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Spain.

Abstract

The Nuclear Energy Agency auspices simulation of experiments in different facilities under sev-
eral programs. One on them consisted of performing a counterpart test between ROSA/LSTF and
PKL facilities, with the main objective of determining the effectiveness of late accident manage-
ment actions in a small break loss of coolant accident. The results obtained by TRACE code for
PKL experiment SBLOCA G7.1 (a scaled model of Konvoi reactor) were in good agreement with
the experiments. However, in the simulation process, uncertainty was not accounted. Uncertainty
analysis, following the principles of Best Estimate Plus Uncertainty (BEPU) approach, must be
performed to measure the effect of uncertainties on the evolution of safety variables of interest,
such as the maximum of the Peak Cladding Temperature (PCTmax) in the experiment. In this
paper we present a comparison between two uncertainty analysis techniques. The first technique
is based on order statistics that makes use of Wilks’ formula. The second technique is based on a
generalized additive model (GAM) that substitutes the thermal-hydraulic code, without and with
consideration of errors in adjusting the GAM model. The comparison of the uncertainty analysis
results makes use of several performance metrics such as coverage, coefficient of variation and
conservativeness. Based on the results of these metrics it can be concluded that the GAMPE
(GAM Plus Error) provides the best performance, in particular, when using small sample size,
i.e. n=59, 93. For larger sample sizes, i.e. n=124, 153, GAMPE and Wilks’ results presents
similar performance.
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Nomenclature

ACC Accumulators

AFW Auxiliary Feedwater

AM Accident management

BE Best Estimate

BEPU Best Estimate Plus Uncertainty

BWR Boiling Water Reactor

CC Core Exit Temperature

CD Coverage standard Deviation

CET Conservativeness Index

CM Coverage Mean

CV Coefficient of Variation

DOE Design of Experiments

FOS First Order Statistics

GAM Generalized Additive Model

GAMPE Generalized Additive Model Plus Error

HPIS High Pressure Injection System

LOCA Loss-of-Coolant Accident

LPIS Low pressure Injection System

NEA Nuclear Energy Agency

NPP Nuclear Power Plant

OECD Organisation for Economic Co-operation and Development

OS Order Statistics

PCT Peak Cladding Temperature

PDF Probability Distribution Function

PKL Primarkreislauf Versuchsanlage

PWR Pressurized Water Reactor

ROS A/LS T F Rig-of-Safety Assessment Large Scale Test Facility

S BLOCA Small break Loss-of-Coolant Accident

S G Steam Generator

S T L Standard Tolerance Level

T H Thermal Hydraulic

TRACE TRAC/RELAP Advanced Computational Engine

UQ Uncertainty Quantification
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1. Introduction

Experimental facilities are of great importance in nuclear safety to improve the knowledge on
commercial nuclear power plants (NPP) behavior under normal and accidental situations. Thus,
it is possible to anticipate the evolution of the main safety variables under an accidental situation
and identify generic issues that may affect the safety of nuclear power plants.

The results obtained in the experiments undertaken in such facilities are essential to develop
and improve the models implemented in the thermal-hydraulic codes. The data collected in the
experiments are necessary in the assessment of the capabilities of thermal-hydraulic codes to
reproduce the different physical phenomena that may take place inside the reactor in accidental
situations. Best estimate (BE) thermal-hydraulic (TH) codes, as RELAP-5 (Carlos et al., 2008),
TRAC, CATHARE (Valette et al., 2011), ATHLET (Di Marcello et al., 2016) or TRACE (Belaid
et al., 2013) are some examples. Nowadays, TRACE code (TRAC/RELAP Advanced Computa-
tional Engine) is being developed and validated to make use of the most favorable characteristics
of RELAP-5 and TRAC codes to simulate both, Pressurized Water Reactor (PWR) and Boiling
Water Reactor (BWR), technologies.

In the simulation process there exist code parameters and models that may be unknown or
uncertain. This uncertainty may result in differences when a certain transient is simulated with a
TH code depending on the code inputs chosen by the analyst (NAP, 2012).

Therefore, it is necessary to identify the most influencing parameters and models and to
characterize their impact on the code response uncertainty, in terms of Figures of Merit (FOMs)
related with safety variables. Often, a probabilistic approach is used to formulate the uncertainty
of input parameters and data, and to propagate them towards the output using the BE code, which
is also referred as a BEPU (Best Estimate Plus Uncertainty) approach. The purpose of the appli-
cation of uncertainty propagation methodologies is to obtain the probability distribution function
(PDF) of the safety related FOMs, or at least, an estimator, as the 95/95 Standard Tolerance Level
(STL) (IAEA , 2009).

