

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1002/cpe.4361

http://hdl.handle.net/10251/102265

John Wiley & Sons

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE

Concurrency Computat.: Pract. Exper. 2017; 00:1–25

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Constructing virtual 5-dimensional tori out of lower-dimensional

network cards

Francisco J. Andújar2, Juan A. Villar1∗ José L. Sánchez1, Francisco J. Alfaro1,

José Duato2 and Holger Fröning3

1Department of Computing Systems, University of Castilla-La Mancha, Albacete, Spain

Email: {juanan, jsanchez, falfaro}@dsi.uclm.es
2Department of Systems Data Processing and Computers, Polytechnic University of Valencia, Valencia, Spain

Email: fandujarm@gap.upv.es, jduato@disca.upv.es
3Institute of Computer Engineering, Ruprecht-Karls University of Heidelberg, Mannheim, Germany

Email: holger.froening@ziti.uni-heidelberg.de

SUMMARY

In the Top500 and Graph500 lists of the last years some of the most powerful systems implement a torus

topology to interconnect the millions of computing nodes they include. Some of these torus networks are

of five or six dimensions, which implies an additional difficulty as the node degree increases. In previous

works we proposed and evaluated the nD Twin (nDT) torus topology to virtually increase the dimensions a

torus is able to implement. We showed this new topology reduces the distances between nodes, increasing,

therefore, global network performance. In this work, we present how to build a 5DT torus network using

a specific commercial 6-port network card (EXTOLL card) to interconnect those nodes. We show, using

the same number of cards, the performance of the 5DT torus network we are able to implement using our

proposal, is higher than the performance of the 3D torus network for the same number of compute nodes.

Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Torus Topology; HPC; Deadlock-Free Routing; Performance Evaluation.

1. INTRODUCTION

Today’s supercomputers performance depends in large part on the interconnection network they

use to interconnect the millions of computing nodes they are composed. Among other aspects, the

chosen network topology plays a major role in the overall system performance. Fat-tree [1] and torus

∗Correspondence to: Juan Antonio Villar. E-mail: juanan@dsi.uclm.es

Contract/grant sponsor: This work has been supported by the Spanish MINECO and European Commission (FEDER
funds) under the projects TIN2015-66972-C5-1-R and TIN2015-66972-C5-2-R; and by the JCCM under the project
PEII-2014-028-P. Francisco J. Andujar is also funded by the Spanish MICINN under a Juan de la Cierva grant FJCI-
2015-26080.

Copyright c© 2017 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 FRANCISCO J. ANDÚJAR ET AL.

topologies [2] are widely used for implementing indirect and direct networks, respectively. In June

2017, there are four supercomputers using the torus topology in the top ten of the Top500 list [3]

and eight in the top ten of the Graph500 list [4] (e.g., K-Computer [5] and several supercomputers

of Blue Gene/Q family [6]), while the remaining supercomputers use some kind of indirect network

topologies (e.g., fat-tree or Dragonfly).

Regarding the network characteristics of a large supercomputer, besides global network

performance, there are other important features to take into account like economical cost, power

consumption, reliability or scalability. Although the fat-tree topology provides equal access

bandwidth to every node of the system and is appropriate for running parallel applications that

generate a lot of communication among the nodes, the torus topology provides a reduced hardware

and an excellent scalability, allowing an easier implementation for large systems. Moreover, the

torus topology supports several routing algorithms that increase the path diversity so that the fault

tolerance and load balance become more feasible. For all these reasons, the torus topology is a

common topology used in the greatest HPC systems, according to the Top500 and Graph500 lists.

In torus topologies, the network performance is very dependent on the number of dimensions.

When the number of dimensions increases, the average number of hops between any pair of nodes

is reduced and therefore, the network latency is also reduced. Then, it is well known that, for a

large number of nodes to be interconnected, the higher the number of dimensions, the higher the

network performance obtained. However, to build torus networks with more dimensions requires to

increase the number of ports in the communication hardware, which is not always easy and for sure

increases its complexity. Thus, the number of dimensions of the torus networks is clearly limited by

the switch radix.

In previous works, we have proposed a new topology, called n-dimensional twin torus, or just

nDT torus [7], which allows us to increase the number of dimensions of the torus. For example, if

we have 4-port communication cards to build a torus network, we can build a 2-dimensional (2D)

torus∗ or we can build a 3DT torus [8]. In the 3DT torus, each node in the network comprises two

4-port cards: one port of each card is used to interconnect the cards and the six remaining ports are

used to connect the node to its neighbours in the three dimensions of the 3D torus.

In general, an nDT torus can be built using (n+ 1)-port cards: one port from each card

interconnects both cards and the 2n remaining ports compose the nDT torus node. In [7], we show

how the network diameter and average distance decrease when building an nDT torus instead of a
n+1

2
D torus. As a consequence, the performance of the network is increased without extra economic

investment.

In those previous works, we evaluated the nDT torus topology by simulation, assuming a simple

card architecture to model the network without taking into account a specific interconnection

technology. This Special Issue paper extends the study presented in [9] that used a more accurate

model based on a specific commercial communication hardware. Specifically, we have developed a

model based on the EXTOLL technology [10, 11]. EXTOLL permits to construct direct networks

with a node degree of six, and was designed specifically for the use in high-performance computing.

It comes with dedicated support for fine-grained communication, as well as bulk data transfers.

It features state-of-the-art techniques like virtual output queuing, virtual channels and link-level

∗Note that two ports are required for each dimension in the n-dimensional torus.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 3

retransmission. Since EXTOLL cards have six communication ports, the common approach is to

build a 3D torus network, but using our topology, we propose in [9] to build a 5DT torus network in

order to increase the global network performance using the same number of interconnection cards.

Due to the specific characteristics of EXTOLL cards, we have modified in our previous model

the crossbar architecture, including a new flow control mechanism, a new routing algorithm, among

other resources that will be outlined in Section 3. All these novelties, and a new and more accurate

evaluation process, are the main contributions of this new work. The rest of the paper is organized

as follows: In Section 2 we present an overview of the EXTOLL architecture and the nDT torus

topology. Section 3 explains the implementation of the EXTOLL model and the implementation of

the 5DT torus using the EXTOLL model. In Section 4, we evaluate by simulation the performance

of several 3D torus and 5DT torus networks with the same number of nodes. Finally, Section 5

outlines the conclusions and proposes some future work.

2. BACKGROUND

In this section we review the previous work. Section 2.1 shows a brief description of the EXTOLL

card and a more detailed description of the EXTOLL switch, on which this paper is focused.

The terms card and switch refer to the same element because the card is utilized as switch when

necessary. Section 2.2 formally defines the nDT torus and shows a brief explanation about the nDT

torus port configuration and the nDT torus routing algorithm.

2.1. The EXTOLL technology

EXTOLL is an interconnection network technology designed for high-performance computing and

puts special attention on achieving a very low latency, a high bandwidth, a high sustained message

rate and a high availability in large-scale networks (up to 64k nodes). EXTOLL cards have six ports,

allowing to build any direct topology with a maximum node degree of six. Among these candidates,

a 3D torus is the preferred topology for large networks.

Figure 1 shows the top-level block model of the EXTOLL architecture. Three main logical

blocks can be distinguished: the host interface, the network interface controller or NIC and the

network switch, drawn in green, blue and red, respectively. The host interface connects EXTOLL

to the host system using PCIe interface. Previous versions also supported host interfaces based on

HyperTransport.

