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Abstract 

Numerical models are becoming fundamental tools to predict a range of complex 

problems faced by geotechnical and geo-environmental engineers. However, to render 

the model reliable for future predictions, the model input parameters must be 

determined with consideration of the scale effects. If there is a difference of scales 

between the observation and the model scales there are two possible ways to consider 

it: or models are constructed with elements of a size similar to that at which the data 

were measured, or some upscaling rules must be defined. In this context, this thesis 

focuses on upscaling of water flow and mass transport in a tropical soil by means of 

numerical, laboratory and field studies. This thesis is organized in four parts. 

First, the heterogeneity, correlation and cross-correlation between solute transport 

parameters (dispersivity, α, and partition coefficient, Kd) and soil properties are studied 

in detail. In this part, it is verified that the hydraulic conductivity (K) and solute transport 

parameters are highly heterogeneous, while soil properties are not. Spatial correlation 

of α, K, and statistically significant variables are studied, and it would probably improve 

the estimation only in a small-scale study, since the spatial correlation are only 

observed up to 2.5 m. This study is a first attempt to evaluate the spatial variation in 

the correlation coefficient of transport parameters of a reactive and a nonreactive 

solute, indicating the more relevant variables and the one that should be included in 

future studies. 

In the second part, scale effect on K, dispersivity and partition coefficient of 

potassium and chloride are studied experimentally by means of laboratory and field 

experiments. The purpose is to contribute to the discussion about scale effects on K, 

α and Kd and understanding how these parameters behave with the change in the 

scale of measurement. Results show that K values increases with scale, regardless of 

the method of measurement, except for the results obtained from double-ring 

infiltrometer tests. Dispersivity trends to increase exponentially with the sample height. 

Partition coefficient tends to increase with sample length, diameter and volume. These 

differences in the parameters according to the scale of measurement must be 

considered when these observations are later used as input to numerical models, 

otherwise the responses can be misrepresented. 
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Third, stochastic analysis of three-dimensional hydraulic conductivity upscaling is 

performed using a simple average and the Laplacian-with-skin methods for a variety 

of block sizes based on real K measurements. In this part it is demonstrated the errors 

that can be introduced by using a deterministic upscaling using simple averages of the 

measured K without accounting for the spatial correlation. Results show that K 

heterogeneity can be incorporated in the daily practice of the geotechnical modeler. 

The aspects to consider when performing the upscaling are also discussed. Finally, 

the dependence of the exponent of the p-norm as a function of the block size is 

analyzed. 

In the last part, stochastic upscaling of hydrodynamic dispersion coefficient (D) and 

retardation factor (R) is performed using real data aiming to reduce the lack in 

experimental upscaling of reactive solute transport research. The enhanced 

macrodispersion coefficient approach is used to upscale the local scale hydrodynamic 

dispersion (D) and, as a novelty, the impact of heterogeneity of local dispersivity is also 

taken into account. To upscale retardation factor (R), a p-norm is used to compute an 

equivalent R. Uncertainty analyses are also performed and a good propagation of the 

uncertainties is achieved after upscaling. Simple upscaling methods can be 

incorporated to the modeling practice using commercial transport codes and properly 

reproduce de transport at coarse scale but may require corrections to reduce 

smoothing of the heterogeneity caused by the upscaling procedure. 
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Resumo 

Modelos numéricos estão se tornando ferramentas fundamentais para prever uma 

série de problemas complexos enfrentados por engenheiros geotécnicos e 

geoambientais. No entanto, para que o modelo seja confiável para previsões futuras, 

seus parâmetros de entrada devem ser determinados com a consideração do efeito 

da escala. Se há uma diferença de escalas entre a escala da observação e a escala 

do modelo, existem duas maneiras possíveis de considerá-la: ou constrói-se modelos 

com elementos de tamanhos semelhantes àqueles em que os dados foram medidos, 

ou definem-se algumas regras de mudança de escala. Neste contexto, esta tese 

enfoca a mudança de escala do fluxo de água e do transporte de massa em um solo 

tropical, por meio de estudos numéricos, laboratoriais e de campo. Esta tese é 

organizada em quatro partes. 

Em primeiro lugar, estudou-se em detalhe a heterogeneidade, a correlação e a 

correlação cruzada entre os parâmetros de transporte de soluto (dispersividade, α, e 

coeficiente de partição, Kd) e as propriedades do solo. Nesta parte, verificou-se que a 

condutividade hidráulica (K) e os parâmetros de transporte de soluto são altamente 

heterogêneos, enquanto as propriedades do solo não o são. A correlação espacial de 

α, K e das variáveis estatisticamente significativas foi estudada, e, provavelmente, 

melhoraria a estimativa apenas em um estudo em pequena escala, uma vez que a 

correlação espacial só foi observada até 2,5 m. Este estudo foi uma primeira tentativa 

de avaliar a variação espacial no coeficiente de correlação dos parâmetros de 

transporte de um soluto reativo e não-reativo, indicando as variáveis mais relevantes 

e as que devem ser incluídas em estudos futuros. 

Na segunda parte, o efeito de escala em K, na dispersividade e no coeficiente de 

partição de potássio e cloreto é estudado experimentalmente por meio de ensaios 

laboratoriais e de campo. O objetivo foi contribuir com a discussão sobre os efeitos de 

escala em K, α e Kd e entender como esses parâmetros se comportam com a mudança 

na escala da medição. Os resultados mostram que K aumenta com a escala, 

independentemente do método de medição. A dispersão tende a aumentar de maneira 

exponencial com a altura da amostra. O coeficiente de partição tende a aumentar tanto 

com o comprimento, quanto com o diâmetro e o volume da amostra. Essas diferenças 
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nos parâmetros de acordo com a escala de medida devem ser consideradas quando 

essas observações são posteriormente usadas como entrada para modelos 

numéricos, caso contrário, as respostas podem ser mal representadas. 

Em terceiro lugar, uma análise estocástica tridimensional da mudança de escala 

da condutividade hidráulica foi realizada usando tanto média simples quanto o método 

Laplaciano-com-pele para varios tamanhos de blocos usando medidas K reais. Nesta 

parte, foram demonstrados os erros que podem ser introduzidos ao se usar métodos 

determinísticos de mudança de escala, usando médias simples das medições de K 

sem se considerar a correlação espacial. A aplicação das técnicas de mudança de 

escala mostra que a heterogeneidade de K pode ser incorporada na prática diária do 

modelador geotécnico. Os aspectos a serem considerados ao realizar a mudança de 

escala também foram discutidos. Finalmente, analisou-se a dependência do expoente 

da norma p em função do tamanho do bloco. 

