution time (M15) and memory consumption (M16) results for
dynamic adaptations under this stressful situation. Since context conditions are
evaluated in sequence (a dynamic adaptation for context condition 1 is always
triggered before an adaptation for context condition 2), we did not experience
performance decrease (i.e., the execution time is similar to the execution time
without stress). Moreover, the memory consumption was low because only one
dynamic adaptation is carried out at a time. Therefore, we can conclude that
MoRE-WS is efficient under stress circumstances when several problematic
context events arise in tight time frames.

27

Goal

Purpose Avoid

Issue saturation under stress circumstances
of

Object MoRE-WS

Viewpoint from MoRE-WS’s viewpoint

Question Q3 Does MoRE-WS have a good performance
and memory consumption under stress
circumstances?

Metrics M11 - M16 (M11) number of problematic context events,
(M12) time frame between problematic
context events, (M13) frequency to observe
the context, (M14) number of context
conditions that could be affected by arising
context events, (M15) execution time under
stress circumstances, and (M16) memory
consumption under stress circumstances

Table 7: GQM model for the “avoid saturation under stress circumstances of MoRE-WS

from MoRE-WS’s viewpoint” goal.

Context Condition Execution Time
(ms)

Memory
Consumption

(MB)
Unavailable Composite Service Operation

d

6,645 11.8

High Execution Time of Web Service
Operation jV

Execution Time of Web Service
Operation F Lower than the Execution

Time of a Variant Web Service Operation

4,858 10.7

High Execution Time of Web Service
Operation yV

Execution Time of Web Service
Operation W Lower than the Execution

Time of a Variant Web Service Operation

5,138 10.7

High Execution Time of Web Service
Operation Y

4,571 10.7

Table 8: Execution time and memory consumption during dynamic adaptations for four con-
text events in a very tight time frame.

5.2. Validation in the Dynamic Evolution Phase
Table 9 describes the GQM model for the following goal: “Efficient dynamic

evolution of service compositions from the Evolution Planner’s and MoRE-
WS’s viewpoint.” In order to answer Q4, we carried out two experiments.

28

Goal

Purpose Efficient

Issue dynamic evolution of

Object service compositions

Viewpoint from the Evolution Planner’s and
MoRE-WS’s viewpoints

Question Q4 Are the Evolution Planner and
MoRE-WS efficient to carry out dynamic
evolutions?

Metrics M17 - M22 (M17) average execution time of the
operations that are carried out by the
Evolution Planner to plan an evolution,
(M18) average memory consumption of the
operations that are carried out by the
Evolution Planner to plan an evolution,
(M19) average execution time of the
operations that are carried out by
MoRE-WS for dynamic evolution, (M20)
average memory consumption of the
operations that are carried out by
MoRE-WS for dynamic evolution, (M21)
overall CPU consumption, and (M22) overall
memory consumption

Table 9: GQM model for the “efficient dynamic evolution of service compositions from the
Evolution Planner’s and MoRE-WS’s viewpoint” goal.

In the first experiment, we measured the following: 1) the average execution
time (M17) and the average memory consumption (M18) of the operations that
are carried out by the Evolution Planner to plan an evolution; and 2) the
average execution time (M19) and the average memory consumption (M20)
of the operations that are carried out by MoRE-WS to evolve the service
composition. In this experiment, we triggered an unknown context event (non
previously defined at design time). In the second experiment, we measured the
overall CPU consumption (M21) and the overall memory consumption (M22)
during the dynamic evolution for the aforementioned unknown context event.

In both experiments, we used the following files with models at runtime: a
file with the requirements model (3.3 kB); a file with a tactic implemented as
a feature model (0.96 kB); a file with a tactic implemented as a composition
model (2.18 kB); a file with the weaving model between the tactic implemented
as a feature model, and the tactic implemented as a composition model (2.7
kB); a file with the composition model (6.8 kB); and a file with the variability
model (23.0 kB).

29

Results of the First Experiment
Table 10 shows the summary of the average execution time in milliseconds

and the average memory consumption in megabytes for the operations that are
carried out by the Evolution Planner and MoRE-WS during a dynamic
evolution. This dynamic evolution is triggered by an injected event not pre-
viously defined at design time. We ran the same evolution three times and
calculated the average of the measures in order to give results as accurate as
possible.