The second block, the EXTOLL NIC, implements different modules to transform the packets sent

through the host interface to network packets and vice versa. There are three main functional units

(FUs) integrated into the EXTOLL NIC: The Virtualized Engine for Low Overhead (VELO) [12]

unit is dedicated to low latency transfer of small messages, while the Remote Memory Access

(RMA) [13] unit employs Direct Memory Access to handle large messages. Additional units

include an Address Translation unit (ATU) that is used for a fast translation from virtual address to

physical address for the RMA. The Shared Memory Functional Unit (SMFU) [14] allows load/store

forwarding between the different address spaces of multiple nodes. Finally, the Control & Status

Register unit is used to configure the EXTOLL card, to acquire status information and for debugging

purposes.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

4 FRANCISCO J. ANDÚJAR ET AL.

NetworkNICHost Interface

P
C

Ie

o
r

H
y
p

e
rT

ra
n

s
p

o
rt

O
n

-C
h

ip
 N

e
tw

o
rk

Shared
Memory
Engine

Control &
Status

N
e

tw
o

rk
 S

w
it
c
h

CPU

CoreCore

CoreCore

Memory

Controller

VELO

ATU

RMA

Link-
port

Link-
port

Link-
port

Link-
port

Link-
port

Link-
port

Figure 1. Top-level block diagram of EXTOLL architecture.

The third block implements a crossbar-based switch, which is therefore integrated in each add-in

card. The main EXTOLL switch features are described below. A couple of other characteristics are

out of scope of this work, like for instance multicast and barrier hardware support.

The EXTOLL switch itself has ten ports, with four of them connecting the switch with the NIC

FUs, and the remaining six ports for network-side connectivity. The switch is based on virtual cut-

through [15] as switching technique, the iSLIP scheduling algorithm [16] and a credit-based flow

control.

The EXTOLL switch is an IQ (Input Queued) switch [17, 18]. A typical problem of IQ switches

is head-of-line (HOL) blocking, as, when the first packet in the buffer is blocked, other packets

stored in the same buffer but destined to other output ports which could be forwarded, are also

blocked. This HOL blocking is circumvented by virtual output queuing (VOQ) [19, 15] at switch

level; i.e, each packet is stored in a different queue depending on its output channel, and therefore,

the negative effect of the HOL blocking is reduced.

To provide a quality-of-service mechanism, the EXTOLL switch offers four different Traffic

Classes (TCs). The software decides on which TC the packets are injected, and the packets cannot

change their TC during their transmission. Each TC has two deterministic virtual channels (VCs)

to enable the implementation of deadlock-free routing algorithms [20]. Routing functions can differ

for each TC to optimize for different traffic characteristics, and of course adaptivity. TC with support

for adaptivity includes a third VC to allow the implementation of adaptive routing algorithms [21].

In order to support multiple TCs, VCs and the VOQ-switch technique, the EXTOLL switch is based

on multi-queue FIFO buffers [22].

Routing for this switch is based on tables. Each input port has a dedicated routing table, thus

allowing that multiple input ports perform the routing simultaneously. It is not necessary to arbitrate

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 5

among multiple input ports trying to read the same routing table. Moreover, the table-based routing

allows to build arbitrary topologies and to recover the network when there are failures regarding

add-in-cards, cables or other components. The main drawback of the table-based routing is that

large tables are required at each input port. Thus, hierarchical routing tables are used to reduce the

size of these tables.

EXTOLL packets have a variable size, with a minimum data granularity being a cell, a data chunk

of 128 bits, and packet size varying from 1 cell to 32 cells. The main reason is to perform large data

transfers efficiently, and avoid wasting buffer resources for small data transfers.

Fine-grain credit-based flow control is implemented to improve buffer usage. Each packet is

logically split in multiple smaller parts (cells), consuming one credit for each part. As a result, a

packet consumes one or several credits. If each packet would instead consume a single credit, each

credit consumption would have to block the maximum packet size in the receiving buffer. This

would be very inefficient since if there are a lot of small packets travelling in the network, a huge

amount of buffer space could be reserved unnecessarily and, therefore, be wasted. As buffer space

is very scarce, a fine-grain control flow allows for a more efficient use of resources.

2.2. The nDT torus

A couple of definitions related to the nDT torus are included for this paper to be self-contained.

More details can be found in [8, 7]. First, we introduce the notation used and formally define the nD

twin torus topology [7].

Notation

• n: number of dimensions of the torus, n ≥ 2.

• di: i-th dimension of the nD torus (or the nDT torus), 0 ≤ i < n.

• d+
i
, d−

i
: ports of the dimension di.

• PE0, PE1: processing elements of a nDT torus node.

Definition 2.1

An nD Twin torus, or just nDT torus, is an n-cube k-ary (nD torus) topology, with k ∈ N
∗, k ≥ 2

and n ≥ 3, where each node is basically composed of the following main components:

• Communication hardware: it consists of two (n+ 1)-port cards, offering a total of 2n+ 2

ports. Two of these ports (one in each card) are used to interconnect the cards, and the

2n remaining ports are used to connect the node to the other dimensions, building a torus

topology with n dimensions.

• Computing hardware: each internal (n+ 1)-port card is connected to a processing element

(PE), and so there are two PEs in each node. Therefore, there is a total of 2kn PEs

interconnected by the network.

Figure 2 shows two examples of nDT torus nodes, 3DT and 5DT torus nodes, comprise two 4-port

cards and two 6-port cards, respectively. Both nodes have two PEs, but from the topological point

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

6 FRANCISCO J. ANDÚJAR ET AL.

Card 0

Card 1

Z
_

Y

X
+

Y

+

X
_

Z
+

_

PE0

PE1

(a) 3DT torus node (4-port cards).

Card 0

Card 1

_

3

d
_

4
d

2

d
_

d
+

0

d
+

1

d

+

2

d
_

0

d
+

3

d
+

4
d

_

1

PE0

PE1

(b) 5DT torus node (6-port cards).

Figure 2. Examples of nDT torus nodes.

of view, we only need to consider the fact that packets are sourced/destined from/to the PEs and the

particular internal layout of PEs is not relevant.

Communication between ports belonging to different cards is established by means the internal

link∗. In order to reduce the latency introduced by this link, it is important to avoid, as much as

possible, the paths passing through it.

This can be achieved with an optimal configuration of the nDT nodes. In [7], we obtained

this optimal node configuration (Definition 2.2) under specific conditions. We considered the

DOR (Dimension Order Routing) routing algorithm [2]. This deterministic routing algorithm is

commonly used in k-ary n-cubes because it is a very simple routing algorithm. Moreover, DOR

is deadlock-free using two virtual channels [20] or combining it with the bubble flow control

mechanism [23]. Figure 2 shows the optimal node configuration for the 3DT torus and the 5DT

torus.

Definition 2.2

Given two communication cards, each one with (n+ 1) ports, n ≥ 3, odd†, the port configuration

that minimizes the number of paths crossing the internal link in an nDT torus node is defined as

follows:

• The ports belonging to dimensions from d0 to dn−1

2
−1

are connected to Card0.

• The ports belonging to dimensions from dn−1

2
+1

to dn−1 are connected to Card1.

