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ABSTRACT 14 

Hydroclimatic drought conditions can affect the hydrological services offered by 15 

mountain river basins causing severe impacts on the population, becoming a challenge 16 

for water resource managers in Andean river basins. This study proposes an integrated 17 

methodological framework for assessing the risk of failure in water supply, 18 

incorporating probabilistic drought forecasts, which assists in making decisions 19 

regarding the satisfaction of consumptive, non-consumptive and environmental 20 

requirements under water scarcity conditions. Monte Carlo simulation was used to 21 

assess the risk of failure in multiple stochastic scenarios, which incorporate probabilistic 22 

forecasts of drought events based on a Markov chains (MC) model using a recently 23 

developed drought index (DI). This methodology was tested in the Machángara river 24 

basin located in the south of Ecuador. Results were grouped in integrated satisfaction 25 
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indexes of the system (DSIG). They demonstrated that the incorporation of probabilistic 1 

drought forecasts could better target the projections of simulation scenarios, with a view 2 

of obtaining realistic situations instead of optimistic projections that would lead to 3 

riskier decisions. Moreover, they contribute to more effective results in order to propose 4 

multiple alternatives for prevention and/or mitigation under drought conditions. 5 

 6 

Keywords: Risk assessment, probabilistic drought forecasts, simulation of stochastic 7 

scenarios, water resource systems management 8 

 9 

1 Introduction  10 

In Andean river basins, drought events are affecting water availability for the multiple 11 

uses of lowland residents, causing harmful social, economic and ecological impacts. 12 

The development of methodologies for the characterization and forecasting of drought 13 

events provides a good support for water managers with a view to make appropriate 14 

decisions for a reliable water supply and adverse to the risk of failure (Avilés et al. 15 

2016).   16 

In order to improve the ability to characterize and predict drought events, water 17 

managers use information expressed in index form (Svoboda et al. 2004; Shukla and 18 

Wood 2008). Different hydrological and climatic conditions in a river basin discourage 19 

the use of some indexes, given the specific information and calculation process to 20 

develop these indicators (Mishra and Singh 2010; Barua et al. 2012). In fact, the 21 

characterization of droughts requires indicators that are generally applicable, but also 22 

indicators specific for a region in order to capture the type of droughts with the 23 

available information (Staudinger et al. 2014). Moreover, these indicators must reflect 24 

the succession of several events of water scarcity during different time periods (Kao and 25 
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Govindaraju 2010).  Consequently, this study uses the drought index (DI) developed by 1 

Avilés et al (2015), which presents the advantage of grouping available information on 2 

variables related to water including different time scales in a single index that identifies 3 

the frequency and severity of several drought events. 4 

On the other hand, reliable and timely drought events forecasts play an important role in 5 

decision-making in order to reduce the impacts of this phenomenon on water resource 6 

systems (Madadgar and Moradkhani 2013; Madadgar and Moradkhani 2014). A large 7 

number of models provide a prediction of drought states without considering the 8 

uncertainty associated with forecasting (Hwang and Carbone 2009). This aspect can be 9 

handled with probabilistic forecasts, which offer a prediction associated with its 10 

uncertainty quantitatively (Hwang and Carbone 2009; Avilés et al. 2016). Several 11 

authors have developed probabilistic drought forecast models, but few of them are able 12 

to predict probabilistically future droughts given the information of previous events (for 13 

instance, using the conditional probability). Such is the case of the large majority of 14 

common models based on MC (Ochola and Kerkides 2003; Paulo and Pereira 2007; 15 

Cancelliere et al. 2007; Nalbantis and Tsakiris 2009; Avilés et al. 2015; Avilés et al. 16 

2016; Khadr 2016; Mahmoudzadeh et al. 2016) and the most sophisticated models 17 

based on Bayesian networks (BN) (Madadgar and Moradkhani 2013; Madadgar and 18 

Moradkhani 2014; Avilés et al. 2016; Chen et al. 2016; Phan et al. 2016). These two 19 

approaches were compared recently by Avilés et al. (2016) through the ranked 20 

probability skill score (Wilks 2011) , who concluded that models based on MC proved 21 

to be equally efficient to predict probabilistically drought events as models based on 22 