Operation Execution Time
(ms)

Memory
Consumption

(MB)
Evolution Planner

Searching for the requirements that
may be affected by an unknown

context event

22.7 11.2

Searching for surviving tactics 208 11.2
MoRE-WS

Merging a tactic model into the
variability model and generating an

evolution policy

87.6 12.4

Creating a reconfiguration plan and
merging a tactic model into the

composition model

215 14.8

Evolving the WS-BPEL composition
schema

138.6 15.8

Table 10: Summary of the dynamic evolution results to answer Q4.

In Table 10, the results of memory consumption in all the operations were
similar and very low. In the section about the Evolution Planner, the ex-
ecution time of the “searching for the requirements that may be affected by an
unknown context event” operation was faster than the execution time of the
“searching for surviving tactics” operation. In the first operation, the Evolu-
tion Planner uses the forward chaining method, which is very efficient in our
case with small knowledge bases. The implementation of the second operation
is based on Eclipse Modeling Framework (EMF).

It is important to notice that the computational complexity of forward chain-
ing in a rule system that consists of ⌘ rules is O(⌘2). The proof is that the worst
case to search among ⌘ rules consists of ⌘ iterations. The maximum sum of it-
erations is ⌘ + ⌘–1 + ⌘–2 + . . . + 1 = ⌘(⌘–1)/2 =O(⌘2). With this exponential
complexity, the system will perform quite slowly for a big rule-base with a lot
of rules. In case of requiring large knowledge bases, complexity can be reduced
with the Rete algorithm [58]. This algorithm reduces the number of compar-
isons between rule conditions and assertions in the working memory. This kind
of improvements is outside the scope of this work.

In the section about MoRE-WS in Table 10, the most expensive operations
were the creation of a reconfiguration plan and merging a tactic model into

30

the composition model. In these operations, MoRE-WS carries out several
tasks. First, it creates a reconfiguration plan with composition model incre-
ments (CM4) and composition model decrements (CMr). Then, it merges
the tactic model into the composition model by creating a parallel relationship
between the abstraction of the problematic service operation (which is previ-
ously found) and the tactic model. In general, the resulting execution time and
low memory consumption in Table 10 demonstrate that our proposed computer
infrastructure is efficient to carry out dynamic evolutions.

Results of the Second Experiment
Figure 11 shows the percentage of CPU consumption of MoRE-WS dur-

ing the dynamic evolution for an unknown context event. The line in orange
indicates the percentage of CPU consumption. In the lower peaks, MoRE-WS
evaluates whether or not there is any arising unknown context event. During
execution, MoRE-WS only spends around 20% of the CPU in this operation.
The dynamic evolution occurs around 11:58 AM, which has the highest peak.
During this dynamic evolution, the CPU consumption grows up to 40% for a
few seconds.

Figure 11: CPU consumption of MoRE-WS during a dynamic evolution around 11:58 AM
(line in orange).

In Figure 12, the line in blue shows the memory consumption of MoRE-
WS for the aforementioned evolution around 11:58 AM. Memory consumption
increased just a little during this dynamic evolution. The reason of the peak at
the beginning of this figure is because MoRE-WS starts to run at that time.

6. Conclusions and Future Work

The present work has described a tool-supported framework to guide auto-
nomic adjustments of context-aware service compositions in the closed and open
worlds using models at runtime. We carried out the analysis of research works
on autonomic service compositions. In this analysis we found a set of gaps: need
for abstract mechanisms to guide dynamic adjustments, need for facing unan-
ticipated context events in the open world, need for transparency, and need for

31

Figure 12: Memory consumption of MoRE-WS during a dynamic evolution around 11:58
AM (line in blue).

safe reconfigurations. Our approach tries to solve these gaps by means of the
application of building blocks that are the basis for the Design Phase, the Dy-
namic Adaptation Phase, and the Dynamic Evolution Phase of our framework.
The evaluation results show that the Context Monitor, MoRE-WS and
the Evolution Planner, which are key components at runtime, are efficient
during dynamic adaptations and dynamic evolutions.

As future work, we would like to use models at runtime to migrate run-
ning instances of the service composition. We believe that the knowledge in
the composition model can be used at runtime to migrate the running instances
according to the latest version of the composition schema. This is a big research
area with several challenges. For example, integrity of data in migrated transac-
tions has to be ensured, and instances should be migrated efficiently and safely
(i.e., without errors).

Also, our approach will be extended to proactively discover problematic
context events and carry out the necessary changes in the architecture. One way
to carry out proactive dynamic adaptations is with machine learning. Since the
Context Monitor collects data constantly, and data logs can be kept from
different autonomic systems, we believe that machine learning can learn from
data to make further decisions.