One of the most employed technique to obtain estimators of PDF output variables, i.e. FOMs,
is OS (Order Statistics) based on Wilks’ formula (Wilks , 1941). This technique permits to ob-
tain the STL with a determined coverage/confidence value with reduced number of simulations
(Beal, 2012), but only provides the safety variable bound. Other techniques, such as, the con-
struction of surrogate models, or metamodelling, in which the TH code is substituted by a model
in order to obtain an estimate of the FOMs of interest, or a related variable, permits extracting
more information from the PDF with a reasonable computational cost (Carlos et al., 2013) (Di
Maio et al., 2015) (Di Maio et al., 2016). However, as the number of input parameters increase,
the construction of a metamodel requires a larger number of TH code simulations. In addition,
NPP transient analysis involve simulations of complex phenomena, which can increase the com-
putational burden. In fact, computational effort is one of the main problems in NPP transients
simulations including uncertainty analysis, i.e. BEPU, as each TH code transient simulation may
have a high computational cost. Thus, it is necessary to reduce the initially proposed uncertainty
parameters in order to make the study feasible.

In this work, uncertainty analysis of a Small Break Loss of Coolant Accident (SBLOCA) at
the PKL Test Facility is performed by simulation using two techniques: a metamodel based in
Generalized Additive Models (GAM) and an OS using Wilks’ formula.

The paper is organized as follows. In Section 2, the proposed methodology is explained,
which includes the Plackett-Burman design of experiment, the Wilks’ method and the employed
metamodel. In addition, performance metrics are also described, which are used in order to check
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the goodness of the methods. Section 3 presents the case of application, which includes: a brief
description of PKL facility, the TRACE model developed to simulate the transient, a description
of the experiment SBLOCA, the base case results and the uncertainty analysis using the different
techniques. Finally, Section 4 presents the main conclusions obtained.

2. Methodology

The methodology applied in this work is shown in Fig. 1 and consists of the following
steps. First, a calibration of the simulation model by means of a base case is performed using
experimental data. In this case, the safety variable of interest is the Peak Cladding Temperature
(PCT) and the maximum value along the transient, i.e. the PCTmax, is adopted as FOM. Then,
a sensitivity analysis has been performed in order to select the most influencing code inputs for
the selected FOM and transient. Once the inputs have been selected, the uncertainty analysis
is performed by two different approaches: Wilks’ method and metamodelling. The metamodel
selected to substitute TRACE code in the uncertainty analysis is a GAM, which is applied both
with and without a treatment of the error. Finally, performance metrics are used in order to assess
the goodness of the different uncertainty analysis methods.

Wilks

Base Case 
Simulation

Plackett-
Burman DOE

Performance 
Metrics

Uncertainty 
Analysis

Metamodel 

GAM
GAM Plus 

Error

Figure 1: Methodology scheme.

2.1. Design of Experiments. Plackett-Burman Design
Design of experiments (DOE) objective is to plan experiments for extracting the maximum

amount of information with the minimum number of tests or runs. In this study the objective of
the DOE is to obtain the most significant variables, which can help in reducing the number of
uncertain parameters. This will result in less runs to build the metamodel.

Among the different methods of DOE, the Plackett-Burman design, which objective is to find
experimental designs for investigating the dependence of some dependent variables (outputs) on
a number of independent variables (inputs) using a limited number of experiments (Plackett and
Burman , 1946). This method belongs to the screening experimental designs methods, in which
each variable takes L levels. Thus, if k parameters are selected and, e.g. they have two levels, the
minimum number of runs required by Plackett Burman design, is given by:

P = 4 ∗ r (1)

Where P is the total number of runs and r is the lowest positive integer that verifies P > k.
This is an advantage in terms of computational cost compared with the factorial design, where
Lk runs are required. In order to select which parameters are significant an hypothesis test based
on analysis of variance (ANOVA) with the results of the Plackett-Burman DOE is performed.
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2.2. Uncertainty Analysis techniques

2.2.1. Wilks’ Method
The Wilks’ method consists of determining the number of calculations needed to verify com-

pliance of the acceptance criteria with Standard Tolerance Levels (STL), typically 95/95 in ac-
cordance with current regulatory practice. Accordingly, the value of the safety variable that is
compared with the corresponding acceptance criterion is often an upper or lower tolerance limit
with level 95/95 instead of the output variable probability distribution. For example, it is often
used one side tolerance interval of output variable based on the use of OS with STL=95/95. Us-
ing the well-known Wilks’ formula, a First Order Statistics (FOS) requires a sample size of n=59
runs (Wilks , 1941).

β = 1 − γn (2)

Where n is the sample size required, β is the probability that the interval (−∞, y(n)] covers
a larger than γ portion of the unknown distribution G(y) of the output variable y, and y(n) is the
largest value of the sample.

FOS often provides conservative results, and several authors have explored the advantage of
using OS of higher levels. However, the use of higher OS, which involves both an increase of the
sample size and an increase in the confidence in the estimated percentile value implies a higher
computational cost. (Beal, 2012) (Pal and Makai , 2005).

In this work, Wilks’ method for first, second, third and fourth order are performed, which
requires sample sizes of n = 59, 93, 124 and 153, respectively. The number of samples required
for maintain 95/95 STL in the different orders is obtained from the general Wilks’ formula,
shown in Eq. 3. Where s = n + 1 − order number.

β =

s−1∑
j=0

(
n
j

)
γ j (1 − γ)n− j (3)

One limitation of Wilks’ method is that only provides the safety variable bound of the safety
variable, and is necessary to use other methods for extracting additional information.