BN.  Nevertheless these authors highlight the best performance of the first order MC 23 

model (MCFO) with a view to predict wet and dry periods.  For this reason, this study 24 

uses the MCFO model in order to predict probabilistically drought events, which have 25 
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the advantage of being one of the most used models in stochastic processes of discrete 1 

time series, highlighting its simple calculation approach and lower computational costs. 2 

The characterization and forecasting of drought events could improve the management 3 

and operation of water resource systems. However, obtaining indicators that quantify 4 

the risk of failure and the satisfaction of a set of demands could represent a reliable 5 

option to improve the information for decision-making, which aims to minimize or 6 

mitigate the effects of drought on water resources systems in regulated river basins 7 

(Haro et al. 2014). For this purpose Monte Carlo simulation is perhaps the most widely 8 

employed method to evaluate the risk of failure and to quantify the deficit in water 9 

supply. This approach has been exposed in several studies (Sánchez et al. 2001; 10 

Cancelliere et al. 2009; Rossi et al. 2012; Andreu et al. 2013; Avilés and Solera 2013; 11 

Rossi and Cancelliere 2013; Haro et al. 2014; Haro-Monteagudo et al. 2017; Vogel 12 

2017), which consists of the generation of multiple probable scenarios by using 13 

synthetic generation models. In this study we chose the first-order multivariate periodic 14 

autoregressive models (MPAR1) to generate multiple hydrological synthetic series. 15 

These models offer the advantage of representing adequately the temporal 16 

(autocorrelation) and spatial correlation (cross-correlation) of time series, and they can 17 

also be characterized by different dependency structures for each season of the year 18 

(Sveinsson et al. 2007; Cancelliere et al. 2009).   19 

Some water managers generally prefer not to deviate from their usual practices (Gong et 20 

al. 2010). This may result in decisions towards the average conditions and a distancing 21 

from extreme conditions, with the consequent decrease in effectiveness of decision-22 

making. In this sense, managers sometimes prefer to incorporate forecasts of 23 

hydrometeorological variables within their management tools.  The purpose of this 24 

approach is to understand the sensitivity of the water resource system with respect to the 25 
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satisfaction of demands and to improve the evaluation of the possible risks of shortages, 1 

achieving more certainty in their decisions (Brown et al. 2010; Gong et al. 2010). The 2 

forecasts combined with multiple simulation tools could condition and limit future 3 

scenarios, facilitating water availability prediction and the simulation of water supply to 4 

different demands (Brown et al. 2010). Therefore, the purpose of this study is to 5 

develop an integrated methodological framework for assessing the risk of failure in 6 

water supply through the incorporation of probabilistic drought predictions. This 7 

approach could help to address possible scenarios and to analyze more realistic 8 

situations of risk of failure in water resource allocation for the different uses. Moreover, 9 

this methodology may provide support to water managers and reduces uncertainty in 10 

decision-making to enhancing measures to prevent or mitigate the impacts of water 11 

scarcity. 12 

 13 

2 Methods 14 

Following the methodology based on Montecarlo simulation, the assessment of the risk 15 

of failure was developed by analyzing multiple situations of water resources 16 

management.  For the application of this methodology AQUATOOL Decision Support 17 

System (DSS) (Andreu et al. 1996) was employed and, more specifically the module for 18 

the simulation of water resources systems management (SIMGES) (Andreu et al. 2007) 19 

and the module for risk management evaluation (SIMRISK) (Sánchez et al. 2001). The 20 

simulation process in SIMGES consists of a conservative flow network that is 21 

optimized monthly by linear programming with the Out-of-Kilter algorithm (Bazaraa et 22 

al. 2011), to maximize a target function (satisfaction of demands and storage of 23 

reservoirs) subject to restrictions of mass conservation and physical limits of flow 24 

transport in channels and reservoir capacities. This simulation process for several 25 
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scenarios is done by running SIMRISK model. It is based on the Monte Carlo 1 

simulation and assesses the risk of failure in water supply.  The outputs of this model 2 

are probabilistic information that allows analyzing the number of failures in the system 3 

and their severity. Through this information, decision makers are able to formulate 4 