Na última parte, uma aplicação de mudança de escala estocástica do coeficiente 

de dispersão hidrodinâmica (D) e do fator de retardo (R) foi realizada usando dados 

reais visando reduzir a falta pesquisas no tema de mudança de escala do transporte 

de soluto reativo. A mudança de escala do D foi feito usando o método de 

macrodispersão. O método da média simples baseado na norma p foi usado para 

executar a mudança de escala de R. A incerteza foi propagada satisfatoriamente. 

Métodos simples de mudança de escala podem ser incorporados à prática de 

modelagem usando programas comerciais, e reproduzir corretamente o transporte em 

escala grossa, mas podem exigir correções para reduzir o efeito suavizado da 

heterogeneidade causada pelo procedimento de mudança de escala.  
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Resumen 

Los modelos numéricos se están constituyendo en herramientas fundamentales para 

realizar predicciones de una amplia gama de problemas enfrentados por ingenieros 

geotécnicos y geoambientales. Sin embargo, para que estos modelos puedan realizar 

predicciones confiables, los parámetros de entrada del modelo deben ser estimados 

considerando el efecto escala. Si existe una diferencia entre las escalas observada y 

la del modelo, hay dos maneras de considerar este efecto: o los modelos son 

construidos con elementos de tamaños similares a la escala en la cual las propiedades 

fueron medidas, o se usa una regla de cambio de escala predefinida. En este contexto, 

esta tesis se concentra en las reglas del cambio de escala de los parámetros de flujo 

y transporte de masa en un suelo tropical a través de estudios numéricos, de 

laboratorio y de campo. Esta está organizada en cuatro partes. 

Primero, la heterogeneidad, correlación y correlación cruzada entre los parámetros 

de transporte de solutos (dispersividad, α, y coeficiente de partición, Kd) y las 

propiedades del suelo fueron estudiadas en detalle. En esta parte fue verificado que 

la conductividad hidráulica (K) y los parámetros de transporte de solutos son altamente 

heterogéneos, mientras que las propiedades del suelo no lo son. La correlación 

espacial de α y K con variables estadísticamente significativas fue estudiada. Este 

resultado probablemente podrá mejorar la estimación en casos de estudios de 

pequeña escala debido a que solo fue observada correlaciones de hasta 2,5 m. Este 

estudio fue un primer intento de evaluar la variación espacial en el coeficiente de 

correlación de los parámetros de transporte de un soluto reactivo y de un no reactivo, 

indicando las variables más relevantes y aquella que debería ser incluida en estudios 

futuros. 

En la segunda parte, el efecto escala en K, dispersividad y coeficiente de partición 

de potasio y clorito fue estudiado experimentalmente a través de experimentos de 

laboratorio y de campo. El objetivo de esta parte fue contribuir a la discusión sobre el 

efecto escala en K, α y Kd, y entender como estos parámetros se comportan con el 

cambio de escala de medición. La dispersividad tiende a aumentar con la altura de la 

muestra, es decir, con la longitud del transporte, de manera exponencial. El coeficiente 

de partición tiende a aumentar con la altura, el diámetro y el volumen de la muestra. 
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Estas diferencias encontradas en los parámetros de acuerdo con la escala de 

medición deben ser considerados cuando estos valores sean usados posteriormente 

como datos de entrada de modelos numéricos; de otra manera, las respuestas pueden 

ser malinterpretadas. 

Tercero, análisis estocásticos tridimensionales de cambio de escala de la 

conductividad hidráulica fueron realizados usando los métodos de promedios simples 

y de Laplace con piel para una variedad de tamaños de bloques usando mediciones 

reales de K. En esta parte son demostrados los errores que pueden ser introducidos 

al usar métodos determinísticos de cambio de escala usando promedios simples de 

las mediciones de K sin llevar en consideración la correlación espacial. La aplicación 

muestra que la heterogeneidad de K puede ser incorporada en la práctica diaria del 

modelador geotécnico. Los aspectos que considerar durante un proceso de cambio 

de escala también son discutidos. Finalmente, la dependencia del exponente de la 

norma-p como función del tamaño del bloque fue analizada. 

En la última parte, una aplicación de cambio de escala estocástico del coeficiente 

de dispersión hidrodinámica D y del factor de retardo R fue realizada usando datos 

reales con el objetivo de reducir la falta de casos de investigación experimental de 

cambio de escala de parámetros de transporte de solutos reactivos. El cambio de 

escala de D fue realizado usando el método de macrodispersión. El método de 

promedio simple de norma-p fue usado para realizar el cambio de escala de R. Una 

buena propagación de incertidumbres fue alcanzada. Métodos simples de cambio de 

escala pueden ser introducidos en la práctica del modelaje usando programas 

comerciales de transporte y conseguir reproducir el transporte en escala gruesa, pero 

puede requerir correcciones con el objetivo de reducir el efecto de suavizado de la 

heterogeneidad causado por el proceso de cambio de escala.  



 

xv 

 

Resum 

Els models numèrics s'estan constituint en eines fonamentals per a realitzar 

prediccions d'una àmplia gamma de problemes enfrontats per enginyers geotècnics 

i geoambientales. No obstant açò, perquè aquests models puguen realitzar 

prediccions fiables, els paràmetres d'entrada del model han de considerar l'efecte 

escala. Si existeix una diferència entre les escales observada i la del model, hi ha dues 

maneres de considerar aquest efecte: o els models són construïts amb elements de 

grandàries similars a l'escala en la qual les propietats van ser mesurades, o s'usa una 

regla de canvi d'escala predefinida. En aquest context, aquesta tesi es concentra en 

les regles del canvi d'escala dels paràmetres de flux i transport de massa en un sòl 

tropical a través d'estudis numèrics, de laboratori i de camp. Aquesta tesi està 

organitzada en quatre parts. 

Primer, l'heterogeneïtat, correlació i correlació creuada entre els paràmetres de 

transport de soluts (dispersivitat, α, i coeficient de partició, Kd) i les propietats del sòl 

van ser estudiades detalladament. En aquesta part va ser verificat que la conductivitat 

hidràulica (K) i els paràmetres de transport de soluts són altament heterogenis, mentre 

que les propietats del sòl no ho són. La correlació espacial de α i K amb variables 

estadísticament significatives va ser estudiada. Aquest resultat probablement podrà 

millorar l'estimació en casos d'estudis de xicoteta escala a causa que solament va ser 

observada correlacions de fins a 2,5 m. Aquest estudi va ser un primer intent d'avaluar 

la variació espacial en el coeficient de correlació dels paràmetres de transport d'un 

solut reactiu i d'un no reactiu, indicant les variables més rellevants i aquelles que 

haurien de ser inclosas en estudis futurs. 

