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Abstract

In this paper we survey some concepts of convergence and Cauchyness appeared
separately in the context of fuzzy metric spaces in the sense of George and Veera-
mani. For each convergence (Cauchyness) concept we find a compatible Cauchyness
(convergence) concept. We also study the relationship among them and the rela-
tionship with compactness and completeness (defined in a natural sense for each
one of the Cauchy concepts). In particular, we prove that compactness implies p-
completeness.
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1 Introduction

Kramosil and Michalek [19] gave a notion of fuzzy metric space, that we denote
KM -fuzzy metric space, which could be considered as a reformulation, in the
fuzzy context, of the notion of PM -space (or more precisely, Menger space). In
[3] George and Veeramani introduced a concept of fuzzy metric space (X,M, ∗)
which is a slight modification of the KM -fuzzy metric space. Many concepts
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and results stating in both fuzzy settings come from the theory of PM -spaces.
Now, for easy the reading and for simplicity, by fuzzy metric we mean a fuzzy
metric in the sense of George and Veeramani and then all our results are
established for them.

A fuzzy metric M on a nonempty set X induces a topology τM on X. As it
was proved in [7] the class of topological spaces which are fuzzy metrizable (in
its obvious sense) agrees with the class of metrizable spaces. A fuzzy metric
space (X,M, ∗), or simply M , is called complete if every Cauchy sequence
(Definition 5) in X is convergent.

The appearance of a parameter t in the definition of M allows to introduce
new particular definitions in fuzzy metric context. In particular, the following
well-motivated concepts (see the introductions of Sections 3-4) of convergence
and Cauchyness related to sequences have appeared in the literature. In [6] M.
Grabiec introduced a weaker concept than Cauchy sequence which we denote
G-Cauchy (Definition 6). In [20] D. Mihet introduced a weaker concept than
convergence denoted p-convergence (Definition 11). In [25] J.L. Ricarte and S.
Romaguera introduced a stronger concept than Cauchy sequence (Definition
15). In [16] Gregori et al. introduced a stronger concept than convergence
called s-convergence (Definition 18), and recently in [14] V. Gregori and J-J.
Miñana have introduced a stronger concept than convergence called strong
convergence. As it can be seen, all these concepts are related to the concept
of Cauchy or convergent sequence.

If (X, d) is a metric space then a sequence {xn} in X is convergent to x0 if and
only if lim

n
d(xn, x0) = 0 and {xn} is Cauchy if and only if lim

n,m
d(xn, xm) = 0.

Roughly speaking, one could say that the concept of Cauchyness is deduced
from convergence replacing the simple limit (and removing x0) by a double
limit, or vice-versa. When extending this situation to the fuzzy setting we
will say that the concept of Cauchyness is defined in a natural way from con-
vergence, or vice-versa. Going back to the above concepts of convergence and
Cauchyness, it seems natural to find and study its natural corresponding part-
ner for each one of them. This idea was already suggested by D. Mihet [20].
So, the following two new concepts have appeared in the literature. In [10]
V. Gregori et al. introduced the concept of p-Cauchy sequence (Definition 14)
and in [24] S. Morillas and A. Sapena have introduced the concept of stan-
dard convergent sequence that we denote std∗-convergent sequence (Definition
16). Both concepts were deduced in a natural way from the corresponding
ones as commented above. Surprisingly, the classical relation between conver-
gence and Cauchyness was not accomplished in one case. Indeed, answering
a question posted in [24], V. Gregori and J-J. Miñana proved in [15] the ex-
istence of std∗-convergent sequences which are not standard Cauchy. So it
arises the first question: Does it always make sense to define a concept of
A-convergence (respectively, A-Cauchyness) deduced in a natural way from
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a concept of A-Cauchyness (respectively, A-convergence)? In any case, which
conditions should satisfy the pair A-convergence and A-Cauchyness in order
to be considered appropriate? To approach these questions the authors in
[15] introduced the concept of compatible pair (Definition 4). The case of the
G-Cauchy concept is paradigmatic because one cannot obtain a concept of G-
convergence deduced in a natural way from the G-Cauchy concept (see Section
3.2).