prevention and/or mitigation measures to address risk and maximize system 5 

performance (Cancelliere et al. 2009; Haro et al. 2014). This methodology is presented 6 

in the Figure 1 by the non-shadowed forms and it consists of the following steps: 7 

i) Using a stochastic model of monthly river flow time series, a synthetic 8 

hydrological generation is completed conditioned to the previous 9 

observations, which generates multiple scenarios of possible future river 10 

flows;  11 

ii) With the multiple generated scenarios, the current features of the water 12 

exploitation system and the management rules of the system, multiple 13 

simulations of future management are performed; 14 

iii) The results of the multiple simulation are analyzed statistically in order to 15 

obtain the probabilities of failure of the demands;  16 

iv) The information provided in the previous step determines the state of the 17 

system and supports the decision-making process about the admissibility or 18 

not of the risk;  19 

v) When the risk is not accepted, then new alternatives of management are 20 

formulated, which feedback the multiple simulation model (step 2). The 21 

following steps are repeated until making a new decision about whether the 22 

risk is acceptable or not. This process is replicated repeatedly until the risk 23 

associated with the decision is appropriate. 24 
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This study proposes an integrated methodological framework that is shown in Figure 1 1 

by the non-shadowed and shadowed forms, the latter are described below: 2 

i) The generation of probabilistic drought forecasts is performed by the 3 

development of a drought index (DI) and the previous drought states using a 4 

drought forecast model.  5 

ii) The probabilistic drought predictions are introduced in the synthetic 6 

generation of hydrological time series.  7 

iii) The previous drought states are also introduced in the simulation of the 8 

future management of multiple scenarios;  9 

iv) The results of the multiple simulations provide several indicators of risk of 10 

failure in water supplies through a statistical analysis. These indicators are 11 

grouped to build integrated demand satisfaction indexes, which will serve to 12 

make decisions on the management of the system;  13 

v) When satisfaction index is not acceptable, management alternatives are re-14 

formulated and the simulation of future management with multiple scenarios 15 

is run again (step 3);  16 

vi) This process is repeated until an acceptable satisfaction index is achieved. 17 

Each step of the methodology is detailed below. 18 

 19 

2.1 Drought index 20 

For the construction of the DI, a similar calculation exposed by Keyantash and Dracup 21 

(2004) is used, where the available information of the r water-related variables are 22 

subjected to a Principal Component Analysis (PCA). The PCA-derived eigenvectors 23 

establish the relationship between the principal components (PCs) and the original data: 24 
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S = D ∗ E   (1) 

where S is the matrix (w x r) of the PCs (where w is the number of observations), D is 1 

the matrix (w x r) of the original standardized information, and E is the matrix (r x r) of 2 

the eigenvectors. The DI is the first major component (PC1), normalized by its standard 3 

deviation: 4 

DIi,k =  
Si,1,k

σk
 (2) 

where DIi,k is the value of the DI for month k in year i, Si,1,k is the PC1 during year i, for 5 

month k, and k is the standard deviation of the sample of Si,1,k. Once the DI values are 6 

calculated for each year and each month, they are rearranged in chronological order in a 7 

single time series. 8 

The DI is a standardized index capable of capturing the anomalies of the average 9 

moisture conditions in a river basin based on the available information of water related 10 

variables (Kao and Govindaraju 2010; Madadgar and Moradkhani 2013). Any 11 

phenomenon that can be continually quantified, such as the drought index, can be 12 

treated as a discrete variable by categorizing the time series considering the thresholds 13 

for each drought state (Avilés et al. 2016). Therefore, the DI, as a standardized variable, 14 

is divided into categories to characterize the drought states, using the same thresholds as 15 

the World Meteorological Organization (2012). Regarding this latter reference, the 16 

categories considered are the following: DI> 0 = category 0 (not drought); -1 <DI ≤ 0 = 17 

category 1 (mild drought); DI ≤ -1 = Category 2 (moderate, severe and extreme 18 

drought). The three states of category 2 are taken as a single state called drought. This 19 

monthly time series of categorical values is the input of the MC model. 20 

 21 
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2.2 Markov chain model 1 