En la segona part, l'efecte escala en K, dispersivitat i coeficient de partició de 

potassi i clorito va ser estudiat experimentalment a través d'experiments de laboratori 

i de camp. L'objectiu d'aquesta part va ser contribuir a la discussió sobre l'efecte escala 

en K, α i Kd, i entendre com aquests paràmetres es comporten amb el canvi d'escala 

de mesurament. La dispersivitat tendeix a augmentar amb l'altura de la mostra, és a 

dir, amb la longitud del transport, de manera exponencial. El coeficient de partició 

tendeix a augmentar amb l'altura, el diàmetre i el volum de la mostra. Aquestes 

diferències en els paràmetres d'acord amb l'escala de mesurament han de ser 
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considerats quan aquests valors siguen usats posteriorment com a dades d'entrada 

de models numèrics; d'una altra manera, les respostes poden ser malament 

interpretades. 

Tercer, anàlisis estocàstiques tridimensionals de canvi d'escala de la conductivitat 

hidràulica van ser realitzats usant els mètodes de mitjanes simples i de Laplace amb 

pell per a una varietat de grandàries de blocs usant mesuraments reals de K. En 

aquesta part són demostrats els errors que poden ser introduïts en usar 

mètodes determinístics de canvi d'escala usant mitjanes simples dels mesuraments 

de K sense tindre en consideració la correlació espacial. L'aplicació mostra que 

l'heterogeneïtat de K pot ser incorporada en la pràctica diària 

del modelador geotècnic. Els aspectes a considerar durant un procés de canvi 

d'escala també són discutits.  

Finalment, la dependència de l'exponent de la norma-p com a funció de la 

grandària del bloc va ser analitzada. 

En l'última part, una aplicació de canvi d'escala estocàstic del coeficient de dispersió 

hidrodinámica D i del factor de retard R va ser realitzada usant dades reals amb 

l'objectiu de reduir la falta de casos de recerca experimental de canvi d'escala de 

paràmetres de transport de soluts reactius. El canvi d'escala de D va ser realitzat usant 

el mètode de macrodispersió. El mètode de mitjana simple de norma-p va ser usat per 

a realitzar el canvi d'escala de R. Una bona propagació d'incerteses va ser 

aconseguida. Mètodes simples de canvi d'escala poden ser introduïts en la pràctica 

de la modelació usant programes comercials de transport i aconseguir reproduir el 

transport en escala gruixuda, però pot requerir correccions amb l'objectiu de reduir 

l'efecte de suavitzat de l'heterogeneïtat causat pel procés de canvi d'escala. 
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Chapter 1. Introduction 

1.1. Motivation and objectives 

Determining water flow and solute transport parameters are relevant for many 

geotechnical and geo-environmental studies. Due to the complexity of these studies, 

commonly they are performed by means of numerical models that require reliable input 

parameters in order to guarantee the quality of the prediction. In this sense, efforts to 

improve the determination and use of these parameters are always necessary. 

It is well known that water flow and solute transport parameters are highly 

heterogeneous at all scales of measurement even in apparently homogeneous soils. 

However, their heterogeneity is seldom considered in the geotechnical practice and 

the use of homogeneous parameters still prevails. The inadequate use of 

homogeneous parameters causes the loss of small scale variability, which is even 

more important for solute transport predictions. The complete characterization of the 

heterogeneity is difficult since it is almost impossible to sample the entire are of interest 

due to economic, geographic, environmental and/or technical limitations. Thus, there 

is also a necessity to model the uncertainty related to having limited information about 

the spatial variability of the parameters. 

The spatial variability results in scale effect, that is, the dependence of the 

parameter values on the measurement support. Frequently, water flow and solute 

transport parameters are determined in the laboratory or by means of field experiments 

in a scale of a few centimeters or meters, with no consideration about the scale effect. 

The problem is that the numerical models are performed in a scale of meters and 

kilometers and scale effects should be taken into account in order to improve the 

reliability of the predictions. 

Techniques to face both the impossibility of sampling the entire area of interest and 

the scale effect have been studied and developed in the last decades in the context of 

petroleum engineering and hydrogeology. In these research areas, rather to use 
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deterministic model, stochastic modeling gained attention in the last decades, mainly 

due to the advance of geostatistics. With that, besides to perform uncertainty analysis, 

it is possible to do a coherent assignment of values at locations where measurements 

were not taken based on the values measured. In addition, studies aiming to develop 

and evaluate upscaling techniques, that is, techniques that transfers the information 

obtained at the fine scale into the coarse scale used by the numerical code, have also 

increased in the last years and the advances are impressive. 

In a geotechnical engineering context, the most advanced upscaling techniques 

were not applied. Also, the upscaling of the water flow and solute transport parameters 

in a tropical soil, source of many geotechnical problems and widely spread across the 

Brazilian territory, were not addressed even using less complex upscaling methods. 

Since the scales of interest as well as the laboratory and field tests performed in 

geotechnics are different from those used in petroleum engineering or hydrogeology, 

specific studies are necessaries. Furthermore, if the numerical upscaling of hydraulic 

conductivity and dispersivity is well studied in the hydrogeology and petroleum 

engineering, experimental evidence of scale effect is rarely found in the literature and 

the lack of research in the reactive solute transport is even more evident. 

In this context, the motivation of this thesis arose from some questions: How 

variable at small scale is an apparently homogeneous soil in terms of water flow and 

solute transport parameters? What is the impact of the small-scale variability in the 

modeling of water flow and solute transport? Is a simple average process enough to 

upscale hydraulic conductivity and solute transport parameters? Is there a sample size 

or volume when scale effect has no more place? 

The objective of this thesis is to study numerically and experimentally the scale 

effect on hydraulic conductivity and solute transport parameters using real data from a 

tropical soil, aiming to understand their spatial variability and define rules to performing 

upscale of these parameters. 

1.2. Thesis organization 

In this thesis, each of the subsequent four chapters is comprised of a separate paper 

which is currently submitted or being prepared for publication in a refereed peer-

reviewed international journal. The thesis is organized as follows: 
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Chapter 2 presents a detailed study of the heterogeneity and cross-correlation 

between solute transport parameters and soil properties. The main contribution of this 

chapter is the determination of the spatial correlations among dispersivity (of a reactive 

and a nonreactive solute) and hydraulic conductivity, and statistically significant 

variables. 

In chapter 3 the scale effect on hydraulic conductivity, dispersivity and partition 

coefficient of potassium and chloride is studied experimentally. Its main contribution is 

to show experimental results of scale effect on partition coefficient. Besides that, in this 

chapter is showed that hydraulic conductivity and dispersivity trend to increase as the 

sample support increases. 

In chapter 4 sophisticated and basic techniques to perform stochastic upscaling of 

the hydraulic conductivity are applied, compared and evaluated. A p-norm is 

determined for the studied soil and that constitutes an important contribution. In 

addition, a workflow to apply the technique used is also provided. 