Acknowledgements

This work has been developed with the support of MINECO under the
project SMART ADAPT TIN2013-42981-P and co-financed with ERDF.

References

[1] J.-Y. Hong, E.-H. Suh, S.-J. Kim, Context-aware systems: A litera-
ture review and classification, Expert Syst. Appl. 36 (2009) 8509–8522.
doi:10.1016/j.eswa.2008.10.071.

[2] A. K. Dey, Understanding and using context, Personal Ubiquitous Comput. 5
(2001) 4–7.

32

[3] A. Schmidt, Ubiquitous computing - computing in context, Ph.D. thesis, Lan-
caster University (November 2002).
URL http://www.comp.lancs.ac.uk/~albrecht/phd/

[4] F. Fleurey, A. Solberg, A domain specific modeling language supporting specifi-
cation, simulation and execution of dynamic adaptive systems, in: Proceedings of
the 12th International Conference on Model Driven Engineering Languages and
Systems, MODELS ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 606–621.

[5] G. Blair, N. Bencomo, R. B. France, Models@ run.time, Computer 42 (2009)
22–27. doi:http://dx.doi.org/10.1109/MC.2009.326.

[6] H. Wang, X. Wang, X. Hu, X. Zhang, M. Gu, A multi-agent reinforcement learn-
ing approach to dynamic service composition, Information Sciences 363 (2016) 96
– 119. doi:http://dx.doi.org/10.1016/j.ins.2016.05.002.

[7] A. Moustafa, M. Zhang, Q. Bai, Trustworthy stigmergic service compositionand
adaptation in decentralized environments, IEEE Transactions on Services Com-
puting 9 (2) (2016) 317–329. doi:10.1109/TSC.2014.2298873.

[8] J. Yu, Q. Z. Sheng, J. K. Swee, J. Han, C. Liu, T. H. Noor, Model-driven de-
velopment of adaptive web service processes with aspects and rules, Journal of
Computer and System Sciences 81 (3) (2015) 533 – 552, special Issue on selected
papers from the 4th International Conference on Ambient Systems, Networks and
Technologies (ANT 2013). doi:http://dx.doi.org/10.1016/j.jcss.2014.11.008.

[9] P. Xie, Y. Song, Y. Wang, Y. Luo, Y. Zhang, A solution for web service composi-
tion based on logic-interface orchestration, in: Computer Supported Cooperative
Work in Design (CSCWD), 2015 IEEE 19th International Conference on, 2015,
pp. 555–560. doi:10.1109/CSCWD.2015.7231019.

[10] C. Lv, W. Jiang, S. Hu, J. Wang, G. Lu, Z. Liu, Efficient dynamic evolution of
service composition, IEEE Transactions on Services Computing PP (99) (2015)
1–1. doi:10.1109/TSC.2015.2466544.

[11] B. Chen, X. Peng, Y. Yu, W. Zhao, Requirements-driven self-optimization of com-
posite services using feedback control, IEEE Transactions on Services Computing
8 (1) (2015) 107–120. doi:10.1109/TSC.2014.2298866.

[12] J. A. Parejo, S. Segura, P. Fernandez, A. Ruiz-Cortés, Qos-aware web services
composition using GRASP with path relinking, Expert Systems with Applications
41 (9) (2014) 4211 – 4223. doi:http://dx.doi.org/10.1016/j.eswa.2013.12.036.

[13] C. Wang, J. L. Pazat, A chemistry-inspired middleware for self-adaptive service
orchestration and choreography, in: Cluster, Cloud and Grid Computing (CC-
Grid), 2013 13th IEEE/ACM International Symposium on, 2013, pp. 426–433.
doi:10.1109/CCGrid.2013.51.

[14] M. Hussein, J. Han, J. Yu, A. Colman, Enabling runtime evolution of context-
aware adaptive services, in: Services Computing (SCC), 2013 IEEE International
Conference on, 2013, pp. 248–255. doi:10.1109/SCC.2013.77.

33

[15] J. Cubo, N. Gamez, L. Fuentes, E. Pimentel, Composition and Self-Adaptation of
Service-Based Systems with Feature Models, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 326–342.

[16] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo,
A. Mamelli, G. Papadopoulos, A development framework and methodology for
self-adapting applications in ubiquitous computing environments, Journal of Sys-
tems and Software 85 (12) (2012) 2840 – 2859.