In this paper, for each one of the concepts above mentioned we discuss its ap-
pearance, interest, advantages and inconveniences. Further, we find for each
Cauchyness concept (respectively, convergence concept) a compatible pair.
Also we study the relationship among the concepts summarized in this pa-
per. We also observe the relationship between compactness and each one of
the concepts of completeness, which are defined in its obvious sense (Defi-
nition 35). In particular we prove that compactness implies p-completeness.
Appropriate examples along the paper illustrate the theory.

The structure of the paper is as follows. Section 2 contains preliminaries. Sec-
tion 3 contains the results for weaker concepts than convergence and Cauchy-
ness. Section 4 contains the results for stronger concepts than convergence
and Cauchyness. Section 5 contains the relationship among the summarized
concepts in the paper and Section 6 discuss about compactness and the cor-
responding notions of completeness.

From now on, R, R+ and N will denote the sets of real numbers, positive real
numbers and positive integers, respectively.

2 Preliminaries

Definition 1 (A. George, P. Veeramani [3]) A fuzzy metric space is an or-
dered triple (X,M, ∗) such that X is a (nonempty) set, ∗ is a continuous t-
norm and M is a fuzzy set on X×X×R+ satisfying the following conditions,
for all x, y, z ∈ X, s, t > 0 :

(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
(GV5) M(x, y, ) : R+ →]0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space we say that (M, ∗), or simply M , is a fuzzy
metric on X. Also, we say that (X,M) or, simply, X is a fuzzy metric space.
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Let (X, d) be a metric space. Denote by a · b the usual product for all a, b ∈
[0, 1], and let Md be the fuzzy set defined on X ×X × R+ by

Md(x, y, t) =
t

t+ d(x, y)

Then (Md, ·) is a fuzzy metric on X called standard fuzzy metric induced by
d [3].

George and Veeramani proved in [3] that every fuzzy metric M on X generates
a topology τM on X which has as a base the family of open sets of the form
{BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) = {y ∈ X :
M(x, y, t) > 1−ε} for all x ∈ X, ε ∈]0, 1[ and t > 0. In the case of the standard
fuzzy metric Md it is well-known that the topology τ(d) on X deduced from
d satisfies τ(d) = τMd

. From now on we will suppose X endowed with the
topology τM .

Proposition 2 (A. George, P. Veeramani [3]) A sequence {xn} in a fuzzy
metric space (X,M, ∗) converges to x0 if and only if lim

n
M(x0, xn, t) = 1, for

all t > 0.

Definition 3 (V. Gregori, S. Romaguera [9]) A fuzzy metric M on X is
said to be stationary if M does not depend on t, i.e. if for each x, y ∈ X,
the function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y)
instead of M(x, y, t),

Definition 4 (V. Gregori, J-J. Miñana [13]) Suppose it is given a sequential
stronger (weaker, respectively) concept than Cauchy sequence, say s-Cauchy
sequence (w-Cauchy, respectively). A concept of convergence, say s-convergence
(w-convergence, respectively), is said to be compatible with s-Cauchy (w-Cauchy,
respectively), and vice-versa, if the diagram of implications below on the left
(on the right, respectively) is fulfilled.

s-convergence → convergence

↓ ↓

s-Cauchy → Cauchy

convergence → w-convergence

↓ ↓

Cauchy → w-Cauchy

and there is not any other implication, in general, among these concepts. In
such a case we also say that w-convergence and w-Cauchy (respectively, s-
convergence and s-Cauchy) is a compatible pair.
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3 Weak concepts of Cauchyness and convergence

3.1 Cauchy sequence

The concept of Cauchy sequence which we deal with is the following.