2.2.2. Metamodel I. Generalized Additive Model (GAM)
The substitution of the thermal-hydraulic code by metamodels is a widespread technique,

which allows performing a larger number of runs with a reasonable computational cost. Some
of the metamodels employed in nuclear safety analysis are, for example, finite mixture used in
(Carlos et al., 2013) , (Di Maio et al., 2015), (Di Maio et al., 2016) for determining PCT. In this
work, a GAM is proposed to undertake the uncertainty propagation analysis.

GAM is a natural extension of Generalized Linear Model (GLM), which has been commonly
used to analyze the effect of different explanatory variables in output variables. The form of a
GLM is given by:

I(E(Y |X)) = η(x) = β0 +

p∑
i=1

βixi (4)

where Y is the observed dependent response variable, X are the observed independent covari-
ates, E is the expected value of Y with known values of X, β0 +

∑p
i=1 βixi is a linear combination

6



of unknown parameters β and independent variables xi and p is the number of independent vari-
ables. The link function I is considered to be the same as a linear function of the predictors, η(x).
(Debon and Garcia-Diaz , 2012)

GLMs can present problems of bias and over-dispersion, therefore an alternative to these
models are GAMs, introduced by (Hastie and Tibshirani , 1986), which are an extension of
GLMs in the sense that they adjust nonparametric functions to study the relationship between
predictive variables and the response. Non-parametric relationships between response and pre-
dictor variables are expressed in terms of smooth functions.

GAM can be obtained from the GLM by replacing the linear function in Eq. 4 with non-
parametric, smooth functions, s(xi), as shown in Eq. 5:

I(E(Y |X)) = η(x) = s0 +

p∑
i=1

si(xi) (5)

Thus, instead of a single coefficient for each variable in the model, in additive models an
unspecified, non-parametric, function is estimated for each predictor, to achieve the best value
of the dependent variable. This non-parametric function can be estimated in a flexible manner
using cubic spline smoother, in back fitting algorithm. (Schimek and Turlach , 2000).

The main advantage of GAMs is that they can deal with non-linear and non-monotonic re-
lationships between the response and the predictors without using variable transformations or
polynomial terms, as GAM smoothing functions perform these tasks automatically. GAM is im-
plemented in R language using the package mgcv (Wood , 2016). This package uses splines to
create smooth functions, minimizing both the model deviance and the bias.

2.2.3. Metamodel II. Generalized Additive Model Plus Error (GAMPE)
The main drawback of GAM (and metamodels, in general) is that these techniques predicts

the output in the mean of the distribution, so there are not conservatives. In order to fix this
under-conservativeness of the GAM some strategies can be applied, such as multiply the output
parameter by a safety factor, sum it a safety constant or adding the model error (Picheny , 2008).
In this work an Error Distribution (ED) has been added to the output in order to achieve the
required safety conservativeness. The ED is constructed by means of the error function, which
is the difference between the value predicted (Y f itted) and the real output (YReal) for the n points.
Therefore, the ED with a conservative level of (1−α) is the (1−α) percentile of the error function
distribution:

ED = F−1(1 − α; Y f itted − YReal) (6)

Where F−1 is the inverse cumulative distribution function of the error distribution, and α is
the significance level. Thus, the GAMPE (GAM Plus Error) model is constructed for each 95/95
STL estimation adding to each GAM model their associated ED.

2.3. Performance Metrics

In nuclear safety analysis is important to be conservative in order to assure the regulator
mandatories. Therefore, in addition to the ”classical” statistics it is necessary provide some
metrics to evaluate the goodness of the models employed. In this work, the metrics extracted
from reference (Picheny , 2008) are employed. First, the coverage (C j), which is the part of the
reference distribution covered for each j case is elaborated using the following expression:
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C j =

∑Z1
i=1 I[(yi) ≤ (S T L( j))]

Z1
(7)

Where Z1 is the sample size of the reference distribution, yi is the FOM value for each i case
of the reference distribution, S T L( j) is the STL 95/95 for each j case ( j = 1, ...,N), and I[γ] is
the indicator function, which equals 1 if γ is true and 0 if γ is false.

Since C j is evaluated for N repetitions, the Coverage Mean (CM) of the individual coverages
as a measure of coverage performance of the method, the Coverage standard Deviation (CD), as
a measure of variability of the results, and the Coefficient of Variation (CV) are calculated. The
last one, is the Coverage standard Deviation divided by the Coverage Mean in percent value as
is expressed in eq. 8.

CV =
CD
CM

· 100 (8)

Finally, the conservativeness (% of conservative predictions), which is the amount of cases
out the total that are conservative, is calculated using:

CC =

∑N
j=1 I[(S T L( j)) ≥ (S V)]

N
(9)

where, SV is the reference safety value and N are the number of repetitions used to calculate
STL 95/95 in each uncertainty method.