[17] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, R. Mirandola,
MOSES: A framework for QoS driven runtime adaptation of service-oriented sys-
tems, Software Engineering, IEEE Transactions on 38 (5) (2012) 1138–1159.

[18] L. Baresi, S. Guinea, Self-supervising BPEL processes, IEEE Trans. Softw. Eng.
37 (2011) 247–263.

[19] D. Menasce, H. Gomaa, S. Malek, J. Sousa, SASSY: A framework for self-
architecting service-oriented systems, IEEE Software 28 (2011) 78–85.

[20] X. Franch, P. Grunbacher, M. Oriol, B. Burgstaller, D. Dhungana, L. Lopez,
J. Marco, J. Pimentel, Goal-driven adaptation of service-based systems from run-
time monitoring data, in: Proceedings of the 2011 IEEE 35th Annual Computer
Software and Applications Conference Workshops, COMPSACW ’11, IEEE Com-
puter Society, Washington, DC, USA, 2011, pp. 458–463.

[21] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli, Dy-
namic QoS management and optimization in service-based systems, IEEE Trans-
actions on Software Engineering 37 (2011) 387–409.

[22] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, Adaptive management of
composite services under percentile-based service level agreements, in: P. Maglio,
M. Weske, J. Yang, M. Fantinato (Eds.), Service-Oriented Computing, Vol. 6470
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp.
381–395.

[23] J. Lee, G. Kotonya, Combining service-orientation with product line engineering,
IEEE Softw. 27 (2010) 35–41.

[24] M. Koning, C.-a. Sun, M. Sinnema, P. Avgeriou, VxBPEL: Supporting variability
for web services in BPEL, Inf. Softw. Technol. 51 (2009) 258–269.

[25] D. Karastoyanova, F. Leymann, BPEL’n’Aspects: Adapting service orchestration
logic, in: Proceedings of the 2009 IEEE International Conference on Web Services,
ICWS ’09, 2009, pp. 222–229.

[26] M. Sonntag, D. Karastoyanova, Compensation of adapted service orchestration
logic in BPEL’n’aspects, in: Proceedings of the 9th International Conference on
Business Process Management, BPM ’11, Springer-Verlag, 2011, pp. 1–16.

[27] C. Parra, X. Blanc, L. Duchien, Context awareness for dynamic service-oriented
product lines, in: Proceedings of the 13th International Software Product Line
Conference, SPLC ’09, Carnegie Mellon University, Pittsburgh, PA, USA, 2009,
pp. 131–140.

34

[28] O. Moser, F. Rosenberg, S. Dustdar, Non-intrusive monitoring and service adap-
tation for WS-BPEL, in: Proceedings of the 17th international conference on
World Wide Web, WWW ’08, ACM, New York, NY, USA, 2008, pp. 815–824.

[29] A. Mosincat, W. Binder, Transparent runtime adaptability for BPEL processes,
in: Proceedings of the 6th International Conference on Service-Oriented Comput-
ing, ICSOC ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 241–255.

[30] G. Canfora, M. D. Penta, R. Esposito, M. L. Villani, A framework for QoS-
aware binding and re-binding of composite web services, Journal of Systems and
Software 81 (10) (2008) 1754 – 1769.

[31] A. Charfi, M. Mezini, AO4BPEL: An aspect-oriented extension to BPEL, World
Wide Web 10 (3) (2007) 309–344.

[32] O. Ezenwoye, S. Sadjadi, RobustBPEL2: transparent autonomization in busi-
ness processes through dynamic proxies, in: Proceedings of the 8th International
Symposium on Autonomous Decentralized Systems, ISADS ’07, 2007, pp. 17–24.

[33] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, P. Plebani, PAWS: a framework
for executing adaptive web-service processes, IEEE Softw. 24 (6) (2007) 39–46.

[34] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, Soft-
ware Engineering, IEEE Transactions on 33 (6) (2007) 369–384.

[35] M. Colombo, E. Di Nitto, M. Mauri, SCENE: A service composition execution
environment supporting dynamic changes disciplined through rules, in: A. Dan,
W. Lamersdorf (Eds.), Service-Oriented Computing – ICSOC 2006, Vol. 4294
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2006, pp.
191–202.

[36] R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz, Heuristics for QoS-
aware web service composition, in: Proceedings of the 2006 IEEE International
Conference on Web Services, ICWS ’06, IEEE Computer Society, Washington,
DC, USA, 2006, pp. 72–82.