The behavior of MC models is governed by a set of transition matrices that indicate the 2 

probabilities of occurrence of the states of a system for a future time interval given the 3 

current status information and/or past interval states, depending on the order of the 4 

model. The Markovian property of the mth order MC model is: 5 

P(Ytn|Ytn−1, Ytn−2,Ytn−3, … , Y1) =  P(Ytn|Ytn−1, Ytn−2, … , Ytn−m) (3) 

Considering a MCFO model, that is, m = 1, the transition probabilities provide the 6 

probabilistic state forecast one step forward based on the current state, applying the 7 

following formula: 8 

pij =  P(Ytn = j|Ytn−1 = i) (4) 

where pij represents the transition probability that Ytn is equal to category  j  given that 9 

Ytn-1 equals category  i.  The estimated transition probability p̂ij can be calculated by 10 

taking into account the conditional relative frequencies of the transitions (fij): 11 

p̂ij =  
fij

∑ fijj  
   i, j = 1, … , s (5) 

where fij is the frequency that Y is equal to category i at time tn-1 and equal to category j 12 

at time tn. The value of s is the number of states of the system. The numerator presents 13 

the number of transitions from category i to category j and the denominator represents 14 

the sum of the number of transitions from category i to any other category. 15 

 16 

2.3 Incorporation of probabilistic drought forecasts in the generation of 17 

hydrological synthetic series 18 

The MPAR1 model is used to generate multiple hydrological synthetic series.  These 19 

models can be expressed as: 20 
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ℤυ,τ =  ϕ1,τ ℤυ,τ−1 +  ℇυ,τ  (6) 

where, ℤ𝜐,𝜏  is a column vector [q x 1] of the q inflows (normalized and standardized) to 1 

the reservoirs in the water exploitation system with zero mean and unit variance for year 2 

 and month .  ϕ1,τ, are the matrices [q x q] of periodic autoregressive parameters of 3 

order 1 for each month, and ℇυ,τ is the column vector [q x 1] of the normally distributed 4 

independent noise terms with mean zero and matrices [q x q] of variance-covariance 𝔾τ. 5 

The MPAR1 model is adjusted (parameter estimation) through the method of moments. 6 

In order to ensure the collection of a normally distributed independent noise, a large 7 

number of random numbers must be generated, so that the statistics of the probability 8 

distribution are fulfilled.  Therefore, ten thousand random numbers for ℇυ,τ are 9 

generated by a truncated multivariate normal distribution with mean zero and variance-10 

covariance matrices 𝔾τ in three intervals: 1) From the maximum value of  Zυ,τ of each 11 

monthly time series to the value of  Zυ,τ = 0; 2) From the value of  Zυ,τ = 0  to the 12 

value of  Zυ,τ = −1 ;  and 3) From the value of  Zυ,τ = −1  to the minimum value of  13 

Zυ,τ of each monthly series.  These intervals are analogous to the non-drought, mild 14 

drought and drought states, respectively, on the DI scale. Each interval corresponds a 15 

fraction of the 10000 random numbers, which is equal to the probabilistic predictions of 16 

each drought state (in other words, the probabilistic forecast of the states: non-drought, 17 

mild drought and drought become a percentages of the 10000 random numbers for the 18 

first, second and third interval, respectively).   19 

For the previous values (-1) we assume the following:  1) Value of ℤυ,τ−1 = 0, equal to 20 

the average value of each monthly time series; 2) Value of ℤυ,τ−1 = −1; and 3) 21 

Minimum value of ℤυ,τ−1 of each monthly time series (analogous to the lower limits of 22 

each drought states on the DI scale). Using Equation 6 a prediction of the distribution 23 
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function of the possible values of ℤτ conditioned to the previous values ℤτ−1 is obtained. 1 

This procedure is carried out twelve times ahead to obtain 10000 synthetic series of 12 2 

months each. This considerable amount of generated series is able to capture all, or a 3 

large part, of the variability of water inflows to reservoirs, addressing a large part of the 4 

uncertainty of these variables.  The multiple time series are the input information for the 5 

simulation model.  6 

 7 

2.4 Multiple simulation model for failure risk assessment 8 

The simulation period is 12 months with the purpose of operating and managing the 9 

system within a year. The simulation scenarios for the risk of failure assessment model 10 

are built considering the simulation starting month, initial storage volume of the 11 

reservoirs, previous drought states and the previous hydrological conditions.  The latter 12 

two conditions are also used in the generation of synthetic series.   13 

During each month of the simulation period for each scenario, demands may receive a 14 

supply higher or equal to the value required (satisfaction status), or a lower value 15 