3. Case study

In this work, the application case of the uncertainty analysis is a SBLOCA at the PKL Test
Facility. The Nuclear Energy Agency (NEA), in the nuclear safety work area, auspices sev-
eral programs that involve experiments in different experimental facilities (Carlos et al., 2011),
(Reventos et al., 2008). Among them, one can find the OECD/NEA PKL-III project. The pro-
gramme was mainly focused on investigating safety issues related to relevant and complex heat
transfer mechanisms in current PWR plants as well as for new PWR design concepts (Jonnet
et al., 2013). In this programme, the experiments were undertaken at Primarkreislauf Versuch-
sanlage facility (PKL) in Germany, which is a full-height, reduced-pressure scaled model of
Phillisburg-2 Konvoi PWR design (Umminger et al., 2012), (Umminger et al., 2002).

3.1. TRACE model of PKL facility

The facility was modeled using the TRACE-5 V4 thermal-hydraulic code. TRACE code is
being developed to make use of the most favorable characteristics of RELAP-5 and TRAC codes
for both PWR and BWR technologies. TRACE has been designed to perform best-estimate anal-
yses of loss-of-coolant accidents (LOCAs), operational transients, and other accident scenarios
in reactors PWRs and BWRs, and it can also model phenomena occurring in experimental facil-
ities designed to simulate transients in reactor systems (USNRC, 2014a) (USNRC, 2014b). The
TRACE PKL model developed is shown in Fig. 2, which represents a SNAP view of the primary
and secondary circuit (Applied Programming Technology, 2012).
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Figure 2: TRACE model for PKL primary circuit.

3.2. Description of the experiment

The experiment G7.1 performed at PKL facility consists of a SBLOCA in the hot leg of the
primary side followed by a total failure of the high pressure injection system (HPIS) together
with the failure of the automatic steam generators (SG) secondary-side cool-down, with a fixed
power of 1.8% of the scaled nominal power of the reference plant. In such conditions, the
accident mitigation procedure proposed is the manual depressurization of the SG secondary side,
followed by the injection from the accumulators, and finally from the Low Pressure Injection
System (LPIS). (Belaid et al., 2013) (Schoen et al., 2012). Table 1 presents the sequence of the
events produced in PKL experiment.

Thus, the transient begins when the break is produced (at 500s) and the primary circuit emp-
ties. Secondary side depressurization is triggered by the core exit temperature (CET) set point
at 623 K. As all four SG are connected, the secondary side depressurization is homogeneous for
all of them, and permits to reduce the primary pressure reaching the accumulators pressure set
point. So this system injects water in the reactor coolant line and, later on, the primary pressure
reaches LPIS activation set point.
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Table 1: Control sequence of major events in experiment.

Event Condition Time
Break valve open Start of the transient 500s
SG secondary-side depressurization CET = 623K 1800s
Initiation of ACC system 2.6MPa 2000s
Termination of ACC system 1.0MPa 2250s
Initiation of LPI system 0.8MPa 2500s

3.3. Simulation results. Base case

In this transient, the most representative variables are CET and PCT, as they are the variables
of interest to assure core integrity. Thus, while the PCT is the safety variable, the accident
measure action proposed to mitigate the accident, i.e. the secondary side depressurization, is
triggered by the CET value. In general, a good agreement between the experimental data and
TRACE simulation of the temperatures is shown in Fig. 3, where it can be observed that the
maximum PCT value (PCTmax) reached during the experiment is 816.2K.

At 2000 s the accumulators’ injection is produced, and the consequent drop in the PCT is
observed (see Fig. 3). PCT and CET evolutions are well reproduced by TRACE, although the
CET is slightly higher in TRACE calculation than in the experimental data. In general, the
plant behavior observed in the simulation agree with the experimental results, as explained in
some more detail in reference (Carlos et al., 2016). So, this simulation is taken as base case to
undertake the uncertainty analysis in the following sections, considering the PCTmax as output
variable and adopting the methodology introduced in section 2.
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Figure 3: PCT and CET.
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3.4. Selection of input parameters

The next step of the uncertainty analysis methodology is to determine the parameters that
are significant for the transient simulation in relation to the PCT evolution. It is necessary to ac-
count for the relevant physical phenomena associated with the transient analyzed. Some studies
have been developed in order to establish a methodology to determine and rank the significant
parameters. In these studies, the selection has been mainly developed using the information of
the PIRT tables (Perez et al., 2011) (Kovtonyuk et al. , 2015) (Pourgol et al., 2016).

In this work, we make use of the uncertainty quantification (UQ) module implemented in the
TRACE code (USNRC, 2014b). This module allows changing a list of parameters that normally
are unseen or unchangeable from the input TRACE file to perform uncertainty quantification
or sensitivity analysis. TRACE UQ sensitivity coefficients are a bundle of different parameters
for adjusting the semi-empirical equations of heat transfer for different regimes, inter-facial drag
models and other physical equation coefficients. In Table 2, the complete list of sensitivity co-
efficients in the TRACE UQ module is presented. In addition, we have also included the initial
power, the clad thermal conductivity and specific heat capacity, the liquid and vapor/two-phase
choke flow (CF) model coefficients and the Critical Heat Flux multiplier, which are changed di-
rectly from the input TRACE file. Thus, the complete list of variables to be considered in this
study is shown in Table 3 together with their statistical distribution data. Some variables that
have available information from previous works are defined as normal or as uniform PDFs on
the basis of (Perez et al., 2011). The TRACE UQ sensitivity coefficients are defined all of them
as uniform PDF between 0.9-1.1 range.