Definition 5 (A. George, P. Veeramani [5]) A sequence {xn}n∈N in a fuzzy
metric space (X,M, ∗) is called Cauchy if for each ε ∈]0, 1[ and each t > 0
there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0 or
equivalently lim

m,n
M(xn, xm, t) = 1 for all t > 0.

(X,M, ∗), or simply M , is called complete if every Cauchy sequence in X is
convergent with respect to τM .

This concept comes, really, from the theory of PM -spaces and it was intro-
duced by H. Sherwood in his theory of completion of Menger spaces [26,27].
This concept leads to extend many results of classical metric spaces to the
fuzzy setting. For instance, convergent sequences are Cauchy. A closed subset
of a complete fuzzy metric space is complete and complete subspaces of com-
plete fuzzy metric spaces are closed. On the other hand, a sequence {xn} is
Cauchy in a metric space (X, d) if and only if {xn} is Cauchy in (X,Md, ·).
Other interesting properties can be found in [7].

A drawback of this concept is that we can find fuzzy metric spaces which
are not completable (for details see [8,9]). Nevertheless, every standard fuzzy
metric space (X,Md, ·) admits completion [8] and Md is complete if and only
if d is complete.

3.2 G-Cauchyness and G-convergence

In order to establish a Banach Contraction Principle in the context of KM -
fuzzy metric spaces, M. Grabiec gave the following weaker concept than Cauchy
sequence that we denote G-Cauchy.

Definition 6 (M. Grabiec [6]) A sequence {xn} in a fuzzy metric space (X,M, ∗)
is called G-Cauchy if limnM(xn, xn+p, t) = 1 for each t > 0 and each p ∈ N.

The concept ofG-Cauchy sequence leads to a so strong concept ofG-completeness
(Definition 35) that the usual standard fuzzy metric space (R,Md, ·) is not G-
complete (see [3], Note 3.13). A discussion on this concept can be found in
[30]. On the other hand Example 9 shows, as it was observed in [28], that a
compact fuzzy metric space is not necessarily G-complete.
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The concept of G-completeness has been extensively used in order to obtain
fixed point theorems. For instance, in addition to the celebrated theorem due
to Grabiec [6], see [1,2,22,23,29]. An advantage of the G-complete fuzzy metric
spaces is that the fixed point theorems stated on them require less additional
conditions, in general, than those stated on complete fuzzy metric spaces.

As it was indicated by D. Mihet [20], this definition is equivalent to lim
n
M(xn, xn+1, t) =

1 for all t > 0. If we try to define a strict weaker concept than convergence
deduced in a natural way from this characterization of G-Cauchyness then it
leads to write lim

n
M(x0, xn+1, t) = 1 for all t > 0. Unfortunately, this expres-

sion corresponds to the usual one of convergence. To overcome this drawback
we introduce the following concept which, in some sense, involves convergence.

Definition 7 We will say that a sequence {xn} in a fuzzy metric space (X,M, ∗)
is G-convergent to x0 if {xn} has a subsequence converging to x0 (i.e., x0 is a
cluster point of {xn}) and lim

n
M(xn, xn+1, t) = 1 for all t > 0.

Obviously, the next diagram of implications if fulfilled.

convergence → G-convergence

↓ ↓

Cauchy → G-Cauchyness

Next we give appropriate examples which prove that there are not any other
implications in the last diagram and then we conclude that G-Cauchyness
and G-convergence constitute a compatible pair. In these examples Md is the
standard fuzzy metric deduced from the usual metric of R, restricted to the
corresponding sets of R.

Example 8 (A G-Cauchy non-G-convergent non-Cauchy sequence)

Consider the sequence {xn} given by xn =
n∑

i=1

1

i
defined in the fuzzy met-

ric space (R,Md, ·). It is well-known that {xn} is a G-Cauchy non-Cauchy
sequence [5]. Clearly, {xn} is not G-convergent since it has not any cluster
point.