(dissatisfaction status). In the latter case, there will have a supply failure with a deficit 16 

(D) equal to the demand value minus the quantity of water supplied. The severity level 17 

of the deficit D will depend on the amount of water supplied with respect to the quantity 18 

required; therefore the supply is divided into different levels representing the fraction of 19 

the quantity of water required by a demand.  Level 1 (n1) is the most serious situation, it 20 

means that the deficit exceeds 75% of the demand, this is, the supply is between 0 and 21 

25% of the value required; level 2 (n2) means that the supply represents between 25 and 22 

50% of the value of the demand; level 3 (n3) means that supply is between 50 and 75%; 23 

and level 4 (n4) is the less serious state, which means that the supply is between 75 and 24 

100%. 25 
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The tolerance to the risk of failure of several demands can become a subjective task. 1 

However, as a support for objectivity, this information can be represented in a single 2 

demand satisfaction index (DSI). The DSI is the result of the number of failures in the 3 

supply of the demands through a reliability index (RI) and the severity of these failures 4 

through a severity index (SI). Following in a similar way as Hashimoto et al. (1982) and 5 

Sandoval-Solis et al. (2011) propose, these indices for a particular demand and for each 6 

month in the simulation period can be calculated as follows: 7 

RI =   
(total number of simulations − number of failures )

total number of simulations
 (7) 

SI =   
∑ (Dj)

n
j=1

total number of simulations ∗ demand value
 (8) 

DSI =   RI ∗ (1 − SI) (9) 

where n is equal to the number of supply levels and Dj is the deficit at each level of 8 

supply. If there are several demands the DSI can be calculated as a satisfaction index of 9 

a group of demands DSIG by a weighted sum of the particular DSI as follows: 10 

DSIG =  (∑
Demand i

∑ Demand ik
i=1

∗ DSIi

k

i=1 

) ∗ 100 
(10) 

 11 

where i is the counter of the individual demands and k is the total number of demands in 12 

the water resource system. 13 

The DSIG could be used to make decisions every month of the year in an operational 14 

context. The value of this index can vary from 0% to 100%, the higher the value of the 15 

DSIG index, the greater the satisfaction of the system. 16 

 17 
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3 Case study 1 

The approach proposed in this study was applied to the Machángara river basin (325 2 

km2) located in the southern Ecuadorian Andes at an altitude of 2440 - 4398 m.a.s.l 3 

(Figure 2). This river basin is particular important because it has one of the few 4 

multipurpose water resource systems in southern Ecuador for the benefit of the local 5 

and regional economy and ecology. In the upper part, Chanlud (16 hm3) and El Labrado 6 

(6 hm3) reservoirs are located, which supply water for different uses. The first one is 7 

located in the Machángara Alto river sub-basin and the last one is located in the Chulco 8 

river sub-basin. The competition for the different water uses is caused by an increasing 9 

pressure on water resources due to population growth at an average annual rate of 2% 10 

and an increase in irrigated areas. On the other hand, the future climate analysis in the 11 

river basin shows an intensification of rainfall seasonality (wetter rainy periods 12 

followed by extreme dry seasons) for 2020-2050. These results, point to less water 13 

resources availability during several seasons in the future.  14 

For the development of the DI, we use monthly time series data (1971 - 2010) of 15 

average precipitation and reservoir inflows.  This information derives from the National 16 

Institute of Meteorology and Hydrology of Ecuador (INAMHI) and the Machángara 17 

River Basin Council (CBRM).  This methodology includes five time windows (1, 3, 6, 9 18 

and 12 months) for each variable in order to capture the short and medium term of 19 

drought events. In other words, five precipitation time series (PR1, PR3, PR6, PR9 and 20 

PR12) are generated for the two sub-basins and five more for the reservoir inflows (VS1 21 