The parameters of Table 2 are not specific for any transient, so when analyzing a SBLOCA
not all the parameters may have a significant effect on the code response. Moreover, the complete
list of parameters shown in Table 3 comprises 42 variables, which is an excessive number of
parameters to construct the metamodel. Hence, in this work a design of experiment based on the
Plackett-Burman design is proposed to reduce the number of variables involved in the uncertainty
quantification process.
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Table 2: Uncertainty Quantification Sensitivity Coefficients Implemented in TRACE

ID Mnemonic Name Description
1000 bubSlugLiqIntHTC Liquid to interface bubbly-slug heat transfer
1001 annMistLiqIntHTC Liquid to interface annular-mist heat transfer coefficient
1002 transLiqIntHTC Liquid to interface transition heat transfer coefficient
1003 stratLiqIntHTC Liquid to interface stratified heat transfer coefficient
1004 bubSlugVapIntHTC Vapor to interface bubbly-slug heat transfer coefficient
1005 annMistVapIntHTC Vapor to interface annular-mist heat transfer coefficient
1006 transVapIntHTC Vapor to interface transition heat transfer coefficient
1007 stratVapIntHTC Vapor to interface stratified heat transfer coefficient
1008 singlePhaseLiqWallHTC Single phase liquid to wall heat transfer coefficient
1009 singlePhaseVapWallHTC Single phase vapor to wall heat transfer coefficient
1010 filmTransBoilTMin Film to transition boiling Tmin criterion temperature
1011 dispFlowFilmBoilHTC Dispersed flow film boiling heat transfer coefficient
1012 subBoilHTC Subcooled boiling heat transfer coefficient
1013 nucBoilHTC Nucleate boiling heat transfer coefficient
1014 DNBCHF Departure from nucleate boiling / critical heat flux
1015 transBoilHTC Transition boiling heat transfer coefficient
1016 gapConductance Gap conductance coefficient
1017 fuelThermalCond Fuel thermal conductivity
1018 cladMWRX Cladding metal-water reaction rate coefficient
1019 fuelRodIntPress Rod internal pressure coefficient
1020 burstTemp Burst temperature coefficient
1021 burstStrain Burst strain coefficient
1022 wallDrag Wall drag coefficient
1023 formLoss Form loss coefficient
1024 bubblyIntDrag Interfacial drag (bubbly) coefficient
1025 dropletIntDrag Interfacial drag (droplet) coefficient
1026 bubSlugIntDragBundle Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient
1027 bubSlugIntDragVessel Interfacial drag (bubbly/slug Vessel) coefficient
1028 annMistIntDragVessel Interfacial drag (annular/mist Vessel) coefficient
1029 dffbIntDrag Interfacial drag (dispersed flow film boiling) coefficient
1030 invSlugIntDrag Interfacial drag (inverted slug flow) coefficient
1031 invAnnIntDrag Interfacial drag (inverted annular flow) coefficient
1032 tempFlood Flooding coefficient temperature coefficient
1033 lengthFlood Flooding coefficient length coefficient
1034 invAnnVapWallHTC Vapor to wall inverted annular heat transfer coefficient
1035 invAnnLiqWallHTC Liquid to wall inverted annular heat transfer coefficient

12



Table 3: Input Uncertainty Parameters.

Normal Distributed Inputs Mean Std Dev Nominal Value Units
Power 1.00 0.01 0.46 MW
Clad Thermal Conductivity 1.00 0.05 Table W/m K
Clad Specific Heat Capacity 1.00 0.01 Table J/kg K
Uniform Distributed Inputs Min Max Nominal Value Units
Liquid CF 0.90 1.10 1.10 (-)
Vapor/Two-Phase CF 0.90 1.10 0.96 (-)
Critical Heat Flux multiplier 0.90 1.10 1.00 (-)
bubSlugLiqIntHTC 0.90 1.10 1.00 (-)
annMistLiqIntHTC 0.90 1.10 1.00 (-)
transLiqIntHTC 0.90 1.10 1.00 (-)
stratLiqIntHTC 0.90 1.10 1.00 (-)
bubSlugVapIntHTC 0.90 1.10 1.00 (-)
annMistVapIntHTC 0.90 1.10 1.00 (-)
transVapIntHTC 0.90 1.10 1.00 (-)
stratVapIntHTC 0.90 1.10 1.00 (-)
singlePhaseLiqWallHTC 0.90 1.10 1.00 (-)
singlePhaseVapWallHTC 0.90 1.10 1.00 (-)
filmTransBoilTMin 0.90 1.10 1.00 (-)
dispFlowFilmBoilHTC 0.90 1.10 1.00 (-)
subBoilHTC 0.90 1.10 1.00 (-)
nucBoilHTC 0.90 1.10 1.00 (-)
DNBCHF 0.90 1.10 1.00 (-)
transBoilHTC 0.90 1.10 1.00 (-)
gapConductance 0.90 1.10 1.00 (-)
fuelThermalCond 0.90 1.10 1.00 (-)
cladMWRX 0.90 1.10 1.00 (-)
fuelRodIntPress 0.90 1.10 1.00 (-)
burstTemp 0.90 1.10 1.00 (-)
burstStrain 0.90 1.10 1.00 (-)
wallDrag 0.90 1.10 1.00 (-)
formLoss 0.90 1.10 1.00 (-)
bubblyIntDrag 0.90 1.10 1.00 (-)
dropletIntDrag 0.90 1.10 1.00 (-)
bubSlugIntDragBundle 0.90 1.10 1.00 (-)
bubSlugIntDragVessel 0.90 1.10 1.00 (-)
annMistIntDragVessel 0.90 1.10 1.00 (-)
dffbIntDrag 0.90 1.10 1.00 (-)
invSlugIntDrag 0.90 1.10 1.00 (-)
invAnnIntDrag 0.90 1.10 1.00 (-)
tempFlood 0.90 1.10 1.00 (-)
lengthFlood 0.90 1.10 1.00 (-)
invAnnVapWallHTC 0.90 1.10 1.00 (-)
invAnnLiqWallHTC 0.90 1.10 1.00 (-)