Example 9 (A G-convergent non-Cauchy sequence)
Consider the sequence {xn} where xn = sin

√
n defined in the fuzzy metric

space ([−1, 1],Md, ·). It is easy to verifty that {xn} is G-Cauchy.

We will see that each point of [−1, 1] is a cluster point of {xn} and hence
{xn} is G-convergent. Indeed, let y0 ∈] − 1, 1[ and take t0 ∈]0, 2π[ such that
sin t0 = y0. Take ε > 0 with ]y0−ε, y0+ε[⊂]−1, 1[ and let N ∈ N. By continuity
of sin t there exists δ > 0 such that |t− t0| < δ implies | sin t− y0| < ε and by
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the periodicity of sin t we have that |t− t0 + 2kπ| < δ implies | sin t− y0| < ε
for all k ∈ Z+.

The sequence {
√
n−
√
n− 1}∞n=1 converges to 0 and then there exists n0 ∈ N

with n0 > N such that

|
√
n−
√
n− 1| < δ for all n ≥ n0 (1)

Let k0 = min{k ∈ Z+ :
√
n0 < t0+2kπ}. The sequence {n0+i}∞i=0 tends to +∞

and two consecutive terms of this sequence satisfy (1). Therefore some i0 ∈ N
satisfies that

√
n0 + i0 ∈]t0 + 2kπ − δ, t0 + 2kπ + δ[ and then sin

√
n0 + i0 ∈

]y0 − ε, y0 + ε[ with n0 + i0 > N . Therefore the sequence {xn} is frequently in
]y0 − ε, y0 + ε[ and hence y0 is a cluster point of {xn}.

With slight modifications it can be proved that −1 and 1 are also cluster points
of {xn}.

Clearly, {xn} is not Cauchy (and consequently {xn} is not convergent).

Example 10 (A Cauchy non-G-convergent sequence)
Consider the sequence {xn} in the fuzzy metric space (]0,+∞[,Md, ·) where

xn =
1

n
. Then {xn} is Cauchy but it is not G-convergent since it has not any

cluster point.

3.3 p-convergence and p-Cauchyness

In order to obtain a fixed point theorem in a fuzzy metric space, D. Mihet
gave the following weaker concept than convergence.

Definition 11 (D. Mihet [20]) A sequence {xn} in a fuzzy metric space (X,M, ∗)
is called p-convergent to x0 if lim

n
M(xn, x0, t0) = 1 for some t0 > 0.

This concept has been used by the authors in [11] to characterize t-continuous
mappings. In [10] the authors continue the study started by Mihet and first
they gave the following concept.

Definition 12 A fuzzy metric space (X,M, ∗) is said to be principal (or sim-
ply, M is principal) if {B(x, r, t) : r ∈]0, 1[} is a local base at x ∈ X, for each
x ∈ X and each t > 0.

It is worth to notice that many fuzzy metric spaces are principal [10,16]. Then
the authors obtained the following characterization.
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Proposition 13 A fuzzy metric space (X,M, ∗) is principal if and only if
every p-convergent sequence in X is convergent in (X, τM).

After, the authors of [10] gave the following concept of Cauchyness deduced
in a natural way from the p-convergence concept.

Definition 14 A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
p-Cauchy if there exists t0 > 0 such that for each ε ∈]0, 1[ there exists n0 ∈ N
such that M(xn, xm, t0) > 1−ε for all n,m ≥ n0, or equivalently, lim

n,m
M(xn, xm, t0) =

1 for some t0 > 0.

The authors proved that the next diagram of implications is fulfilled.

convergence → p-convergence

↓ ↓

Cauchy → p-Cauchy

For shorten the paper, it is left to the reader to verify that there is not any
other implication in such diagram and so p-convergence and p-Cauchyness is
a compatible pair.

4 Strong concepts of convergence and Cauchyness

4.1 Standard Cauchyness and standard convergence

In order to establish relationships between the theory of complete fuzzy metric
spaces and domain theory, the authors in [25] introduced the following stronger
concept than Cauchy sequence.