In chapter 5 stochastic upscaling of hydraulic conductivity, longitudinal 

hydrodynamic dispersion, and retardation factor are done aiming to define upscaling 

rules. With this chapter, the validity of consecrated transport upscaling method is 

evaluated and compared with a simple average method. 

Finally, Chapter 6 summarizes the main conclusions of this thesis. 
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Chapter 2. Spatial Variability 
of Hydraulic Conductivity and 
Solute Transport Parameters 

and their Spatial Correlations 
to Soil Properties 

Submitted to Geoderma 

 

Abstract 

Spatial variation of the correlation among variables related to water flow and solute 

transport are important in the characterization of the spatial variability when performing 

uncertainty analysis and making uncertainty-qualified solute transport predictions. 

However, the spatial variation of the correlation between solute transport parameters 

and soil properties are rarely studied. In this study, the spatial correlation among 

laboratory-measured transport parameters dispersivity (α) and coefficient of 

distribution (Kd) of a reactive and a nonreactive solute and soil properties were studied 

at the scale of a few meters using a dense sampling design. In an area of 84 m2 and a 

depth of 2 meters, 55 undisturbed soil samples were taken to determine the soil 

properties. Column experiments were performed, and the transport parameters were 

obtained by fitting the experimental data to the analytical solution of the advection-

dispersion equation using the computer program CFITM. Stepwise multiple linear 

regression (MLR) was performed in order to identify the statistically significant 

variables. The spatial correlation of the variables and between variables were 

determined using the Stanford Geostatistical Modeling Software. Soil properties 

presented a moderate coefficient of variation, while hydraulic conductivity and 

transport parameters were widely dispersed. The difference between its minimum and 

maximum value was quite large for most of the studied variables evidencing their high 

variability. Both dispersivity and retardation factor were higher than the expected and 
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this result can be related to the preferential pathways and to the non-connected 

micropores. None of the physical soil property was strongly correlated to the transport 

parameters. Kd was strongly correlated to the cation exchange capacity (CEC) and 

significantly correlated to mesoporosity and microporosity. The hydraulic conductivity 

presented significant positive correlation to the effective porosity and macroporosity. 

Stepwise multiple linear regression analysis indicated that further studies should be 

performed aiming to include other variables relevant for lateritic soils such as pH, EC, 

the content of Al and Fe, CaCO3 and soil structure and microstructure. The study of 

the spatial correlation among transport parameters and soil properties showed that the 

codispersion among the variables is not constant in space and can be important in 

dictate the behavior of the combined variables. Our results also showed that some 

variables that were identified as explanatory in the MLR were not significant in the 

spatial analysis of the correlation, showing the importance of this kind of analyses for 

a better decision about the most relevant variables and their relations. The present 

study was a first attempt to evaluate the spatial variation in the correlation coefficient 

of transport parameters of a reactive and a nonreactive solute, indicating the more 

relevant variables and the ones that should be included in future studies. 

2.1. Introduction 

The soil’s ability to retard and filter solutes as well as the water flow and solute 

movement in soils are significant themes in the earth and environmental sciences, and 

they are critical for hydrological and biogeochemical cycles (Keesstra et al., 2012; 

Kung et al., 2005). Solutes can migrate from the soil to the groundwater and cause its 

contamination (Arias-Estévez et al., 2008). That ability can be quantified after 

determining the soil transport parameters such as dispersivity (α) and partition 

coefficient (Kd) (Dyck, Kachanoski, & de Jong, 2005; Fetter, 1999). Knowledge of 

solute transport parameters is needed to improve the prediction of the groundwater 

contamination potential (Kazemi, Anderson, Goyne, & Gantzer, 2008). These 

parameters depend on many factors such as the chemical characteristics of the 

contaminant, the soil physical, chemical, and physicochemical properties, or hydraulic 

conductivity (K) (Holland, 2004; Trangmar, Yost, & Uehara, 1986). 

The transport parameters, the hydraulic conductivity, the other soil properties and 

the relations among them are highly spatially variable following a structural pattern 
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overlapped by an erratic component, also referred as structured variation (Alletto & 

Coquet, 2009; Fu & Jaime Gómez-Hernández, 2009; Goovaerts, 1997; Isaaks & 

Srivastava, 1989; Mulla & Mc Bratney, 2002; Trangmar et al., 1986). The spatial 

variability of soil properties might be studied at the centimeter scale, as well as at a 

regional scale since the soil heterogeneity is present in all scales (Chapuis et al., 2005; 

DeGroot & Baecher, 1993; Lacasse & Nadim, 1996; Søvik & Aagaard, 2003). 

Additionally, since taking measurements of the properties of interest in an entire area 

is impractical, there is always an uncertainty component related to the locations where 

the properties were not measured (Erşahin et al., 2017; Fu & Jaime Gómez-

Hernández, 2009). 

The interest in quantifying the uncertainty in groundwater flow and solute transport 

predictions has increased in the last decades (Cassiraga, Fernàndez-Garcia, & 

Gómez-Hernández, 2005; Fu & Jaime Gómez-Hernández, 2009; Goovaerts, 2001; 

Grunwald, Reddy, Newman, & DeBusk, 2004; Hoffmann, Hoffmann, Jurasinski, 

Glatzel, & Kuhn, 2014; Lacasse & Nadim, 1996; Li, Zhou, & Gómez-Hernández, 2011b; 

Teixeira et al., 2012). Performing an uncertainty analysis and making uncertainty-

qualified solute transport predictions requires building a model of the spatial variability 

of the parameters controlling transport from a limited set of experimental data 

(laboratory or field). Such a model will allow estimating soil properties at unsampled 

locations (Goovaerts, 1999). 

The study of the spatial variability in soil science is commonly performed using 

geostatistics (Alletto & Coquet, 2009; Erşahin et al., 2017; Goovaerts, 1999; Gwenzi, 

Hinz, Holmes, Phillips, & Mullins, 2011; Marín-Castro, Geissert, Negrete-Yankelevich, 

& Gómez-Tagle Chávez, 2016). This technique is based on the random function model 

assumption, where variables are modeled as random variables usually spatially 

correlated. By assuming this model, the characterization of the spatial variability is 

reduced to the characterization of the correlations among the random variables of the 

random function (Goovaerts, 1997). Then, it is possible to perform coherent inferences 

about the variable using estimation (such as kriging and cokriging) or simulation 

techniques (such as sequential Gaussian simulation), and the spatial variability can be 

fully characterized. 