13



3.5. Identification of most significant input parameters

The PCTmax has been chosen as FOM in this study, which is extracted from the PCT evolu-
tion output performed by the TRACE code. In order to evaluate which of the 42 initial parameters
shown in Table 3 have a real impact in FOM, a Plackett-Burman DOE has been performed. In
this study, 42 parameters and two levels for each parameter have been considered, so, following
the Plackett-Burman method, the total number of runs needed to perform the importance analysis
is 44 (see Eq.1).

The results of the significant variables obtained from Plackett-Burman design of experiments
are listed in Table 4. Specifically, Total Effect, t-value and p-value from the ANOVA test are
listed in this table. The total effect respect the FOM, which determines the significance of the
variables, is calculated as follows.

Total E f f ect =
2
[∑

R(H) −
∑

R(L)
]

N
(10)

Where R(H) and R(L) are the output values when the parameter appears in the high level and
the low level respectively, and N is the total number of runs.

The t-value is a standardized value obtained from the total effect, which can be compared
with the contrast value corresponding to the confidence of ANOVA test with α value of 0.05
for 30 degrees of freedom, which is 2.04 in this case. Therefore, the parameters with a t-Value
greater than the contrast value in absolute value, are considered significant.

Finally, the p-value is the probability enclosed at the right tail of the Student’s t-distribution
for the aforementioned t-values and can be directly compared with the α value, being the param-
eters that obtain a p-value lower than 0.05 as significant.

As a result of the DOE, it has been obtained that the most influencing variable is the initial
power, followed by the single-phase vapor to wall heat transfer coefficient. With this methodol-
ogy the parameters to be considered uncertain have been reduced with a confidence level of 95%,
i.e. 1 − α, from 42 to 13, as shown in Table 4. Table 5 shows the statistical distribution data of
the significant parameters to be used in the uncertainty quantification process.

Table 4: Plackett Burman test results

Name Total Effect t-value p-value
Power -31.13 -6.92 0.000
singlePhaseVapWallHTC -22.44 -4.99 0.000
Vapor/Two-Phase CF 21.84 4.85 0.000
nucBoilHTC 20.70 4.60 0.000
Clad Thermal Cond. -18.46 -4.10 0.000
dffbIntDrag -17.39 -3.87 0.001
wallDrag 14.28 3.17 0.003
bubSlugIntDragBundle 14.16 3.15 0.004
singlePhaseLiqWallHTC -13.35 -2.97 0.006
burstStrain -12.16 -2.70 0.011
invSlugIntDrag -11.88 -2.64 0.013
bubSlugLiqIntHTC 10.70 2.38 0.024
annMistLiqIntHTC 9.28 2.06 0.048
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Table 5: Input Uncertainty Selected Parameters.

Normal distributed Inputs Mean Std Dev Value Units Description

Power 1.00 0.01 0.46 MW Residual Power of the
facility at the transient

Clad Thermal Conductivity 1.00 0.05 Table J/kgK Rods (Ni-Cr alloy) Conductivity
Uniform distributed Inputs Min Max Value Units Description

Vapor/TwoPhaseCF 0.90 1.10 0.96 (-) Vapor and two phase fluid
coefficient for choked flow

bubSlugLiqIntHTC 0.90 1.10 1.00 (-) Liquid to interface
bubbly-slug heat transfer

annMistLiqIntHTC 0.90 1.10 1.00 (-) Liquid to interface
annular-mist heat transfer

singlePhaseLiqWallHTC 0.90 1.10 1.00 (-) Single phase liquid to wall
heat transfer coefficient

singlePhaseVapWallHTC 0.90 1.10 1.00 (-) Single phase vapor to wall
heat transfer coefficient

nucBoilHTC 0.90 1.10 1.00 (-) Nucleate boiling heat
transfer coefficient

burstStrain 0.90 1.10 1.00 (-) Burst strain coefficient
wallDrag 0.90 1.10 1.00 (-) Wall drag coefficient

bubSlugIntDragBundle 0.90 1.10 1.00 (-) Interfacial drag (bubbly/slug
Rod Bundle-Bestion) coefficient

dffbIntDrag 0.90 1.10 1.00 (-) Interfacial drag (dispersed
flow film boiling) coefficient

invSlugIntDrag 0.90 1.10 1.00 (-) Interfacial drag (Inverted
slug flow) coefficient