Definition 15 A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
standard Cauchy if for each ε ∈]0, 1[ there exists n0 ∈ N, depending on ε, such
that

M(xn, xm, t) >
t

t+ ε
,

for all n,m ≥ n0 and t > 0.

In a standard fuzzy metric space it is fulfilled that every Cauchy sequence is
standard Cauchy. Notice that the bound on the right of the above inequality
depends on t. Consequently, a handicap of this concept is that in stationary
fuzzy metric spaces one cannot find non-constant standard Cauchy sequences.

Later, the authors in [24] gave the following notion of convergence that here
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we will denote std∗-convergence deduced in a natural way from the standard
Cauchy concept.

Definition 16 A sequence {xn} in a fuzzy metric space (X,M, ∗) is called

std∗-convergent to x0 ∈ X if there exists n0 ∈ N such that M(xn, x0, t) >
t

t+ ε
for all n ≥ n0 and t > 0.

Now, the authors in [15] proved the existence of std∗-convergent sequences
which are not standard Cauchy and, in consequence, std∗-convergence is not
compatible with standard Cauchy. To overcome this inconvenience, in the same
paper, the authors gave the following definition.

Definition 17 A sequence {xn} is called standard convergent if it is conver-
gent and standard Cauchy.

It was proved that this concept is compatible with standard Cauchy. One
can notice that in a standard fuzzy metric space every convergent sequence is
standard convergent.

4.2 s-convergence and s-Cauchyness

The following stronger concept than convergence, called s-convergence, tries
to extend the classical metric formulation of convergence using a simple limit.
This concept leads to define a class of fuzzy metric spaces called s-fuzzy metric.
In an s-fuzzy metric space each point has a local base which is not defined by
balls, but by neighbourhoods which, as in the classical case, only depend on
(the radius) r ∈]0, 1[ (Proposition 19). Now, if N(x, y) =

∧
t>0M(x, y, t) > 0

for all x, y ∈ X then (N, ∗) is a stationary fuzzy metric on X [17] and the
authors ([16], Theorem 4.2) proved that (X,M, ∗) is an s-fuzzy metric space
if and only if τN = τM .

Definition 18 A sequence {xn} in a fuzzy metric space (X,M, ∗) is s-convergent
to x0 ∈ X if limnM(xn, x0,

1
n
) = 1.

A fuzzy metric space in which every convergent sequence is s-convergent is
called s-fuzzy metric space. We also say that M is an s-fuzzy metric. s-fuzzy
metric spaces are characterized in [16] as follows.

Proposition 19 M is an s-fuzzy metric if and only if
⋂

t>0B(x, r, t) is a
neighbourhood of x, for all x ∈ X and for all r ∈]0, 1[, or equivalently,
{⋂t>0B(x, r, t) : r ∈]0, 1[} is a local base at x, for each x ∈ X.

The corresponding concept of Cauchyness deduced in a natural way from the
s-convergence is the following.
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Definition 20 A sequence {xn} in a fuzzy metric space (X,M, ∗) is s∗-Cauchy
if limn,mM(xn, xm,

1
n
) = 1.

Proposition 21 Every s∗-Cauchy sequence is Cauchy.

PROOF. Suppose that {xn} is s∗-Cauchy. Let t > 0 and take n0 ∈ N such
that 1

n0
< t. Then we have that M(xn, xm, t) ≥M(xn, xm,

1
n0

) ≥M(xn, xm,
1
n
)

for all n ≥ n0 and all m ∈ N. Then limnM(xn, xm, t) = 1.

Unfortunately, an s-convergent sequence is not necessarily s∗-Cauchy, as shows
the next example.

Example 22 Let R be endowed with its usual metric d. Consider the standard
fuzzy metric space (R,Md, ·). We will see that the sequence {xn} given by
xn = 1

n2 for all n ∈ N, is s-convergent to 0 but it is not s∗-Cauchy.