Geostatistics has been widely used to study the spatial variability of several soil 

properties (Alletto & Coquet, 2009; Brocca, Morbidelli, Melone, & Moramarco, 2007; 
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Goovaerts, 1998; Grego, Vieira, Antonio, & Della Rosa, 2006; Iqbal, Thomasson, 

Jenkins, Owens, & Whisler, 2005; Mbagwu, 1995; Tesfahunegn, Tamene, & Vlek, 

2011; Vieira, 1997; Y. Q. Wang & Shao, 2013; Zhao et al., 2011) and specifically of 

the hydraulic conductivity (Bohling et al., 2012; Gwenzi et al., 2011; Hu, Shao, Wang, 

Fan, & Reichardt, 2008; L. Liu et al., 2017; Marín-Castro et al., 2016; Motaghian & 

Mohammadi, 2011; Sobieraj, Elsenbeer, Coelho, & Newton, 2002; Sudicky, Illman, 

Goltz, Adams, & McLaren, 2010). On the other hand, the spatial characterization of 

solute transport parameters is still discrete (Huysmans & Dassargues, 2006; Jacques, 

Mouvet, Mohanty, Vereecken, & Feyen, 1999; Kazemi et al., 2008) due to the high cost 

and time-consuming efforts associated with solute transport studies (Erşahin et al., 

2017). 

Allen-King et al. (2006) determined the spatial geostatistical properties of the 

perchloroethene partition coefficient (Kd) and permeability (k) and found that Kd and k 

exhibited a statistically significant positive correlation. They concluded that additional 

studies were necessary since the statistics describing the horizontal autocorrelation 

behavior of lnKd and its cross-correlation to lnk remained uncertain. 

Gómez-Hernández, Fu, and Fernandez-Garcia (2006) studied the impact of the 

cross-correlation between lnKd and lnK in the upscaling of the retardation factor (R) in 

a synthetic two-dimensional isotropic aquifer. They found that the upscaled R were 

highly affected by the cross-correlation between lnK and lnKd. For a negative 

correlation, upscaled R for early times was smaller than that for late times. For a 

positive correlation, the result was the opposite and upscaled R for early times was 

larger than that for late times. 

Erşahin et al. (2017) characterized the spatial variability of pore-water velocity (v), 

dispersivity, retardation factor and longitudinal hydrodynamic dispersion coefficient (D) 

and analyzed their statistical relations to other soil properties. They found that solute 

parameters were not correlated with the physical soil properties but were significantly 

correlated with soil chemical variables such as pH, electrical conductivity (EC) and 

cation exchange capacity (CEC). A pure nugget model was fitted to logα and R 

indicating no spatial structure. On the contrary, logv and logD showed a moderate and 

strong spatial structure, respectively. 

By analyzing many studies related to spatial variability in soil science, it can be 

noticed that a multivariate approach is used, in line with Goovaerts (1999) who points 
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out that the soil information is generally multivariate. Usually, multivariate data are 

analyzed with statistical methods, such as principal component analysis or multiple 

linear regression (Ferreira da Silva et al., 2013; Rodríguez Martín et al., 2007) but 

without accounting for their possible spatial correlation (Erşahin et al., 2017; Kazemi 

et al., 2008). Ignoring the multivariate spatial correlations can be a waste of available 

and important information. 

Some effort has been made to characterize the spatial variation of the correlation 

among variables and to use this information for estimation purposes (Benamghar & 

Gómez-Hernández, 2014; Bevington, Piragnolo, Teatini, Vellidis, & Morari, 2016; 

Goovaerts, 1998; Guagliardi, Buttafuoco, Cicchella, & De Rosa, 2013). Nevertheless, 

attempts to obtain the spatial variation of the correlation among solute transport and 

all statistically significant variables are rare (Jacques et al., 1999) and more studies 

need to be done. 

Therefore, our first objective is to determine the linear statistical correlations among 

soils properties, K, α, and Kd for a reactive (potassium K+) and a nonreactive (chloride 

Cl-) solute. Second, in order to identify the more statistically significant variables that 

explain the variability of the variables of interest (K, α, and Kd), multiple linear 

regression is performed. The third objective is to model the spatial structures of soils 

properties and of the variables of interest. Aiming to study the spatial cross-correlation 

among variables, the fourth objective is to model the relations among the variables of 

interest and each one of the more statistically significant variables. To the best of our 

knowledge, this is the first time that the spatial correlations among α and Kd, of a 

reactive and a nonreactive solute, and statistically significant variables are studied. 

Finally, although the characterization of the spatial variability of soil properties at the 

centimeter/meter scale can affect the solute transport prediction at a bigger scale 

(Salamon, Fernàndez-Garcia, & Gómez-Hernández, 2007), studies in this scale are 

scarce. In this context, we are interested in the small-scale variability using a dense 

sampling design. 
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2.2. Material and methods 

2.2.1 Description of the study site 

The study was carried out in São Carlos city (21°51′38″ S, 47°54′14″ W), which is 

located in the East-Center of the São Paulo State, Brazil (Fig. 2.1). As mentioned 

before, since we are studying the spatial variability at the scale of a few meters, the 

study site covers an area of 84 m2 and a depth of 2 m. The pedologic soil type is 

classified as Oxisol according to US Soil Taxonomy (Soil Survey Staff, 1999) and 

medium textured, dystrophic, red–yellow Latosol according to the Brazilian 

classification system (Santos et al., 2014). Clayey fine sand is the predominant texture. 

The climate in this region is Köppen's Cwa type (Miranda et al., 2015; Peel, Finlayson, 

& McMahon, 2007). The mean annual temperature is 21.2 °C, having humid and hot 

summers and a dry winter, with an average annual rainfall of 1423 mm (Miranda et al., 

2015). The parent material comprising Cenozoic sediments that cover the Botucatu 

Formation (Paraná Sedimentary Basin, São Bento Group), constituted by 

unconsolidated sands with the thickness ranging from 5 m to 7 m and pebbles at the 

base, and are spread at all São Paulo interior region (Azevedo, Pressinotti, & Massoli, 

1981; Giacheti, Rohm, Nogueira, & Cintra, 1993). The action of weathering under 

tropical conditions makes the soil from the Cenozoic sediments highly lateritized 

(Giacheti et al., 1993). The main constituents of that soil are quartz, oxides, 

and hydroxides of aluminum, kaolinite, and gibbsite. Macropores and dual-porosity are 

also characteristics of the studied soil (Rohm, 1992). 
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Fig. 2.1 Location of the study site and the position of the sampling points 

2.2.2 Soil sampling 

Undisturbed soil samples were cautiously taken from hand-excavated trenches by 

carefully introducing rigid polyvinyl chloride (PVC) cylinders (0.15 m in height and 0.97 

m in inner diameter) into the soil. Soil core sampling started by removing the grass and 

a thin and hard layer from the top of the soil. Small-scale samples were extracted in 

23 locations in the x-y plane in an area of 12 m in the x-direction and 7 m in the y-

direction. For each x-y coordinate, three samples were taken at different depths (z 

coordinate): 0.5 m, 1.0 m and 1.5 m, resulting in a dense sampling design. Initially, 69 

undisturbed soil samples were collected, but 14 samples presented defects or cracks 

and were discarded. The position of the 55 remaining samples in the study site is 

shown in Fig. 2.1. Additionally, disturbed soil samples were collected to characterize 

some properties that were not spatially evaluated. 