3.6. Uncertainty analysis: Wilks versus GAM methods

Figure 4 shows an overview of the uncertainty analysis procedure. First, two groups of
size Z1 = 1000 and Z2 = 10000 values of input parameters are sampled by means of crude
Monte Carlo from the PDFs exposed in Table 5. These two groups of size Z1 and Z2 are used
as input to the TRACE code (Z1) and GAM (and GAMPE) simulations (Z2). With the Z1 runs
of the transient performed by TRACE, the safety variable associated to the FOM, i.e. the PCT
evolution, is extracted and the PCTmax value (the FOM) for each simulation is calculated. The
PCT evolutions are shown in Fig. 5, where it is observed that all of them are similar in form,
although different in wide and length for all the runs.
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Figure 4: Uncertainty analysis scheme.
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Figure 5: PCT TRACE results.

Then, a subset of n samples is taken randomly from the Z1 = 1000 inputs and the correspond-
ing PCTmax results outputs results from TRACE code. This process is repeated for N = 999
times. The uncertainty analysis is developed and the performance metrics are calculated for sev-
eral sizes of n = {59, 93, 124, 153}. The results are shown in Table 6 and represented graphically
in Fig. 6.

Fig. 6 shows the PCTmax (816.2K) corresponding to the Base Case (Section 3.3) and a
PCTmax value taken as a reference (835.8K), which corresponds to the 95-percentile of the
PCTmax distribution found using the results of the Z1 = 1000 simulations. It also shows the
distribution of the STL 95/95 results obtained from the N = 999 repetitions for the corresponding
n for Wilks, GAM and GAMPE methods, which have been obtained as described hereafter.

For Wilks’ method, the 95/95 STL is obtained simply ordering from highest to lowest PCT-
max of the different subsets, and selecting the corresponding OS. Size n = 59 is used to obtain
the one-sided tolerance interval corresponding to the FOS, and the other n sizes correspond to
higher OS: second (n = 93), third (n = 124) and fourth (n = 153).

Since the procedure is repeated for N=999 times, it can be estimated a mean value of the
FOS with the Wilks’ method of 863.2K. Moreover, a dispersion of the PCTmax values among
the different repetitions is observed, which can be confirmed by the standard deviation of 23.6K
shown in Table 6.

The mean value of the second OS using Wilks’ method of the N = 999 samples is still
conservative (851.9K), which is around 10K lower than FOS, and moreover, the dispersion is

17



slightly reduced, although it is kept high yet (19.1K).
The third OS using Wilks’ formula reduces both mean and standard deviation values to

845.6K and 14.3K respectively. This confirms that increasing the OS used in the estimation
of 95/95 STL, i.e. increasing the n-value, it is reached a value closer to the reference value with
reduced dispersion.

Last, fourth OS obtained using Wilks’ method results in a mean value of 842.4K and the
standard deviation is 10.5K, which are the best 95/95 STL results, but at the expense of increasing
the computational burden (n = 153).

For GAM surrogate models, the procedure for obtaining the 95/95 STL is the following. First,
the GAM is constructed with R package and mgcv library as discussed in the Section 2 with the
array formed for the input and output data of each subset of size n sampled previously. The
GAM model is built with the purpose of replacing TRACE code for a faster surrogate model, so,
the PCTmax results of the different GAMs are obtained running these GAMs with Z2 = 10000
input parameters sampled. The GAM surrogate models permit to obtain Z2 = 10000 outputs
quickly, since they are very low computer demanding. Finally, the outputs are ordered from
highest to lowest and the 464th OS is selected, which is the value obtained from Eq. 3 (See
Section 2.2.1) that guarantee a probability β = 0.95 of covering at least γ = 0.95 of the unknown
output distribution for a sample size n = 10000.

In order to assess the goodness of the metamodels obtained, the results of the GAM models
are compared with the results obtained with the Wilks’ method as it is shown in Table 6.

The behavior of the GAM models is similar to Wilks’ results. Thus, when n increases, the
dispersion among the output values of the N = 999 repetitions and the mean of these output val-
ues decreases. Moreover, GAM presents a lower dispersion among samples than Wilks’ results
for the same sample size n. However, GAM results are too close to the reference value, with
a mean values of PCTmax between 835-840K, which indicates that there are non-conservative
results in some cases, which can be an issue in nuclear safety analysis.

In order to avoid the lack of conservativeness of the original GAM models, the GAMPE
explained in Section 2 is developed and used in a similar way as for the GAM. The results are
shown in Fig. 6 and in Table 6. It can be seen that the coverage of GAMPE results in comparison
with the reference value is near to 100%. In addition, the GAMPE mean values are around 850K
no matter the n size and present a lower standard deviation values than Wilks’ results for the
same sample size n.
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Table 6: PCTmax STL 95/95 estimation Results.