We have that

lim
n
Md

(
xn, 0,

1

n

)
= lim

n

1
n

1
n

+ 1
n2

= lim
n

1

1 + 1
n

= 1

and thus {xn} is s-convergent to 0.

Now, we will see that {xn} is not s∗-Cauchy. Suppose that {xn} is s∗-Cauchy,
that is

lim
n,m

Md

(
xn, xm,

1

n

)
= lim

n,m

1
n

1
n

+
∣∣∣ 1
n2 − 1

m2

∣∣∣ = 1.

Now, for large values of n and m, if we take m ∈ N with m =
√
n we have

that

lim
n

1
n

1
n

+
∣∣∣ 1
n2 − 1

(
√
n)2

∣∣∣ = lim
n

1
n

1
n

+ 1
n
− 1

n2

= lim
n

1

2− 1
n

=
1

2
,

a contradiction.

Consequently, s∗-Cauchy is not compatible with s-convergence. To overcome
this inconvenience, we introduce here the following definition.

Definition 23 A sequence in a fuzzy metric space (X,M, ∗) is s-Cauchy if
lim
m,n

M(xn, xm,
m+n
mn

) = 1.

It is easy to verify that an s-Cauchy sequence is Cauchy. Next we will see that
s-convergence and s-Cauchyness is a compatible pair.

Proposition 24 Every s-convergent sequence in a fuzzy metric space (X,M, ∗)
is s-Cauchy.
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PROOF. Let ε ∈]0, 1[. Take µ ∈]0, 1[ such that (1− µ) ∗ (1− µ) ≥ 1− ε.

Let {xn} be an s-convergent sequence to x0. Then there exists n0 ∈ N such
that M(xn, x0,

1
n
) ≥ 1− µ for all n ≥ n0. Now we have

M(xn, xm,
m+n
mn

) ≥M(xn, x0,
1
n
) ∗M(xm, x0,

1
m

) ≥ (1− µ) ∗ (1− µ) ≥ 1− ε for
all m,n ≥ n0 and hence {xn} is an s-Cauchy sequence.

So, the following diagram of implications is fulfilled.

s-convergence → convergence

↓ ↓

s-Cauchy → Cauchy

To prove that s-convergence and s-Cauchyness is a compatible pair we will
see, with appropriate examples, that no other implication is fulfilled in the
previous diagram.

Example 25 (An s-Cauchy non-convergent sequence)
Let X =]1,+∞[ and consider the fuzzy metric space (X,M, ·) where M is the

stationary fuzzy metric [3] defined by M(x, y) =
min{x, y}
max{x, y}

.

It is easy to verify that the sequence xn = 1 +
1

n
is an s-Cauchy sequence in

X which is not convergent.

Example 26 (A convergent non-s-Cauchy sequence)
Let (X,Md, ·) be the standard fuzzy metric space induced by (X, d) where X =
R and d is the usual metric on R.

Consider the sequence {xn} defined by xn =
1

n
for all n ∈ N. Clearly {xn} is

convergent and so it is Cauchy.

Suppose now that {xn} is an s-Cauchy sequence. Then we have that for all
ε ∈]0, 1[ there exists nε such that M(xn, xm,

m+n
mn

) ≥ 1 − ε for all n,m ≥ nε

or equivalently
m+n
mn

m+n
mn

+ | 1
n
− 1

m
|

=
1

1 + |m−n
m+n
|
≥ 1 − ε for all m,n ≥ nε. In

consequence
∣∣∣∣m− nm+ n

∣∣∣∣ ≤ ε

1− ε
for all m,n ≥ nε, which is a contradiction.
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4.3 Strong convergence and strong Cauchyness

In the fuzzy context, there is another way of regarding the classical formulation
of the concept of convergence using the role ε and n0 and strengthening the
imposition on t. In fact, in [14] the authors have given the following stronger
condition than s-convergence called strong convergence.