• The two ports of the dimension dn−1

2

are distributed between the two cards. Since k is odd,

the number of paths that cross the internal link is the same, regardless of the card in which

each port is connected. From hereon in, we assume that the port d−
n−1

2

is connected to Card0

and the port d+
n−1

2

is connected to Card1.

∗Henceforth, we will use “internal link” to refer to the connection between the two cards in an nDT torus node, and
“external links” to refer to the remaining ports.

†The nDT torus node for even values of n is also defined in [7], but we have omitted such as definition here because
the study presented in this current paper mainly focuses on 5DT tori.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 7

A few modifications to the DOR algorithm are required in order to route the messages in the nDT

torus. We call this modified version DORT routing algorithm. As DOR, DORT routing algorithm

sends a message by the n dimensions following a strictly ascending (or descending) order. Since

the nDT torus node comprises two internal cards, once the output port is selected, DORT checks

whether the output port is connected to the current card. Depending on the result, the message is

routed to the output port or to the internal link. Finally, when the message reaches the destination

node, the message is routed to the NIC if the destination is the PE attached to the current card, or it

is routed to the internal link if the destination is the other PE in the node.

DORT is not deadlock-free due to the use of the internal link. However, this problem can be

solved by adding a few virtual channels to the internal link (0, 1 or at most 2 extra virtual channels,

depending on the number of dimensions and the mechanism chosen to avoid deadlocks) [7].

In the case of 5DT torus, we can distinguish three cases where internal link is used, depending

on the destination of the message after using the internal link: i) The message destination is the

PE connected to the other card in the 5DT torus node∗; ii) the message uses the internal link to be

injected into the network in a dimension connected to the other card (e.g., a message is routed in

Card0 to d4); iii) the message is travelling through dimension d2.

As can be deduced, a message can use the internal link regardless of the dimension where it is

travelling, and as a consequence, deadlocks could appear. For example, let us consider a message

routed in a 5DT torus, such that the message needs to use the five dimensions following an ascending

order. First, the message is routed in d0, after that the message is routed in d1 and so on. When the

message has already been routed in d1, the message cannot be routed in d0 again, avoiding the

cycles between messages travelling in d0 and d1. However, the use of an internal link does not

follow any order. The message is routed to the internal link before travelling in d0, after travelling

in d4, travelling through d2, etc.

To avoid deadlocks, the internal link requires four VCs instead of the two VCs required by the

external links. The first and second VCs are used for sending the messages of the case i) and ii),

respectively. The third and the fourth VCs are used for sending the messages of case iii). Since the

message is routed in d2, two VCs are required for case iii), in the same way that the external links

require two VCs.

3. MODELLING EXTOLL CARDS

As above-mentioned, the purpose of this work is to address a study of the 5DT torus topology built

using the EXTOLL technology. Obviously, the most accurate study would be obtained using a real

cluster whose interconnection network is composed of hundreds of EXTOLL cards. However, this

option is unfeasible because we do not have access to a cluster of these characteristics. Moreover, if

available, a lot of time is needed to reconfigure the hardware to perform the experiments, and most

important, the system reconfiguration could interfere with the work of other cluster users. For these

reasons, as usual, we have performed this study by simulation.

∗Remember that the ports of dimensions d0, d1 and the port d−
2

are connected to Card0, while the ports of dimensions

d3, d4 and the port d+
2

are connected to Card1, as can be observed in Figure 2b.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

8 FRANCISCO J. ANDÚJAR ET AL.

At the moment, the markets do not offer to customers the option of purchasing EXTOLL switches.

Equipment based on such technology is only available in the form of network cards. Nevertheless,

these cards can be considered as a solution due to their switching capability similar to those of

switches. In fact, when we use the term EXTOLL switch, we are actually referring to the EXTOLL

card.

In order to run simulations, we have developed EXTOLLsim, which models the EXTOLL card,

that is accurate enough. Since we want to evaluate network performance from the topological point

of view, we have focused on the development of a model for simulating the EXTOLL crossbar. The

host interface is not modelled and the model of the NIC FUs has been simplified, thereby reducing

the development efforts without losing accuracy of simulations. If the host interface would have

been included in EXTOLLsim, there would be a latency in the communication introduced by the

host interface model. However, this latency would be independent of the network topology and

would have no effect for the purposes of this study. Therefore, the resulting effect would be to make

simulations more inefficient in terms of execution time and memory consumption.

Regarding the real EXTOLL NIC, there are four different FUs (e.g., VELO, RMA) injecting

traffic into the network. The lack of a detailed traffic model for each FU, EXTOLLsim does not

require to implement all the FUs that exist in a real EXTOLL NIC, but only one generic FU that is

not based on an specific FU of the real EXTOLL NIC. Its unique purpose is to generate, inject and

receive traffic into the network using synthetic traffic patterns or trace-based traffic. Therefore, the

EXTOLLsim model has only seven ports instead of ten ports: one port is connected to the NIC, and

six ports are connected to other cards.

Regarding the real EXTOLL network, EXTOLLsim implements a detailed model of the real

EXTOLL crossbar. The EXTOLLsim model comprises four logical units (Figure 3): the routing

units, the buffer units, the arbitration unit, and the crossbar unit. Each logical unit supports different

features of the EXTOLL crossbar, and specifies its own latency.

from NIC to NIC

fr
o
m

 o
th

er

E
X

T
O

L
L

 c
ar

d
s

to
 o

th
er

E
X

T
O

L
L

 c
ar

d
s

Routing
unit

Arbitration unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Routing
unit

FIFO multi-
queue buffer

Figure 3. Logical scheme of EXTOLLsim.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 9

When a packet arrives at an EXTOLLsim card from a given port, it is processed by the routing unit

of that port∗. Once the routing unit finishes, such a packet is stored in a buffer unit that implements a

multi-queue FIFO buffer with virtual output queuing at switch level, thereby mitigating the negative

effect of head-of-line blocking.

The arbitration unit implements the iSLIP scheduling algorithm [16]. Such a unit identifies the

packets stored in the buffer units and go through the crossbar unit. Note that the crossbar unit is

not only responsible for forwarding the packets to the next card, the proper operation of the virtual

cut-through switching, and the fine-grain credit-based flow control. Similar to the real EXTOLL

card, EXTOLLsim also implements variable-size packets, four traffic classes (TCs) with multiple

VCs, and it supports various network topologies and deterministic/adaptive routing algorithms.

3.1. Deadlock-free routing for 5DT tori using the EXTOLL cards.

Once the development of EXTOLLsim is finally completed, the next step consists in implementing

the nD and nDT tori in addition to defining the routing algorithms for both topologies. Since

EXTOLL cards have six communication ports, a 3D torus and a 5DT torus can be built.

Regarding the routing algorithms, DOR has been chosen for the 3D torus. As commented above,

the DOR algorithm avoids deadlocks using two VCs [20]. The EXTOLL crossbar provides two

deterministic VCs per each TC in order to avoid deadlocks. Then, when a packet is travelling inside

the dimension di, the di-coordinate of the current node and the di-coordinate of the destination

node are compared. If di-coordinate of the destination node is greater than the di-coordinate of the

current node, the packet will be routed to the first VC, called upper-VC. Otherwise, the packet will

be routed to the second VC, called lower-VC.

A third VC must be used in the adaptive TCs, thereby allowing the implementation of a fully-

adaptive routing algorithm for the 3D torus using the Duato’s protocol [21]. A round-robin arbiter

may be used to choose among the eligible adaptive channels.