2.2.3 Soil properties characterization 

Silt, clay and sand content, cation exchange capacity (CEC), total porosity (n), effective 

porosity (ne), macroporosity (Ma), mesoporosity (Me), microporosity (Mi) and bulk 
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density (ρd) are referred to soil properties and were analyzed spatially. In the 

laboratory, the moisture was determined in three replicates for each soil sample.  

Subsequently, the soil was air-dried and sieved through a #10 mesh sieve (2 mm 

openings). Particle size distribution was determined according to ASTM D 422-63 

(ASTM, 2007) in only one replicate for each soil sample. Particle density ρs was 

determined using the ASTM D 854-14 (ASTM, 2014) and resulted in 2.71 Mg·m-3. Bulk 

density was determined for each soil column as ρd = Md/Vt, where Vt is the total 

volume of the soil sample (internal volume of each PVC cylinder) and Md is the dry 

mass of the soil sample. Mercury intrusion porosimetry (MIP)  (Washburn, 1921) and 

total porosity was calculated for each soil sample as n =1 – ρd/ρs. When the total 

porosity calculated was different from the one obtained by MIP, we assumed that the 

difference was due to large pores that were not identified in the MIP due to the reduced 

sample size used. The effective porosity (ne) was considered as the total porosity 

minus the porosity that corresponds to the soil water content at 33 kPa, suction 

equivalent to field capacity (Ahuja, Naney, Green, & Nielsen, 1984; Brutsaert, 1967; 

Corey, 1977; Dippenaar, 2014). It is important to mention that field capacity is not 

precisely defined in soil science and we chose to use that value since it is widely used 

in the literature. The diameter of the pore equivalent to the suction at 33 kPa was 

calculated as 8.9 μm from the equation of the capillary ascension by adopting the 

contact angle as 0º. Thus, based on the results of the MIP, the effective porosity was 

calculated as the total porosity minus the porosity correspondent to the pores with a 

diameter smaller than 8.9 μm. From the MIP results, Ma, Me, and Mi were determined 

according to the classification proposed by Koorevaar et al. (1983), in which the 

diameters of Mi, Me, and Ma are, respectively, <30 µm, 30-100 µm and >100 µm. The 

methylene blue adsorption test using the filter paper method described by Pejon (1992) 

was used to determine CEC in one replicate for each soil sample. 

In order to characterize average properties with no concern about spatial structure,  

the next parameters were determined in three replicates: pH in H2O and in KCl, Eh and 

electrical conductivity (EC) (Donagema & Campos, 2011), ΔpH (pHKCl – pHH2O) 

(Mekaru & Uehara, 1972), point of zero charge (PZC) (2pHKCl – pHH2O) (Keng & 

Uehara, 1973), organic matter content according to the ASTM D 2974-00 (ASTM, 

2000), and mineralogical composition by X-ray diffraction (Azaroff & Buerger, 1953). 
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The filter paper method was used to determine the soil water retention curve (WRC) 

(ASTM, 2016) and its parameters were determined by fitting the model proposed by 

Durner (1994) to the experimental data. The Durner model is expressed by 

 Se=w1

1

[1+(α1|Ψ|)
n1]

m1
+w2.

1

[1+(α2|Ψ|)
n2]

m2
 , (2.1) 

 where wi is the weight assigned to each sub-curve, where 0 < wi <1 and = 1. The 

values αi, ni, mi are the parameters of the sub-curves which are subject to the following 

conditions αi > 0, ni > 1 and mi > 0; Ψ is the matrix suction; Se is the effective saturation, 

defined by: 

 where: θ is the volumetric moisture content, θR and θS represent residual and 

saturated volumetric moisture contents, respectively. 

2.2.4 Column experiments 

The PVC cylinders used for collecting the undisturbed soil samples were used as rigid-

wall permeameters and 55 column experiments were conducted. Fig. 2.2 shows the 

column experiments in progress. First, the columns were sealed with a cap containing 

a stainless plastic plate with holes on both ends of the column, which allowed a uniform 

distribution of the inlet flow. Afterwards, the soil samples were slowly saturated from 

the bottom with deionized water to remove entrapped air. After column saturation, the 

flow was reversed, and the permeability test was performed under a constant hydraulic 

gradient of 1 m m-1 and the flow rate (Q) was measured. We have taken two measures 

per day and we assumed that steady-state flow was achieved when Q variations were 

below 5% in a week. When necessary, corrections were made in the calculations of 

the hydraulic parameters according to temperature. Subsequently, the following water 

flow parameters were obtained from each soil sample: saturated hydraulic conductivity, 

K; specific discharge, q, and average linear velocity, v (q/ne) (Freeze & Cherry, 1979). 

When the steady-state flow was reached, deionized water was replaced by a solution 

2.56 mol m-3 KCl (100 mg L-1 K+ and 90.7 mg L-1 Cl- referred as initial concentrations, 

C0) continuously injected into the soil column. Solute displacement tests were carried 

out under constant hydraulic head and isothermal (20 °C) conditions. The 

 Se= 
θ- θR

θs-θR

 , (2.2) 
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concentration, temperature, and pH of the initial solution were monitored throughout 

the test. Leachate samples were collected from the outlet of the columns at pre-set 

time intervals (defined for each column in accordance with the flow rate), stored 

in plastic bottles and refrigerated immediately after collection. Preferably, the tests 

were performed until the relative concentrations (C/C0) reached 1, but this condition 

was not achieved in some samples. An ion-selective electrode (ISE) (Hanna 

instruments - HI 4107 model) was used to determine Cl- concentration (C) at each time. 

K+ concentration at each time was measured by a flame photometer (Micronal B462 

model) at a 1:21 dilution ratio. All ion concentrations were measured in one replicate 

and determined as the arithmetic mean of the replicates. The relative concentrations 

(C/C0) of Cl- and K+ were determined by dividing the concentration of the ion in the 

leachate samples at each time by the concentration of the ion in the initial solution. 

Thereafter, a breakthrough curve (BTC) of each soil sample and each ion was plotted. 

The BTC’s were expressed as C/C0 and the number of pore volumes (T). T is a 

dimensionless variable calculated as T = vt/L (van Genuchten, 1980), where v is the 

average linear velocity, t is the time elapsed from the start of the solute application, 

and L is the length of the soil column (0.15 m). 

 

Fig. 2.2 Column experiments in progress: A) water deionizers, B) hydraulic head 

controller device, C) rigid-wall permeameters 
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2.2.5 Transport parameter determination 

The transport parameters, dispersivity (α) [L] and partition coefficient between the 

liquid and solid phases (Kd) [L³M- 1] were also determined as explained next.  