Definition 27 A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
strong convergent to x0 ∈ X if given ε ∈]0, 1[ there exists nε, depending on ε,
such that M(xn, x0, t) > 1− ε, for all n ≥ nε and for all t > 0.

The first goal of this concept is that s-fuzzy metric spaces are characterized
because every convergent sequence is strong convergent. In the mentioned
paper the authors have introduced the following concept deduced in a natural
way from the concept of strong convergence.

Definition 28 A sequence {xn} in a fuzzy metric space (X,M, ∗) is strong
Cauchy if given ε ∈]0, 1[ there exists nε, depending on ε, such that M(xn, xm, t) >
1− ε, for all n,m ≥ nε and for all t > 0.

The second goal of [14] is that the authors have proved that strong convergence
and strong Cauchy is a compatible pair.

5 Relating the concepts

5.1 Relating weak concepts

The only relations between the concepts appeared in this section are illustrated
in the next diagram of implications.

p− convergent → p− Cauchy

↑ ↑

convergent → Cauchy

↓ ↓

G− convergent → G− Cauchy

The following examples prove that there is not any other relation between
these concepts.
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Example 29 (A p-Cauchy sequence which is not G-Cauchy)

Let {xn} be a strictly increasing sequence of positive real numbers converging
to 1, with respect to the usual topology of R. Put X = {xn} ∪ {1}. Define the
fuzzy set M on X2 × R+ given by M(x, x, t) = 1 for each x ∈ X and t > 0
and M(xn, xm, t) = min{xn, xm, t} for all m,n ∈ N, t > 0. Then (M,∧) is a
fuzzy metric on X [20].

Consider the sequence {an} where an = 1 if n is even and an = xn if n is odd.
It is left to the reader to verify that {an} is p-Cauchy but it is not G-Cauchy.

Example 30 (A G-Cauchy sequence which is not p-Cauchy)

Consider the standard fuzzy metric space (R,Md, ·) where d is the usual metric

on R. Let {xn} be the sequence given by xn =
n∑

i=1

1

i
. It is well-known that {xn}

is G-Cauchy. It is left to the reader to show that {xn} is not p-Cauchy.

Example 31 (A p-convergent (non-G-convergent) non-G-Cauchy sequence)

Let X = R+ and let ϕ : R+ →]0, 1] be a function given by ϕ(t) = t if t ≤ 1
and ϕ(t) = 1 elsewhere. Define the function M on X2 × R+ by

M(x, y, t) =


1 x = y

min{x, y}
max{x, y}

· ϕ(t) x 6= y

It is easy to verify that (M, ·) is a fuzzy metric on X and it is obvious that the
only (G-)Cauchy sequences in X are the constant sequences, since M(x, y, t) <
t whenever t ∈]0, 1[ and x 6= y.

Now, consider the sequence {xn} in X given by xn = 1− 1

n
, n ∈ N. We have

that M(xn, 1, 1) = 1 − 1

n
for all n ∈ N, so lim

n
M(xn, 1, 1) = 1 and {xn} is

p-convergent to 1, but {xn} is not G-Cauchy.

Example 32 (A G-convergent (non-p-convergent) non-p-Cauchy sequence)
Consider the standard fuzzy metric space ([−1, 1],Md, ·) where d is the usual
metric on R restricted to [−1, 1]. Consider the sequence {xn} = sin

√
n. In

Example 9 we have seen that {xn} is G-convergent. It is left to the reader to
verify that {xn} is not p-Cauchy.
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5.2 Relating strong concepts

The following diagram of implications shows all the relations (except conver-
gence implies Cauchy), among all the concepts summarized in this section.

strong convergence → s-convergence → convergence

↑

standard convergence

↓ ↓ ↓

standard Cauchy

↓

strong Cauchy → s-Cauchy → Cauchy

The following examples (jointly with the results of Section 4) show that there
is not any other implication among these concepts.