Method Mean Std Dev Maximum Minimum
1st Order Wilks 863.2 23.6 893.8 833.8
2nd Order Wilks 851.9 19.1 892.6 833.3
3rd Order Wilks 845.6 14.3 889.7 834.2
4th Order Wilks 842.4 10.5 889.5 833.8
GAM1 n=59 838.9 8.0 925.4 822.1
GAM2 n=93 836.0 4.8 866.1 826.4
GAM3 n=124 835.6 4.1 858.1 826.3
GAM4 n=153 834.7 3.3 850.9 826.4
GAMPE1 n=59 851.6 8.7 939.2 834.5
GAMPE2 n=93 850.5 5.3 874.5 837.9
GAMPE3 n=124 850.9 4.8 869.4 839.0
GAMPE4 n=153 850.6 4.1 868.3 840.4
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Figure 6: Box-Whisker diagram for Wilks and GAMs PCTmax STL 95/95 estimation.
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3.7. Performance metrics. Comparation results
The metrics used for assessing the goodness of the results of each method are shown in

Table 7. Using CM and CC indexes, it can be observed that original GAM models obtain poor
conservativeness values, whereas GAMPE have very good CC values of: 99.9% for n = 59 and
100% for the other sizes. The Wilks’ method, always provides conservative values for whatever
n size, with a high CC values, although slighty lower than GAMPE CC results. Regarding the
CM values, the Wilks’ method also presents similar values as GAMPE.

The dispersion of the results is measured with the CD index. For this metrics Table 7 shows
a lower dispersion for GAMPE results as compared with both GAM and Wilks’ results.

Finally, the robustness of the uncertainty analysis methods is measured with the CV index.
Again GAMPE results are the best ones among the three methods applied, as the lower is the
index, the greater is the robustness.

Therefore, one may conclude that the GAMPE provides the best results no matter the n
sample size, i.e. it provides the best results for the same computational cost as compared to
Wilks’ method. The benefit is even better for low sample sizes, n = 59, 93.

Table 7: Statistic Metrics.

Uncertainty Coverage Coverage Coeff. Conservative-
Analysis Method Mean (CM) Std Dev. (CD) of Var. (CV) ness (CC)
1st Order Wilks 98.4 1.44 1.46 96.8
2nd Order Wilks 97.9 1.34 1.37 95.9
3rd Order Wilks 97.6 1.27 1.30 96.0
4th Order Wilks 97.4 1.15 1.18 96.7
GAM1 n=59 94.8 4.44 4.69 59.7
GAM2 n=93 93.5 4.27 4.57 46.1
GAM3 n=124 93.4 3.96 4.24 43.3
GAM4 n=153 92.7 3.60 3.88 29.9
GAMPE1 n=59 98.7 0.34 0.35 99.9
GAMPE2 n=93 98.8 0.17 0.17 100.0
GAMPE3 n=124 98.8 0.13 0.14 100.0
GAMPE4 n=153 98.8 0.11 0.11 100.0

4. Conclusions

A good agreement between the calculations predicted by TRACE for the behavior of the
main safety variables and their respective experimental data is observed in the simulation of the
base case corresponding to the PKL SBLOCA G7.1 experiment. However, in the simulation
process uncertainties must be analyzed in order to measure their effect on safety variables of
interest. This paper presents a methodology and the application to G7.1 experiment to perform
the uncertainty analysis on the simulation of such experiment focusing on the PCTmax as FOM
of interest.

First, the use of the Plackett-Burman method has demonstrated to reduce the amount of
uncertain parameters to be considered. However, Plackett-Burman method does not addresses
the effects of interactions among parameters.
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Next, the uncertainty analysis performed to estimate a tolerance interval of PCTmax attend-
ing to their uncertainties using Wilks’ method shows conservative results and a great dispersion
of the results depending on the sample sizes selected, i.e. the OS adopted. Increasing the OS
based on the Wilks’ formula reduces the estimated PCTmax, getting closer in average to the ref-
erence value corresponding to the 95th-percentile of the 1000 TRACE simulations (i.e. 835.8K)
and the dispersion is reduced.

Alternatively, the GAM metamodel provides results, also in average, closer to the reference
value, but it does not keep the conservatism for many of sample sizes, as the mean values for
GAM outputs are below the aforementioned reference value (835.8K).

This problem has been solved by hybridizing the GAM model with an error function, which
permits to obtain conservative results, in the same way as Wilks does, and at the same time
the dispersion is reduced from two to three times the dispersion obtained with the same sample
size using the Wilks’ method. In addition, as it provides better results with the same computa-
tional cost since in average the mean values of the GAMPE are closer to the reference value, i.e.
835.8K.

Then, it may be concluded from the comparison of the results from the uncertainty analysis
that the GAMPE provides the best overall performance, in particular, when using small sample
size, i.e. n = 59, 93. For larger sample sizes, i.e. n = 124, 153, GAMPE and Wilks’ results
presents similar performance.
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