On the other hand, the implementation of the DORT routing algorithm in the 5DT torus is not

feasible using the current EXTOLL cards. As Section 2.2 highlighted, DORT requires four VCs in

the internal link† to avoid deadlocks [7]. However, EXTOLL cards have insufficient deterministic

VCs to implement this algorithm. Fortunately, an EXTOLL card still has the TCs, where each one

can use different paths to route packets destined to the same node. As a consequence, we have

designed a new routing algorithm for the nDT torus, based on the DOR routing algorithm, that

avoids deadlocks using the TCs. We call this algorithm TS-DOR (Twin Source Dimension Order

Routing).

Many cycles introduced by the internal link are consumed by the packets injected from PE1.

Using DORT, in most of the cases the packets generated by PE1 must go across the internal link to

be routed in d0. However, this internal-link hop can be avoided if the packets are routed first in the

dimensions connected to Card1. There exist approaches of routing in the field of networks-on-chip

for balancing the network traffic. They use two VCs for routing the packets that follow different

dimension orders [24]. For instance, for 2D mesh topologies, in the first virtual network the packets

∗Although the EXTOLL switch implements a table-based routing, EXTOLLsim implements the routing function
as hardware routing units. The reproduced behaviour is similar, but our implementation saves a big amount of RAM
memory during simulation because the routing tables are not kept.

†Note the external links require no modifications.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

10 FRANCISCO J. ANDÚJAR ET AL.

are routed following X − Y order, whereas in the second virtual network the packets are routed

following Y −X order.

TS-DOR considers a similar approach to avoid the unnecessary usage of the internal link by

the PE1-sourced packets: the PE0-sourced packets are routed from d0 to dn−1, whereas the PE1-

sourced packets are routed from dn−1 to d0. In EXTOLLsim, the TCs can be used to avoid deadlocks

between PE0-sourced packets (routed from d0 to d4), and PE1-sourced packets (routed from d4

to d0). Since four TCs are available, two of them (one adaptive TC and one deterministic TC)

are used to inject PE0-sourced packets, and the remaining two are used to inject PE1-sourced

packets. Nevertheless, this approach only avoids deadlocks between PE0-sourced packets and PE1-

sourced packets. Fortunately, the two deterministic VCs of each TC are enough to avoid deadlocks,

considering the same approach used for the external links.

Therefore, when a packet is routed in the dimension dn−1

2

and it uses the internal link, TS-DOR

takes the same decision that would be chosen in the external links. If the (dn−1

2

)-coordinate of the

destination node is greater than the (dn−1

2

)-coordinate of the current node, the message is routed to

the upper-VC of the internal link. Otherwise, it is routed to the internal link lower-VC. If a packet is

routed to the internal link for another reason, the upper-VC will be chosen if the packet goes from

Card0 to Card1. On the contrary, the lower-VC will be chosen if the packet goes from Card1 to

Card0.

Finally, when the number of nodes in dimension dn−1

2

is even, there are nodes equidistant from the

positive and the negative ports of the (dn−1

2

)-dimension. Taking a wrong decision while choosing

the port causes the unnecessary usage of the internal link. Let us consider a PE0-sourced packet in

a 3DT torus with two nodes in the Y dimension. Commonly, after travelling through dimension Y ,

the packet travels through dimension Z. Choosing the port Y +, the packet needs three hops to arrive

at Card1 of the other node, whereas choosing the port Y −, the packet only needs one hop. Figure

4 shows the correct and the wrong decisions in this scenario. Then, to avoid the unnecessary usage

of the internal link in case of tie, the port d−
n−1

2

is chosen for PE0-sourced packets, whereas the port

d+
n−1

2

is chosen for PE1-sourced packets.

X- X+

Y-

Y+

Z- Z+

<x,0,z>

Card0

PE0 PE1

Card1

Z- Z+

Y+

Y-

X- X+

Card1

PE1 PE0

Card0
<x,1,z>

1 hop

3 hops

Figure 4. Wrong (red dashed line) and correct (blue solid line) selections of Y link in case of tie routing in
the Y dimension.

3.2. TS-DOR: deadlock avoidance discussion

As commented, the TS-DOR algorithm checks the destination node (dn−1

2

)-coordinate or the

destination card to choose the output VC when the output port is the internal link. From now on,

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 11

the explanation is focused on the PE0-sourced TCs. From the topological point of view, the PE1-

sourced TCs are identical to the PE0-sourced TCs and the following conclusions are the same for

the PE1-sourced TCs. Note that in the PE0-sourced TCs, no packets are generated by PE1, but there

are messages destined to PE1. Moreover, in order to simplify the explanation, we consider a 3DT

torus (Figure 2a), but the conclusions are the same as considering a 5DT torus or an nDT torus.

Let us consider a 4-node Y -ring of a 3D and a 3DT torus, considering only the negative channels.

Figure 5 shows the channel dependency graph of both rings. The number of the vertex label shows

the Y -coordinate, the second character indicates the link (dimension Y or Internal link) and the

third character indicates the VC (Upper-VC or Lower-VC). The filled vertices and the dotted edges

represent the Y -dimension channels and their dependencies in a 3D torus, while the remaining

vertices and edges represent the channels and dependencies generated by the 3DT torus.

0-YU

3-IL

3-YL

2-IL

2-YL 1-YL

1-IL

0-IL1-YU

0-IU

Figure 5. Channel dependency graph considering the negative channels of Y dimension (Y=4).

Let us consider the node 1. This node can receive packets destined to node 0 from the port Y −

of the node 2. In the 3D torus, these packets are routed to the port Y − and the lower-VC, due to

the destination node is lower than the current node, generating a dependency between the lower

Y − channels of nodes 2 and 1. However, in the 3DT torus, these packets are routed to the internal

link before using the port Y −. In both routing operations the destination node is the node 0 and

therefore, the lower-VC is chosen. This replaces the dependency (2− Y L) −→ (1− Y L) by the

dependencies (2− Y L) −→ (2− IL) −→ (1− Y L). In every case, although new dependencies are

added, no cycles are generated in the channel dependency graph, thus the ring Y is deadlock-free

[20].

However, the internal link is also used for other reasons. For example, in a 3DT torus, a packet

can go through the internal link from Card0 to Card1 to travel from an X-dimension port to a Z-

dimension port or to arrive at PE1. In this case, it is the first time that the packet uses the internal link

and this hop can be seen as if the packet was travelling in the dimension Y . No new dependencies

to the channel dependency graph are added in this case.

However, when a packet goes through the internal link from Card1 to Card0, new dependencies

are added. In this case, the only reason for using the internal link is that, after travelling through

dimension Z, the packet destination is PE0 of the current node. But the internal link is also used

for packets travelling through dimension Y which presumably will use the Z-dimension channels in

the future. Therefore, new dependencies between Z-dimension channels and Y -dimension channels

appear in the channel dependency graph.