VS3, VS6, VS9 and VS12). For the purpose of considering the monthly seasonality, 22 

each time series is divided according to each month of the hydrologic year; in addition, 23 

all the information was standardized. 24 
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The information required for the quantification of water demands is provided by the 1 

CBRM. Data reproduce the three most important water uses in the river basin, taking as 2 

a priority use the human consumption in the city of Cuenca (240000 inhabitants); in the 3 

second place, the water for irrigation (1300 Ha) and finally the hydropower generation 4 

(40 MW). An ecological flow equivalent to 10% of monthly average streamflows is also 5 

considered. A scheme of the water resources system of the Machángara river basin is 6 

shown in Figure 2. 7 

 8 

4 Results and Discussion 9 

4.1 DI calculation 10 

Eigenvalues and eigenvectors are obtained by using PCA for each month and for each 11 

sub-basin (Machángara Alto and Chulco rivers), and the correlation matrices of the ten 12 

time series (PR1, PR3, PR6, PR9, PR12, VS1, VS3, VS6, VS9 and VS12) for each sub-13 

basin.  From equations 1 and 2 we obtain the twelve sets of DI values, which are 14 

rearranged chronologically in order to obtain a single time series for each sub-basin 15 

(1971- 2010). Figure 3 shows the DI values for each sub-basin and the drought severity 16 

thresholds, where the frequency and duration of each drought event (non-drought, mild 17 

drought and drought) can be observed. 18 

 19 

4.2 Probabilistic drought forecasts using the MCFO model 20 

Taking into account the seasonality and using Equation 5, twelve transition probability 21 

matrices are built for each sub-basin. These matrices allow us to obtain the probabilistic 22 

forecast of the following month j given the status category of the current month i 23 

(Equation 4).  Table 1 shows the probabilistic drought forecasts in the sub-basins of the 24 

Machángara Alto and Chulco rivers.   25 
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 1 

4.3 Generation of hydrological synthetic series with the incorporation of 2 

probabilistic drought forecasts 3 

The MPAR1 model (Equation 6) is able to preserve some statistics of the historical time 4 

series of normalized and standardized reservoir inflows. Table 2 presents the monthly 5 

thresholds of the intervals for the generation of random numbers (ℇ) and the previous 6 

values ℤτ−1 for the generation of synthetic series.   7 

For instance, for the generation of ten thousand random numbers for the month of 8 

August (the least rainy month), with a category 2 drought state (drought); during the 9 

month of July, and with the information of the Tables 1b and 2, we would have in the El 10 

Labrado reservoir: 0 random numbers (equal to 0% of 10000, since the percentage is 11 

equal to the probabilistic forecasts of non-drought state in August) in the interval [0, 12 

3.23], 3300 random numbers (equal to 33% of 10000, as the percentage is equal the 13 

probabilistic predictions of mild drought state in August) in the interval [-1, 0] and 6700 14 

random numbers (equal to 67% of 10000, considering the probabilistic forecasts of 15 

drought state in August)  in the interval [-1.66, -1]; adding 10000 random numbers.  A 16 

similar analysis can be performed for the Chanlud reservoir.  Therefore, through the two 17 

sets of random numbers, the parameters of MPAR1 model for August, the previous 18 

hydrological conditions of July for both reservoirs (assuming a similarity with the 19 

drought states of the two sub-basins, the previous values of July would be ℤτ−1= -1.68 20 

for the reservoir of Chanlud and ℤτ−1= -1.65 for the reservoir of El Labrado, see Table 21 

2) and by using Equation 6; 10000 hydrological synthetic series are generated with a 22 

twelve-month length (simulation period). 23 

 24 
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4.4 Failure risk assessment 1 

The simulation process is performed with 1728 scenarios built on the modification of 12 2 

options for the simulation starting month (January to December), 16 combinations of 3 

initial storage volumes of the reservoirs (Chanlud with 4, 8, 12 and 16 hm3 and El 4 

Labrado with 1.5, 3, 4.5 and 6 hm3) and 9 combinations of monthly previous 5 

hydrological conditions for each reservoir (Table 2).  These scenarios are the inputs for 6 

the failure risk assessment model. Taking the most unfavorable scenario as an example: 7 