[37] I. Bosloper, J. Siljee, J. Nijhuis, D. Hammer, Creating self-adaptive service sys-
tems with DySOA, in: Proceedings of the 3rd European Conference on Web
Services, ECOWS ’05, IEEE Computer Society, Washington, DC, USA, 2005,
pp. 95–104.

[38] J. Siljee, I. Bosloper, J. Nijhuis, D. Hammer, DySOA: making service systems self-
adaptive, in: Proceedings of the 3rd international conference on service-oriented
computing, ICSOC ’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 255–268.

[39] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang,
QoS-aware middleware for web services composition, IEEE Trans. Softw. Eng.
30 (5) (2004) 311–327.

[40] U. Aßmann, N. Bencomo, B. H. C. Cheng, R. B. France, Models@run.time
(dagstuhl seminar 11481), Dagstuhl Reports 1 (11) (2011) 91–123.
URL http://drops.dagstuhl.de/opus/volltexte/2012/3379/

35

[41] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dy-
namic software product lines, Computer 41 (2008) 93–95.
doi:http://doi.ieeecomputersociety.org/10.1109/MC.2008.123.

[42] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxonomy of
software change, Journal of Software Maintenance 17 (5) (2005) 309–332.

[43] J. Andersson, R. Lemos, S. Malek, D. Weyns, Software engineering for self-
adaptive systems, Springer-Verlag, Berlin, Heidelberg, 2009, Ch. Modeling Di-
mensions of Self-Adaptive Software Systems, pp. 27–47.

[44] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, D. Diaz, Dynamic adaptation
of service compositions with variability models, Journal of Systems and Software
91 (2014) 24 – 47.

[45] G. H. Alférez, V. Pelechano, Context-aware autonomous web services in software
product lines, in: Proceedings of the 2011 15th International Software Product
Line Conference, SPLC ’11, IEEE Computer Society, Washington, DC, USA,
2011, pp. 100–109.

[46] L. Liu, E. Yu, Designing information systems in social context: a goal and scenario
modelling approach, Inf. Syst. 29 (2004) 187–203.

[47] G. H. Alférez, V. Pelechano, Dynamic evolution of context-aware systems with
models at runtime, in: R. France, J. Kazmeier, R. Breu, C. Atkinson (Eds.),
Model Driven Engineering Languages and Systems, Vol. 7590 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2012, pp. 70–86.

[48] G. H. Alférez, V. Pelechano, Facing uncertainty in web service compositions, in:
Proceedings of the 20th IEEE International Conference on Web Services, ICWS
’13, 2013, pp. 219–226. doi:10.1109/ICWS.2013.38.

[49] G. H. Alférez, V. Pelechano, Facing uncertainty in web service compositions,
International Journal of Services Computing 2 (2) (2014) 1–16.

[50] L. A. Belady, M. M. Lehman, A model of large program development, IBM Syst.
J. 15 (3) (1976) 225–252.

[51] P. Horn, Autonomic computing: IBM’s perspective on the state of information
technology (2001).
URL http://www.research.ibm.com/autonomic/manifesto/autonomic_

computing.pdf

[52] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli,
D. Weyns, J. Whittle, Software engineering for self-adaptive systems, Springer-
Verlag, Berlin, Heidelberg, 2009, Ch. Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap, pp. 1–26.

[53] R. Calinescu, C. Ghezzi, M. Kwiatkowska, R. Mirandola, Self-adaptive software
needs quantitative verification at runtime, Commun. ACM 55 (9) (2012) 69–77.

36

[54] OMG, Software & systems process engineering meta-model specification (2008).
URL http://www.omg.org/spec/SPEM/2.0/PDF

[55] IBM, An architectural blueprint for autonomic computing, Tech. rep., IBM
(2006).
URL http://www.eecs.harvard.edu/~chaki/bib/papers/autonomic.pdf

[56] N. Esfahani, E. Kouroshfar, S. Malek, Taming uncertainty in self-adaptive soft-
ware, in: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11,
ACM, New York, NY, USA, 2011, pp. 234–244.

[57] V. R. Basili, G. Caldiera, R. H. Dieter, Goal question metric paradigm, in: En-
cyclopedia of Software Engineering, Vol. 2, John Wiley & Sons, Inc., 1994, pp.
528–532.
URL http://www.cs.umd.edu/~basili/publications/technical/T89.pdf

[58] C. L. Forgy, Rete: A fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19 (1) (1982) 17 – 37.

37