Figure 6 shows the channel dependency graph of a 3DT torus with four and two nodes in the

dimensions Y and Z, respectively. The X-dimension channels have been omitted because there are

no new dependencies that involve the dimension X . Only the Y -negative ring is shown in order to

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

12 FRANCISCO J. ANDÚJAR ET AL.

0,0-YU 3,0-IL

3,0-ZU

3,0-YL 2,0-IL

2,0-ZU

2,0-YL 1,0-YL 0,0-IL

0,0-ZU

1,0-IL

1,0-ZU

1,0-YU 0,0-IU

3,1-IL 3,1-YL 2,1-IL 2,1-YL0,1-YU

3,1-ZL 2,1-ZL

0,1-IL1,1-YL

0,1-ZL

1,1-YU 0,1-IU 1,1-IL

1,1-ZL

Figure 6. Negative Y dimension and Z dimension channel dependency graph (Y = 4 and Z = 2).

simplify the graph. The vertices are labelled in the same way that Figure 5, but in this case there are

two numbers to indicate the coordinates Y and Z.

As seen, the new dependencies do not generate cycles in the channel dependency graph. Let

us consider a packet arrives at Card1 of node 〈2, 0〉 through the Z-dimension channel (channel

〈2, 1〉 − ZL). After that, the packet uses the lower-VC of the internal link (channel 〈2, 0〉 − IL) to

arrive at PE0. This generates an indirect dependency between the Z-dimension channels and the

Y -dimension lower channels. But all the packets in the lower channels are destined to a lower Y -

coordinate than the current Y -coordinate. Therefore, it is not possible that there are packets using

this channel whose destination node Y -coordinate is 3 or 2, generating cycles in the graph. The

same happens when the Y -coordinate of the node is 1. Finally, when the node Y -coordinate is 0, a

packet can only use the lower channel if the packet is destined to PE0. Then, in this case, the internal

link lower channels of nodes 〈0, 0〉 and 〈0, 1〉 are the graph sinks. Although there are a lot of new

dependencies in the graph, no cycles are added, and then, TS-DOR is deadlock free.

4. PERFORMANCE EVALUATION

In this section, we compare by simulation the 3D torus and the 5DT torus performance using the

EXTOLLsim model. The main objective of this evaluation is to show that, using the same number

of EXTOLL cards to build the 3D torus, we can improve the network performance building a 5DT

torus. Note that, unlike previous studies, we do not evaluate the 5D torus. Since EXTOLL cards

have 6 ports, building a 5D torus is not possible and performing this evaluation makes no sense.

Specifically, we evaluate 3D and 5DT tori with 256, 512, 1024 and 2048 PEs. Table I shows the

topologies for each network size∗. Remember that we consider PEs, not cores. Each PE can have

several cores, but only one NIC. From this study viewpoint, if the 256-PE network has 256 cores

(using single-core nodes) or 4096 cores (using 16-core nodes) is not relevant, since the number of

NICs and switches are the same in both cases. Although the evaluated networks are small compared

with the networks of the greatest Top500-list supercomputers, these network sizes are reasonable

for building supercomputers in research centres with limited economic resources.

∗Note that 5DT and 3D networks have the same number of PEs since the 5DT torus nodes comprise two PEs. In
addition, since the dimension d2 in the 5DT torus has two cards per dimension node, the nodes in this dimension are
increased in the last place, in order to minimize the network diameter

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 13

Table I. 3D and 5DT tori evaluated.

Number of PEs
Topology

3D torus 5DT torus

256 8×8×4 4×4×2×2×2

512 8×8×8 4×4×2×4×2

1024 16×8×8 4×4×2×4×4

2048 16×16×8 4×4×4×4×4

Regarding the network workload, we consider two different scenarios: a synthetic traffic model

(Section 4.1) and a trace-driven model (Section 4.2). First, we describe the different case studies

used in the simulations. After that, we provide the simulation results and analyze them.

4.1. Performance evaluation using synthetic traffic patterns

The network performance is evaluated generating the workload synthetically. We consider two

traffic patterns for modelling the destination distribution: the uniform traffic pattern, commonly used

in network performance evaluations [2], and a destination distribution pattern based on the Zipf’s

law, which models more realistic traffic [25]. Regarding the packet size, its values are uniformly

distributed from the minimum packet size (1 cell) to the maximum packet size (32 cells).

We have performed a set of tests, varying the topology and the traffic pattern in each case.

Each test consists of 30 different experiments, obtaining the normalized average throughput and the

average cell latency of each test case∗. Note that the normalized injection rate and the normalized

average throughput are the percentage of the host bandwidth injected and received per each NIC,

respectively†.

Figures 7, 8, 9 and 10 show the results obtained for the 256-PE tori, the 512-PE tori, the 1024-PE

tori and the 2048-PE tori, respectively. As seen, the 5DT torus obtains a better performance than

the corresponding 3D torus. When the network is not saturated, the 5DT torus reduces the average

network latency 10% and 15% for the 256-PE and the 512-PE tori, regardless the traffic pattern

used, whereas the network latency reduction achieved by the 5DT torus is 30% in the two largest

networks.

Furthermore, the 5DT torus saturates later, increasing the accepted traffic. For 256-PE and 512-PE

tori, the 5DT torus achieves 20% and 12% more throughput than the corresponding 3D torus, using

the uniform and the Zipf traffic patterns. But the increment of performance is more dramatic in the

largest networks. For example, the 1024-PE 5DT torus achieves 80% of the maximum throughput,

whereas the corresponding 3D torus only achieves 35%. This performance degradation is common

in large torus networks that employ virtual channels for avoiding deadlock. The virtual channels

are a successful scheme to avoid deadlock, but it generates the underutilization of several buffers

in the network [26]. In turn, these underutilized buffers generate an unbalanced traffic load. The

consequences of the unbalanced traffic load are negligible in small torus networks, but when the

∗We have also computed the confidence interval at 95%, but these intervals are imperceptible in the charts at first
glance and we have preferred to omit them.

†Since the host bandwidth is 10.4 GBytes/s, each 10% of the normalized injection rate is approximately 1 GByte/s.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

14 FRANCISCO J. ANDÚJAR ET AL.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 100

 200

 300

 400

 500

 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(a) Uniform traffic pattern.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 100

 200

 300

 400

 500

 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
A

v
g

.
C

el
l

N
et

w
o

rk
 l

at
en

cy
 (

cy
cl

es
)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(b) Zipf traffic pattern.

Figure 7. Network performance using synthetic traffic patterns for 256-PE tori.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(a) Uniform traffic pattern.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(b) Zipf traffic pattern.

Figure 8. Network performance using synthetic traffic patterns for 512-PE tori.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(a) Uniform traffic pattern.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
A

v
g

.
C

el
l

N
et

w
o

rk
 l

at
en

cy
 (

cy
cl

es
)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(b) Zipf traffic pattern.

Figure 9. Network performance using synthetic traffic patterns for 1024-PE tori.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(a) Uniform traffic pattern.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 N
o

rm
al

iz
ed

 A
v

g
.

T
h

ro
u

g
h

p
u

t

Normalized Injection Rate

DOR 3D
ADAP 3D

TS-DOR 5DT

 0

 200

 400

 600

 800

 1000

 1200

 1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

g
.

C
el

l
N

et
w

o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

DOR 3D
ADAP 3D

TS−DOR 5DT

(b) Zipf traffic pattern.

Figure 10. Network performance using synthetic traffic patterns for 2048-PE tori.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

16 FRANCISCO J. ANDÚJAR ET AL.

torus network has a large number of nodes per dimension, the accepted traffic decreases significantly

after the network saturates [27]. Since the number of nodes per dimension in the 1024-PE 5DT torus

is low (a maximum of 4 nodes per dimension against the maximum of 16 nodes in the corresponding

3D torus), the 5DT torus is not affected by this degradation.