August as the simulation starting month, minimum values of the previous hydrological 8 

conditions for the reservoir inflows in the month of July, category 2 (drought) in the 9 

month of July as previous drought status for both sub-basins and the initial storage 10 

volumes for Chanlud equal to 4 hm3 and 1.5 hm3 for El Labrado.   11 

The results obtained are presented in the Figure 4a, which shows the probabilities of 12 

failure of water demands at the four levels of supply (n1, n2, n3 and n4) and for each 13 

month of the simulation period. It can be observed that there is a significant probability 14 

of failure for the irrigation demands in the month of September (probability of n1 equal 15 

to 60% and total probability equal to 80% approximately).  Likewise, in this month 16 

urban demand has a moderate probability of failure (total probability equals 17 

approximately 34%). In October, the probability of irrigation demands falls slightly 18 

(total probability equal to approximately 60%), and there is zero probability of failure 19 

for the urban demand. In November and December irrigation demands have a low 20 

probability of failure (total probability less than 10%) and there is still zero probability 21 

of failure for urban demand. This information could be considered as sufficient 22 

evidence for the identification of severe prevention and/or mitigation measures to 23 

reduce the risk of failure of supplies in the months of September and October and other 24 

less severe measures for the months of November and December.  The tolerance to the 25 
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risk of failure will depend on the subjectivity of decision-makers, however for get a 1 

more objective decision-making DSIG was used in order to concentrate the results of all 2 

demands. Using the Equations 7, 8, 9 and 10, the DSIG is calculated for each scenario 3 

and for each month of the simulation period.  4 

Figure 4b shows the DSIG of the scenario described above with different initial storage 5 

volumes.  For initial storage volumes equal to 4 hm3 for Chanlud and 1.5 hm3 for El 6 

Labrado, we can see that the DSIG is equal to 30% in the month of September and 60% 7 

in the month of October and in the rest of the months it is greater than 90%. Therefore, 8 

the information in this figure shows, in a more integrative and comprehensible way, that 9 

for the months of September and October some preventive and/or mitigation measures 10 

will need to be formulated in order to operate and manage the system in such a way that 11 

the risk of failure is reduced.  In order to show the advantages of the incorporation of 12 

drought forecasts, the failure risk assessment was also performed without the 13 

incorporation of drought predictions (Figure 4c), where it can be seen that the DSIG 14 

values were substantially increased.  Therefore, the incorporation of probabilistic 15 

drought forecasts could better target the projections of simulation scenarios and 16 

contribute to more effective decision-making results in drought conditions. 17 

This improvement of the resulting information for the decision-making discussed above 18 

coincides with some studies that are detailed below: Sankarasubramanian et al. (2009) 19 

showed that there was an improvement in the seasonal and intra-seasonal allocation of 20 

water when the predictions of the climatological probabilities in the reservoir inflows 21 

were used.  On the other hand, Pouget et al. (2015) showed improved decision-making 22 

when seasonal climate forecasts were integrated into management tools.  Likewise, the 23 

results of Gong et al. (2010) also showed an improvement in water management 24 
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practices when forecasts of climate-based flows were incorporated into reservoir 1 

operation tools, reducing the number of drought emergency days. 2 

 3 

5 Conclusions  4 

This study proposes an integrated methodological framework for assessing the risk of 5 

failure to the supply of demands in a water resource system by improving traditional 6 

methodologies through the incorporation of probabilistic drought forecasts and by 7 

providing information to support decision-making in the water management during 8 

periods of scarcity. The simulation process was performed for 12 months through the 9 

analysis of 1728 scenarios developed from the variation of the water supply and the 10 

current water demand. Each scenario comprises 10000 synthetic series of water inflows 11 

to reservoirs (incorporing probabilistic drought forecasts), the main features of the water 12 

resources system, the monthly previous hydrological conditions and the simulation 13 

starting month. This approach was applied to the Machángara river basin, achieving an 14 

ensemble of water resources system satisfaction indexes. These results showed that the 15 

incorporation of drought probabilistic predictions in water management simulation 16 

could better target the projections of possible scenarios, also allowing the analysis of 17 

more realistic situations of risk of failure in water resource allocation for the different 18 

demands. This approach could be applied with the purpose of building a portfolio of 19 

prevention or mitigation options in order to reduce the risk of failure during water 20 

scarcity conditions. 21 
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FIGURES 1 