Example 33 (A strong convergent non-standard Cauchy (non-standard con-
vergent) sequence)
Consider the fuzzy metric space (X,M, ∗) where X = [1,+∞[, M(x, y, t) =
min{x, y}+

√
t

max{x, y}+
√
t

and ∗ is the usual product on [0, 1] [18].

Consider the sequence {xn} where xn = 1 +
1

n
, n ∈ N. It is left to the reader

to verify that {xn} is strong convergent (to 1) and it is not standard Cauchy.

Example 34 (A standard convergent (non-s-convergent) non-s-Cauchy se-
quence)
Consider the standard fuzzy metric space (R,Md, ·) where d is the usual metric
on R. The sequence {xn} where xn = 1

n
, n ∈ N is standard convergent to 0.

It is left to the reader to show that it is not s-Cauchy.

6 Compactness and completeness

In this section we study the relationship between compactness and all the
concepts of completeness based on the above Cauchy concepts.

Definition 35 We will say that a fuzzy metric space (X,M, ∗), or simply
M , is p-complete if every p-Cauchy sequence in X converges in (X, τM). This

14



definition is extended to the other concepts of Cauchyness appeared before.

We have seen that compactness does not imply G-completenes. Now we will
prove that every compact space is p-complete. We start with the following
lemma.

Lemma 36 (V. Gregori et al. [10]) Let {xn} be a p-convergent sequence to
x0. Then:

(i) Each subsequence {xnk
} of {xn} is p-convergent to x0.

(ii) If {xn} is convergent, then it converges to x0.

Theorem 37 Compact fuzzy metric spaces are principal.

PROOF. let (X,M, ∗) be a compact fuzzy metric space. Suppose that X is
not principal. Then there exist x0 ∈ X and t0 > 0 such that the family of open
balls {B(x0,

1
n
, t0) : n ∈ N} is not a local base at x0, that is, there exist r ∈]0, 1[

and t > 0 such that for all n ∈ N it is satisfied B(x0,
1
n
, t0) * B(x0, r, t).

By induction we construct a sequence {xn} where xn ∈ B(x0,
1
n
, t0)\B(x0, r, t)

for all n > 1. By construction {xn} is not convergent and also lim
n
M(x0, xn, t0) =

1 and hence {xn} is p-convergent to x0.

Since X is compact we can find a subsequence {xnk
} of {xn} which converges

in X. By (i) of Lemma 36, {xnk
} is p-convergent to x0 and by (ii) {xnk

}
converges to x0, a contradiction since xn /∈ B(x0, r, t) for all n ∈ N. So, X is
principal.

Corollary 38 Compact fuzzy metric spaces are p-complete.

PROOF. let (X,M, ∗) be a compact fuzzy metric space and let {xn} be a
p-Cauchy sequence in X. Since X is compact we can find a subsequence {xnk

}
of {xn} which converges to x0 ∈ X. Suppose that lim

n
M(xn, xm, t0) = 1 for

some t0 > 0 since {xn} is p-Cauchy. Then we have

M(xn, x0, 2 t0) ≥M(xn, xnk
, t0) ∗M(xnk

, x0, t0)

and taking limit as n and k tend to +∞ we obtain lim
n
M(xn, x0, 2 t0) = 1 and

so {xn} is p-convergent to x0. Now, by Theorem 37 {xn} is convergent and
hence X is p-complete.

Remark 39 The converse of Corollary 38 is not true. Indeed, it is easy to
verify that (R,Md, ·), where d is the usual metric on R, is p-complete and it
is not compact.
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As a consequence of the last paragraphs and due to the relationship among the
concepts of Cauchyness given in Sections 3-4 we have the following diagram
of implications.

s-completeness → strong
completeness↑

compactness → p-completeness → completeness → standard
completeness↑

G-completeness
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[11] V. Gregori, J.J. Miñana, Some concepts realted to continuity in fuzzy metric
spaces, Proceedings of the Conference in Applied Topology WiAT’13, (2013),
85-91.
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