Note that the 3D torus performance is improved using an adaptive routing, but the 3D torus only

obtains a similar throughput than the 5DT torus under Zipf traffic pattern. In any case, the 3D torus

network latency is still higher when the network is not saturated.

4.2. Performance evaluation using the VEF trace-driven traffic model

In this section, we use an open access trace-driven traffic model, called VEF∗ trace model [28, 29],

to evaluate the 5DT torus performance. Using modified MPI libraries, we capture the MPI traffic

injected by parallel applications in a trace file, which will be used later for generating the network

workload. The VEF traces model both MPI point-to-point and MPI collective communications. The

latter are modelled using the collective communication algorithms implemented in OpenMPI [30].

Thus, using the traffic generated by a real application we can evaluate the networks using a more

realistic environment and so obtain more significant results.

We consider two different scenarios: Section 4.2.1 shows a performance evaluation of several

collective communications, while Section 4.2.2 shows a performance evaluation using VEF traces

obtained from MPI applications†.

4.2.1. Performance evaluation of single collective communications. In order to emulate the traffic

of a single MPI collective communication, we have created synthetic traces of Broadcast, Reduce,

AllGather and All2All operations. The first two operations have been chosen for their simplicity,

whereas the last two have been chosen because they generate more traffic than any other collective

communication. We compare the performance of these operations in 3D and 5DT tori with 256, 512

and 1024 PEs. We also evaluate the network performance using different message sizes, from the

minimum and the maximum packet size: 16 bytes (1-cell packet) and 512 bytes (32-cell packet).

Tables II and III show the average cell network latency and the execution time‡ obtained for

the evaluated topologies and multicast operations. The reduction of both metrics obtained for the

5DT are also shown. Excluding the Broadcast communication in the smaller networks, all the

collective communications are performed faster in the 5DT torus. Note that AllGather and All2All

operations have a high execution time and network latency. For both operations the network is

saturated. Even in this circumstance, the 5DT torus increases the performance of these collective

communications, obtaining greater performance improvements than the collective communications

that do not saturate the network.

4.2.2. Performance evaluation using MPI application traces. Finally, we perform an evaluation

using the VEF traces generated by parallel applications run in the supercomputer GALGO [31].

∗VEF is the acronym of the nick name of the original programmers: Villar, Escudero and Fran.
†All the VEF traces described in this work and the software needed to run the VEF traces are available free at the

VEF website [28].
‡We consider as the execution time the simulation cycle when all the messages in the trace have been received at

their destination and there is no message in the network.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 17

Table II. Average cell network latency for different multicast operations for 3D and 5DT tori.

Multicast

operation

Message

Size

(bytes)

Average cell network latency (cycles)
Latency Reduction (%)

3D torus 5DT torus

256 PEs 512 PEs 1K PEs 256 PEs 512 PEs 1K PEs 256 PEs 512 PEs 1K PEs

Broadcast
16 89.718 121.912 123.206 92.227 99.125 110.573 -2.797 18.691 10.254

512 90.322 125.184 127.392 91.953 101.528 115.877 -1.806 18.897 9.039

Reduce
16 76.710 76.855 89.440 60.271 60.511 60.599 21.430 21.266 32.246

512 75.216 75.358 87.941 58.776 59.014 59.101 21.857 21.688 32.795

AllGather
16 105.614 171.022 252.850 110.047 149.148 260.962 -4.197 12.790 -3.208

512 1189.600 2004.073 2123.151 566.583 965.176 1517.570 52.372 51.839 28.523

All2All
16 666.683 1276.833 2937.544 535.052 704.989 1238.380 19.744 44.786 57.843

512 2743.504 4483.436 5546.037 1420.453 2516.929 3206.925 48.225 43.862 42.176

Table III. Execution time for different multicast operations for 3D and 5DT tori.

Multicast

operation

Message

Size

(bytes)

Execution time (cycles)
Execution Time Reduction (%)

3D torus 5DT torus

256 PEs 512 PEs 1K PEs 256 PEs 512 PEs 1K PEs 256 PEs 512 PEs 1K PEs

Broadcast
16 754 914 1194 850 938 1026 -12.732 -2.626 14.070

512 989 1189 1525 1025 1185 1321 -3.640 0.336 13.377

Reduce
16 734 886 1166 670 822 974 8.719 7.223 16.467

512 961 1141 1449 897 1077 1257 6.660 5.609 13.251

AllGather
16 2621 5261 11761 2505 4917 9497 4.426 6.539 19.250

512 160033 393377 1037137 120517 294009 697957 24.692 25.260 32.703

All2All
16 2126 5834 26318 1778 3334 9522 16.369 42.852 63.819

512 25829 73517 231909 11285 33309 97845 56.309 54.692 57.809

We generate the traces using the MPI Random Access application of the HPCC benchmark [32]

and the Graph500∗ benchmark [4], which are commonly used to evaluate the performance of

HPC interconnection networks. Moreover, we generate traces of NAMD [34], a parallel application

for simulating large biomolecular systems, using the available input benchmarks (specifically, the

STMV benchmark) in the NAMD website [35].

We generate traces of these three applications with 256, 512 and 1024 tasks. In order to simulate a

more realistic environment, we simulate multicore-PEs whenever possible. For example, the traces

with 256, 512 and 1024 tasks are used for testing the 256-PE torus, simulating single-core PEs, two-

core PEs and 4-core PEs, respectively. Unfortunately, the trace generation is limited by the size of

supercomputer GALGO (up to 1168 cores), and therefore we can only simulate nodes with a small

number of cores.

Traffic load characterization of the applications

Before showing the performance evaluation results, and in order to help to understand the obtained

results, we discuss briefly the traffic characterization of the three applications. In order to facilitate

the image viewing, Figure 11 only shows the message distribution of the applications executed with

128 tasks, but the main characteristics of the message distributions are the same for higher number

of tasks.

∗Specifically, the Graph500 benchmark is executed using the replicated-csr implementation[33].

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

18 FRANCISCO J. ANDÚJAR ET AL.

• Graph500 benchmark: All the communications are generated by MPI collective

communications. AllReduce()∗ and AllGather()† functions are the most frequently performed.

These communications generate the diagonal lines appreciated in Figure 11a. For example,

when AllReduce() performs the broadcast communication, the task 0 sends the broadcast

message to the tasks 1, 2, 4, 8, 16, 32 and 64. When the tasks receive the broadcast message,

they retransmit the message: the task 1 sends the message to the tasks 3, 5, 9, 17...; the task 2

send the message to the tasks 6, 10, 18...; and this process is repeated until all the tasks have

received the broadcast message, generating the observed diagonal lines. Moreover, all the

tasks send a big amount of messages to task 0 due to the performing of gather communication

during the AllGather().

• HPCC MPI Random Access: Most of the communications are performed by MPI point-to-

point communications. The messages are distributed uniformly among all the tasks, i.e., the

message distribution of the HPCC MPI Random Access application is very close to an uniform

traffic pattern.

• NAMD STMV benchmark: Most of the communications are performed by MPI point-to-

point communications. The application maps logically the tasks in a 3D grid and the tasks

communicate mainly with the neighbour tasks in the grid. For this reason most of the sent

messages by each source task are concentrated in a few destination tasks, meanwhile there are

many tasks that do not communicate during all the execution.