  2 

 3 

Fig 1 Integrated methodological framework for assessing the risk of failure in water 4 

resource systems 5 
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 1 

Fig 2 Location and scheme of the water resources system of Machángara River Basin 2 
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 1 

Fig 3 Time series of the DI (1971 - 2010) in the sub-basins of the rivers: (a) 2 

Machángara Alto and (b) Chulco 3 
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 1 

 Fig 4 (a) Probability of failure of the water demands and DSIG of the water resource 2 

system of the Machángara River Basin for the most unfavorable scenario. With different 3 

initial storage volumes applying the methodology: (b) with the incorporation of drought 4 

forecasts and (c) without the incorporation of drought forecasts 5 
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 1 

TABLES 2 

Table 1 Probabilistic forecasts of drought for: (a) Machángara Alto river sub-basin and (b) Chulco river sub-basin 3 

(a) 4 

Category 

current month i 

Category 

next month j 

Probabilistic forecasts for the next month j 

jan feb mar apr may jun jul aug sep oct nov dec 

0 0 0.75 0.80 0.94 0.95 0.86 0.80 1.00 0.86 0.84 0.82 0.78 0.89 

1 0.25 0.15 0.06 0.05 0.14 0.20 0.00 0.14 0.16 0.18 0.22 0.11 

2 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 0 0.45 0.18 0.21 0.18 0.20 0.13 0.19 0.08 0.08 0.24 0.22 0.24 

1 0.45 0.55 0.58 0.73 0.80 0.74 0.75 0.84 0.92 0.76 0.67 0.47 

2 0.10 0.27 0.21 0.09 0.00 0.13 0.06 0.08 0.00 0.00 0.11 0.29 

2 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 0.11 0.56 0.25 0.11 0.44 0.20 0.00 0.00 0.25 0.33 0.25 0.20 

2 0.89 0.44 0.75 0.89 0.56 0.80 1.00 1.00 0.75 0.67 0.75 0.80 
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(b) 1 

Category 

current month i 

Category 

next month j 

Probabilistic forecasts for the next month j 

jan feb mar apr may jun jul aug sep oct nov dec 

0 0 0.75 0.79 0.95 0.89 0.85 0.79 0.94 0.89 0.72 0.86 0.78 0.78 

1 0.25 0.21 0.05 0.11 0.15 0.21 0.06 0.11 0.28 0.14 0.22 0.22 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 0 0.29 0.31 0.08 0.21 0.08 0.06 0.17 0.13 0.07 0.27 0.18 0.33 

1 0.50 0.38 0.84 0.65 0.84 0.76 0.72 0.68 0.86 0.59 0.53 0.54 

2 0.21 0.31 0.08 0.14 0.08 0.18 0.11 0.19 0.07 0.14 0.29 0.13 

2 0 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.20 0.14 

1 0.17 0.38 0.33 0.14 0.50 0.25 0.33 0.33 0.57 0.50 0.40 0.29 

2 0.83 0.62 0.67 0.86 0.38 0.75 0.67 0.67 0.43 0.50 0.40 0.57 
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Table 2 Thresholds of the historical series of normalized and standardized streamflows in Chanlud and El Labrado reservoirs 1 

 2 

Threshold jan feb mar apr may jun jul aug sep oct nov dec 

Chanlud reservoir 

Max 2.28 1.72 1.68 1.88 2.25 2.15 2.79 3.24 2.23 2.35 1.97 1.69 

Mean 0 0 0 0 0 0 0 0 0 0 0 0 

Level -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Min -1.60 -1.71 -2.40 -3.01 -2.55 -1.77 -1.68 -1.69 -1.76 -1.68 -1.68 -1.94 

 El Labrado reservoir 

Max 2.34 1.71 1.71 1.91 2.22 2.14 2.84 3.23 2.33 2.28 1.97 1.61 

Mean 0 0 0 0 0 0 0 0 0 0 0 0 

Level -1  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Min -1.47 -1.78 -2.45 -3.00 -2.37 -1.60 -1.65 -1.66 -1.84 -1.66 -1.74 -2.09 
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