The advection-dispersion equation (ADE) used to interpret the BTCs is  

 R 
∂C

∂t
=D

∂
2
C

∂x2
-v

∂C

∂x
 , (2.3) 

where C is solute concentration [ML-3], D is the hydrodynamic dispersion coefficient 

[M2T-1], R is the retardation factor [-], x is distance [L], and t is time [T].  

The hydrodynamic dispersion coefficient is related to the dispersivity by  

 D= α · v, (2.4) 

and the retardation factor is related to the partition coefficient Kd through the expression 

 R= 1+
ρ

d

n
Kd , (2.5) 

This equation has the following analytical solution, when the initial condition is C0=0 

for the entire sample, and the boundary conditions are C=C0 at the inlet and C=0 at an 

infinite distance from the inlet 

 
C

C0

=
1

2
[erfc (

RL-vt

2√DRt
)]+

1

2
exp (

vL

D
) erfc (

RL+vt

2√DRt
) , (2.6) 

where erfc is the complementary error function 

This expression was fitted to the observed BTCs for each soil sample and values 

of D and R were obtained for both K+ and Cl-. The fitting was performed using the 

computer program CFITM (van Genuchten, 1980), that is part of the Windows-based 

computer software package Studio of Analytical Models (STANMOD) (Šimůnek, van 

Genuchten, Šejna, Toride, & Leij, 1999). The fit of the experimental BTC to the ADE 

model was evaluated by its R2. Most BTCs presented significant tailing, R2 ranged from 

0.77 to 0.99 with a mean of 0.92. We conclude that the ADE model is suitable to 

describe the experimental data. 
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2.2.6 Statistical analysis 

Exploratory analysis of the K, lnK, soil properties and transport parameters (including 

P, R, D, lnα of K+ and lnα of Cl-) were performed. Global summary statistics such as 

mean, standard deviation, variance, minimum and maximum value, kurtosis, 

skewness, and coefficient of variation (CV) were computed. The CV were classified 

according to Wilding and Drees (1983): low variability for CV ˂ 15%; moderate 

variability for 15% < CV < 35%; and high variability for CV > 35%. The normality of the 

data was tested by means of the Kolmogorov–Smirnov test (Massey, 1951) using 

MATLAB R2017a. When necessary, the variables were standardized, and the 

subsequent studies were performed using standard normal variables. Outliers were 

analyzed in detail to investigate errors in the determination of the variables, and when 

deemed appropriate they were excluded from the dataset. Trends were also 

investigated and, if present, removed. The presence and strength of significantly linear 

associations between soil properties and the variables of interest (lnK, lnα (K+), lnα 

(Cl- ), Kd(K+), and Kd (Cl-)) were examined by computing Pearson correlation 

coefficients at 0.05 and 0.01 significance level. The natural logarithm (ln) of α and K 

were used as variables rather α and K because they resulted in better correlations. 

The quantification of the significance of the relationships between all the studied 

variables, i.e. soil properties and variables of interest, was analyzed separately using 

multiple linear regression (MLR). Stepwise regression analyses were carried out to 

avoid the possible collinearity effects in multiple regressions. Statistical significant 

differences were set with p values equal to 0.05. 

A stepwise MLR is expressed as 

 y=b0+b1w1+b2w2+b3w3+…+bnwn (2.7) 

defines the best linear combination of the variables to predict the variables of interest 

and helps understand which variables have the highest influence on the variables of 

interest, where y is the dependent variable and w1 to wn are independent variables. 

2.2.7 Geostatistical analysis 

Based on the MLR results, the spatial dependence of the more statistically significant 

soil properties and of the variables of interest was measured using direct experimental 

variograms. The variogram can be defined as the mean-squared difference between 
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the same variable at specified separation distances (Isaaks & Srivastava, 1989). It is 

a measure of disparity among measurements, and was calculated using  

 γ(h)=
1

2N
∑[z(uα)-z(uα+h)]2

N(h)

α=1

,  (2.8) 

where γ(h) is the variogram function, z(uα) is the measured value of the attribute under 

consideration taken at location α, h is the separation vector and N(h) is the number of 

data-pairs separated by the vector h. The variograms were obtained using the Stanford 

Geostatistical Modeling Software (SGeMS). 

Almost all experimental variograms were best fitted to the isotropic spherical 

variogram model (Isaaks & Srivastava, 1989): 

 𝛾(h)=c0+c1.sph(|h|,a),  (2.9) 

where a is the range, i.e., is the separation distance beyond which observations are 

spatially independent of each other, c0 is the nugget effect that refers to an overall 

estimate of error caused by measurement inaccuracy and variability occurring at 

scales smaller than the sampling interval, c1 is the covariance contribution or sill value, 

and h is the directional lag distance (Goovaerts, 1997; Isaaks & Srivastava, 1989). 

The nugget effect model was also used in a situation indicating that the variable 

was randomly spatially distributed: 

 𝛾(h)= {
0       if h=0     
1      otherwise

.  (2.10) 

In multivariate geostatistics, to model the coregionalization between j variables 

requires modeling j (j+1)/2 direct and cross variograms. In this study, j corresponds to 

the variables of interest plus the set of variables that best explains its variability, 

according to the MLR results. 

The cross-variogram function describes the way in which two variables are spatially 

related, and was used to quantify the structure of the spatial correlation between 

selected soil properties and lnK, lnα (K+), lnα (Cl-), Kd (K+), and Kd (Cl-): 

 γ(h)=
1

2N
∑[zi(uα)-zi(uα+h)]⋅[zj(uα)-zj(uα+h)]

N(h)

i=1

,  (2.11) 
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where zi(uα) and zj(uα) are the measured zi and zj regionalized variables, respectively, 

taken at location α (Goovaerts, 1999; Isaaks & Srivastava, 1989). 