Performance results

Figures 12, 13 and 14 show the results obtained using the Graph500, the HPCC MPI Random Access

and the NAMD traces, respectively. We present the average results of the network cell latency and

the end-to-end cell latency‡. In this case, the execution time is not included. The time spent by the

applications using the network is a small part of the total time. Then, the improvement obtained

by the network is not significant respect to the total execution time, making this measure an useless

metric. Instead of the execution time, we show the average router utilization. This measure indicates

the average number of cycles in which the EXTOLL cards have been delivering messages, i.e., it

shows how much time the resources are used to perform the same workload. Therefore, a lower

value of the switch utilization indicates a more efficient use of the resources, since the network

requires a lower time for performing the same work.

As seen, the 5DT torus reduces the latency and the router utilization. The most significant

improvements are obtained using the Graph500 benchmark, where all the measures are reduced

from 20% to 50%, depending on the case. This application is designed to optimize the use of

the network. For this reason, in several parts of its execution the network is not saturated, and

∗Note that performing AllReduce() is equivalent to perform a reduce communication followed by a broadcast
communication; i.e., multiple values on all tasks are reduced to a single value (e.g, obtaining the maximum or the
minimum value of these multiple data), after that the reduced value is sent to all the tasks.

†The AllGather() is equivalent to perform a gather communication followed by a broadcast communication; i.e., the
values of multiple tasks are gathered together in a single task; after that the gathered data is sent to the remaining tasks.

‡The network cell latency is the number of cycles spent by one cell travelling trough several EXTOLL crossbars.
The end-to-end cell latency is the network latency plus the number of cycles from the moment the cell is generated in the
EXTOLL NIC until the cell arrives at the first EXTOLL crossbar associated to this NIC.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 19

 0

 32

 64

 96

 128

 0

 32

 64

 96

 128

 0
 500

 1000
 1500

Source Task

Destination Task

 0
 200
 400
 600
 800
 1000
 1200

(a) Graph500 Benchmark.

 0

 32

 64

 96

 128

 0

 32

 64

 96

 128

 0
 500

 1000
 1500
 2000

Source Task

Destination Task

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

(b) HPCC MPI Random Access.

 0

 32

 64

 96

 128

 0

 32

 64

 96

 128

 0
 5000

 10000
 15000

Source Task

Destination Task

 0
 2000
 4000
 6000
 8000
 10000
 12000

(c) NAMD: STMV Benchmark.

Figure 11. Number of messages per source/destination running the evaluated applications with 128 tasks.

because of several messages are sent to distant tasks, the 5DT torus obtains a great improvement

on performance with respect to the 3D torus. The adaptive routing also increases the 3D torus

performance for the same reason: since the network is not saturated, to find alternative paths is easy,

avoiding the possible conflicts between messages in the deterministic 3D torus. Nevertheless, the

deterministic 5DT torus obtains a greater performance than the adaptive 3D torus.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

20 FRANCISCO J. ANDÚJAR ET AL.

0.0

500.0

1.0 k

1.5 k

2.0 k

2.5 k

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
N

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

1.0 k

2.0 k

3.0 k

4.0 k

5.0 k

6.0 k

7.0 k

8.0 k

9.0 k

10.0 k

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
E

n
d
 t
o
 E

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

10.0 M

20.0 M

30.0 M

40.0 M

50.0 M

60.0 M

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
C

a
rd

 u
ti
liz

a
ti
o
n
 (

c
y
c
le

s
) Det. 3D torus

Adp. 3D torus
Det. 5DT torus

Figure 12. Results of Graph500 benchmark.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 21

0.0

1.0 k

2.0 k

3.0 k

4.0 k

5.0 k

6.0 k

7.0 k

8.0 k

9.0 k

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
N

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

5.0 k

10.0 k

15.0 k

20.0 k

25.0 k

30.0 k

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
E

n
d
 t
o
 E

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

16.0 M

18.0 M

20.0 M

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
C

a
rd

 u
ti
liz

a
ti
o
n
 (

c
y
c
le

s
) Det. 3D torus

Adp. 3D torus
Det. 5DT torus

Figure 13. Results of HPCC Random Access benchmark.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

22 FRANCISCO J. ANDÚJAR ET AL.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
N

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

200.0

400.0

600.0

800.0

1.0 k

1.2 k

1.4 k

1.6 k

1.8 k

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
E

n
d
 t
o
 E

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Det. 3D torus
Adp. 3D torus
Det. 5DT torus

0.0

50.0 M

100.0 M

150.0 M

200.0 M

250.0 M

300.0 M

350.0 M

256 1-core PEs

256 2-core PEs

256 4-core PEs

512 1-core PEs

512 2-core PEs

1024 1-core PEs

A
v
g
.
C

a
rd

 u
ti
liz

a
ti
o
n
 (

c
y
c
le

s
) Det. 3D torus

Adp. 3D torus
Det. 5DT torus

Figure 14. Results of NAMD: STMV benchmark.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 23

The 5DT torus obtains similar performance improvement with respect to the 3D torus using the

HPCC MPI Random Access traces. Regarding the adaptive 3D torus, remember that the message

distribution of this application is very close to an uniform traffic pattern. For this reason, the network

throughput is increased (both average end-to-end latency and router utilization metrics are reduced),

although the network latency is increased, as usually occurs when adaptive routing algorithms are

evaluated under uniform traffic patterns. However, the deterministic 5DT torus improves again the

performance of the adaptive 3D torus.

Using the NAMD traces, the performance is also improved, although the differences are less

significant than using the other application traces. The 5DT torus improves the network performance

because it reduces the distances between the PEs. However, the messages generated by the NAMD

application present a high spatial locality; i.e., the PEs usually communicate with the closest PEs.

Therefore, the average distance reduction obtained for the messages generated by the NAMD

application is lower than the average distance reduction obtained for the messages generated by

the Graph500 and MPI Random Access applications. For this reason, although the performance of

the NAMD application is improved, the differences obtained are less significant than using the other

applications.

5. CONCLUSIONS

Torus topology is a well-known option in today’s supercomputers. In order to increase the number of

dimensions the topology is able to implement, we proposed in previous works how to build an nDT

torus combining two cards of (n+ 1) ports and showed how the network performance is increased

building the nDT torus instead of the mD (m = n+1

2
) torus. Building an nDT torus the distances

between network nodes are reduced and therefore the performance is increased. However, the nDT

torus sets out various technical problems that must be resolved in advance.

In this paper, we apply those previous works to implement an nDT torus using commercial low-

profile network cards. These EXTOLL cards have six ports allowing to build a 3D torus and also

support arbitrary topologies, allowing to build an nDT torus topology, or more specifically, a 5DT

torus topology. In this paper the implementation of the EXTOLL model is discussed with special

interest in explaining the implementation of DORT, a routing algorithm for nDT tori. Moreover,

we describe the TS-DOR algorithm, which is a custom version of DORT for EXTOLL cards, and

discuss how TS-DOR is able to avoid the appearance of deadlock due to the internal link.

For the nDT torus we have proposed the DORT routing algorithm to minimize the use of the

internal link. Unfortunately, DORT cannot be applied to nDT tori since EXTOLL cards do not have

enough deterministic virtual channels. For this reason, we develop a new deterministic deadlock-

free routing algorithm called TS-DOR (Twin Source DOR) that combines the use of EXTOLL VCs

and EXTOLL TCs to ensure deadlock-freedom in a 5DT torus.

Finally, in this paper we compare the performance of the 3D torus and the 5DT torus using

the EXTOLL simulation model. Both tori are evaluated under several traffic loads, obtained from

uniform and Zipf synthetic traffic patterns and real-application traffic traces of the Graph 500

benchmark, the HPCC MPI Random Access application and the NAMD application. Moreover, a

characterization of the three application traces is also provided to help understanding the results.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

24 FRANCISCO J. ANDÚJAR ET AL.

As expected, the 5DT torus increases the network performance without changing the switch

architecture, only modifying the topology and the routing algorithm. For instance, such throughput

improvements can achieve values of up to 45% and 50% under synthetic and trace-based traffic

patterns, respectively.

REFERENCES

1. Leiserson CE. Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Transactions on

Computers 1985; 34(10):892–901.

2. Duato J, Yalamanchili S, Ni L. Interconnection networks. An engineering approach. Morgan Kaufmann Publishers

Inc.: San Francisco, CA, USA, 2003.

3. Dongarra J, Meuer HW, Strohmaier E. TOP500 Supercomputer Sites June 2017. www.top500.org.

4. The Graph500 list June 2017. http://www.graph500.org/.

5. Yokokawa M, Shoji F, Uno A, Kurokawa M, Watanabe T. The K-Computer: Japanese next-generation

supercomputer development project. 2011 International Symposium on Low Power Electronics and Design

(ISLPED), 2011; 371–372.

6. Chen D, et al.. The IBM Blue Gene/Q interconnection network and message unit. 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, 2011; 1–10.

7. Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Duato J. N-dimensional twin torus topology. IEEE Transactions on

Computers Oct 2015; 64(10):2847–2861.

8. Andújar FJ, Villar JA, Alfaro FJ, Sánchez JL, Duato J. Building 3D torus using low-profile expansion cards. IEEE

Transactions on Computers Nov 2014; 63(11):2701–2715, doi:10.1109/TC.2013.155.

9. Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Duato J, Fröning H. A case study on implementing virtual 5d

torus networks using network components of lower dimensionality. 2017 IEEE 3rd International Workshop on

High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB), 2017; 9–16, doi:

10.1109/HiPINEB.2017.7.

10. Fröning H, Nüssle M, Litz H, Leber C, Brüning U. On achieving high message rates. 13th IEEE/ACM International

Symposium on Cluster Cloud and Grid Computing (CCGrid), 2013; 498–505.

11. EXTOLL homepage. http://www.extoll.de.

12. Litz H, Fröning H, Nüssle M, Brüning U. VELO: A novel communication engine for ultra-low latency message

transfers. 37th International Conference on Parallel Processing (ICPP-08), 2008; 238–245, doi:10.1109/ICPP.

2008.85.

13. Nüssle M, Scherer M, Brüning U. A resource optimized remote-memory-access architecture for low-latency

communication. 38th International Conference on Parallel Processing (ICPP-09), 2009; 220–227, doi:10.1109/

ICPP.2009.62.

14. Fröning H, Litz H. Efficient hardware support for the partitioned global address space. 10th Workshop on

Communication Architecture for Clusters (CAC2010), co-located with 24th International Parallel and Distributed

Processing Symposium (IPDPS 2010), 2010; 1–6, doi:10.1109/IPDPSW.2010.5470851.

15. Anderson T, Owicki S, Saxe J, Thacker C. High-speed switch scheduling for local-area networks. ACM

Transactions on Computer Systems 1993; 11:319–352.

16. McKeown N. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions on Networking

April 1999; 7(2):188–201, doi:10.1109/90.769767.

17. Karol M, Hluchyj M. Queuing in high-performance packet-switching. IEEE Journal on Selected Areas 1998;

1:1587–1597.

18. McKeown N, Izzard M, Mekkittikul A, Ellersick W, Horowitz M. The Tiny Tera: A packet switch core. IEEE Micro

1997; 17:27–33.

19. Tamir Y, Frazier G. High–performance multi–queue buffers for VLSI communications switches. SIGARCH

Comput. Archit. News 1988; 16(2):343–354.

20. Dally W, Seitz C. Deadlock-free message routing in multiprocessor interconnection networks. IEEE Transactions

on Computers 1987; C-36(5):547–553, doi:10.1109/TC.1987.1676939.

21. Duato J. A new theory of deadlock–free adaptive routing in wormhole networks. IEEE Transactions on Parallel

and Distributed Systems dec 1993; 4(12):1320–1331.

22. Tamir Y, Frazier GL. Dynamically-allocated multi-queue buffers for vlsi communication switches. IEEE Trans.

Comput. Jun 1992; 41(6):725–737.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

www.top500.org
http://www.graph500.org/
http://www.extoll.de

CONSTRUCTING VIRTUAL 5D TORI OUT OF LOWER-DIMENSIONAL NETWORK CARDS 25

23. Carrion C, Beivide R, Gregorio J, Vallejo F. A flow control mechanism to avoid message deadlock in k-ary n-cube

networks. Proceedings of The Fourth International Conference on High-Performance Computing, 1997; 322–329,

doi:10.1109/HIPC.1997.634510.

24. Atagoziyev M. Networks on Chip: Topology, Switching, Routing. VDM Verlag: Saarbrücken, Germany, 2009.

25. Elhanany I, Chiou D, Tabatabaee V, Noro R, Poursepanj A. The network processing forum switch fabric benchmark

specifications: An overview. IEEE Network 2005; 19(2):5–9.

26. Bolding K. Non-uniformities introduced by virtual channel deadlock prevention. Technical Report 1992.

27. Izu C. Throughput fairness in k-ary n-cube networks. Proceedings of the 29th Australasian Computer Science

Conference - Volume 48, ACSC ’06, Australian Computer Society, Inc.: Darlinghurst, Australia, Australia, 2006;

137–145.

28. VEF traces homepage. http://www.i3a.info/VEFtraces 2017.

29. Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Escudero-Sahuquillo J. VEF Traces: A Framework for Modelling

MPI Traffic in Interconnection Network Simulators. The 1st IEEE International Workshop on High-Performance

Interconnection Networks in the Exascale and Big-Data Era (HiPINEB 2015), co-located with 2015 IEEE

International Conference on Cluster Computing (CLUSTER 2015), Chicago, IL, USA, 2015; 841–848.

30. Gabriel E, et al.. Open MPI: Goals, concept, and design of a next generation MPI implementation. Proceedings of

the 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, 2004; 97–104.

31. GALGO - Albacete Research Institute of Informatics Supercomputer Center homepage.

http://www.i3a.uclm.es/galgo 2017.

32. HPC challenge benchmark. http://icl.cs.utk.edu/hpcc/index.html.

33. Suzumura T, Ueno K, Sato H, Fujisawa K, Matsuoka S. Performance characteristics of Graph500 on large-scale

distributed environment. 2011 IEEE International Symposium on Workload Characterization (IISWC), Austin, TX,

USA, 2011; 149–158, doi:10.1109/IISWC.2011.6114175.

34. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K.

Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 26(16):1781–1802, doi:

10.1002/jcc.20289.

35. NAMD- Scalable Molecular Dynamics. http://www.ks.uiuc.edu/Research/namd/ 2016.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.i3a.info/VEFtraces
http://www.i3a.uclm.es/galgo
http://icl.cs.utk.edu/hpcc/index.html
http://www.ks.uiuc.edu/Research/namd/