The codispersion coefficient, ruv, between the variables v and u, ruv, for each 

vector h was computed for any pair of variables as the ratio of the cross-variogram 

between v and u to the square root of the product of the variograms of u and v 

(Goovaerts, 1994) 

 ruv(h)=
γ

uv
(h)

√γ
u
(h)γ

v
(h)

 .  (2.12) 

2.3. Results and discussion 

2.3.1 Average soil properties  

The main minerals present in the studied soil are quartz, kaolinite, and gibbsite, in 

accordance with Giacheti et al. (1993) and Kronberg et al. (1979). Average values of 

5.71 and 5.19 for pH in H2O and in KCl, were obtained, respectively. These results 

show that the soil is strongly acid, which is a typical characteristic of Cenozoic 

sediments and lateritic soils (Fagundes & Zuquette, 2011; Giacheti et al., 1993). The 

negative ΔpH (-0.52) and a point of zero charge (PZC) (4.67) lower than the pHH2O 

indicate a predominance of negative charges, which can promote cation adsorption 

(Fagundes & Zuquette, 2011). This soil contains a small average amount of organic 

matter (2.40%), a result suitable for lateritic acid soils (Mahapatra, Singh, Pillai, & 

Bapat, 1985). According to the soil salinity classification of the Food and Agriculture 

Organization of the United Nations (FAO), the electrical conductivity values indicate 

small amount of dissolved salts (55.70 mSm-1) and a non-saline soil (Abrol, Yadav, 

Massoud, Food and Agriculture Organization of the United Nations., & Food and 

Agriculture Organization of the United Nations. Soil Resources Development and 

Conservation Service., 1988). The parameters of the WRC are showed in Table 2.1 

and were obtained from the fit of the experimental data to the model proposed by 

Durner (1994) specifically for soil with heterogeneous structure and double porosity.  

http://www.fao.org/home/en/
http://www.fao.org/home/en/
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Table 2.1 Parameters of the water retention curve according to the Durner (1994) 

model 

w1 w2 α1 α2 m1 m2 n1 n2 R2 

0.32 0.6 0.00001 4.84 1.81 3.29 1.01 3.02 0.85 

 

2.3.2 Statistical analysis of the soil properties 

The exploratory statistical results of the soil properties, v and K are shown in Table 2.2. 

In order to identify trends, all statistical results were also investigated for each depth 

(results not shown), and no significative influence of the depth was observed. Because 

of that, in further analysis the samples were considered as a unique dataset, regardless 

of the depth. Soil properties are slightly skewed, quantified by a skewness < |0.5| 

(Webster, 2001), except Ma and CEC, which are moderately and highly skewed with 

a skewness of 0.75 and 1.06, respectively. The difference between its minimum and 

maximum value was quite large for K, lnK, v, silt content, Ma, and CEC. According to 

the CV classification of the Wilding and Drees (1983), high CV were identified for K, v, 

silt content and Ma (1.22, 1.23, 0.61 and 0.56, respectively) evidencing high variability 

in these variables. Our results confirm that the soil heterogeneity is present even on a 

small scale, depending on the studied property (Chapuis et al., 2005; Lacasse & 

Nadim, 1996; Søvik & Aagaard, 2003). 

MIP results indicated that the soil has dual-porosity and the predominant pore 

diameters correspond to Me and Mi. The multimodal pore size distribution is 

characteristic of well-structured soils (Hajnos, Lipiec, Świeboda, Sokołowska, & 

Witkowska-Walczak, 2006; Lipiec et al., 2007). The soil has a low CEC (maximum 

value 4.20 cmolc Kg-1) and it suggests a low capacity to adsorb cations by electrostatic 

adsorption (Fagundes & Zuquette, 2011). Mean soil properties presented values in 

accordance with the typical characteristics of the studied soil (Giacheti et al., 1993; 

Zuquette & Palma, 2006). 
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Table 2.2 Descriptive statistics of soil properties, hydraulic conductivity and linear 

average velocity at the study site for 55 samples 

  Mean SD CV Skew Kurt Min Max 

K [m d-1] 1.35 1.65 1.22 2.39 5.84 0.03 7.46 

v [m d-1] 5.40 6.57 1.23 2.20 4.61 0.13 27.71 

lnK [ln(m d-1)] -0.37 1.25 n.d -0.29 -0.12 -3.68 2.03 

n [ ] 0.51 0.04 0.08 -0.24 -0.39 0.42 0.58 

ne [ ] 0.24 0.02 0.08 -0.39 -0.14 0.20 0.28 

ρd [g cm-3] 1.34 0.10 0.07 0.28 -0.32 1.14 1.59 

CEC [cmolc Kg-1] 2.51 0.64 0.25 1.06 0.39 1.60 4.20 

sand (%) 56.20 3.24 0.06 -0.36 -0.52 48.50 61.50 

silt (%) 4.62 2.82 0.61 0.16 -0.06 1.40 11.40 

clay (%) 39.18 3.51 0.09 0.10 -0.87 32.50 46.10 

Ma [ ] 0.072 0.04 0.56 0.75 -0.58 0.031 0.152 

Mi [ ] 0.262 0.06 0.23 -0.25 -0.96 0.141 0.361 

Me [ ] 0.172 0.05 0.29 0.21 -0.92 0.091 0.263 

SD: standard deviation, CV: coefficient of variation, Skew: Skewness, Kurt: Kurtosis, Min: minimum 
value, Max: maximum value, n.d: undetermined, K: hydraulic conductivity; v: linear average velocity, ρd: 
bulk density, n: total porosity, ne: effective porosity Ma: macroporosity, Me: mesoporosity, Mi: 
microporosity, CEC: cation exchange capacity. 

2.3.3 Statistical analysis of the transport parameters 

The BTCs (not shown) of K+ and Cl- obtained from the 55 miscible displacement tests 

were analyzed, and transport parameters were determined. The goodness of fit of the 

experimental BTC to the ADE model was evaluated by its R2. Most BTCs presented 

significant tailing, R2 ranged from 0.77 to 0.99 with a mean of 0.92 for K+ and 0.95 for 

Cl-, suggesting that the ADE model was suitable to describe the data. BTCs that 

presented low R2 were investigated to check for problems in the soil samples, but no 

problems were found. 

Basic statistics of the transport parameters are shown in Table 2.3. Almost all 

transport parameters were high right-skewed. Moderate right-skewness was obtained 

only for R (Cl-) and Kd (Cl-). Slightly right-skewness was obtained for lnα (K+) and lnα 

(Cl-). High right-skewness bromide (Br-) α and D, and moderate lnα left-skewness was 

found in the work of Erşahin et al. (2017). 
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All transport parameters show high CVs and the highest ones were obtained for the 

reactive solute (K+). The CVs of R and Kd for K+ shown that transport parameters are 

very variable. The values we obtained for α were high when compared to other studies 

using samples of approximately same dimensions (Erşahin et al., 2017). Also, α mean 

values were high when compared to the typical values used in the literature (α = 0.1L, 

where L in the distance) (Freeze & Cherry, 1979). These differences can be attributed 

to numerous factors such as the scale of the experiment, flow rate, and boundary 

conditions. Higher values of α can also be indicative of preferential flow. 

The maximum and minimum values were quite different for all transport 

parameters, evidencing, again, the large variability in these parameters. Peclet 

numbers ranged from 0.11 to 13.41, showing that for some soil samples the advective 

transport prevailed, whereas for other samples dispersive transport was the primary 

mechanism. These differences probably are related to heterogeneities between 

physical characteristics of soil samples. R (K+) ranged from 0.69 to 36.19 while R (Cl-) 

ranged from 0.33 to 5.20, as expected because reactive solute should have larger R 

values than nonreactive solutes. 

Even though clay content was significant, high R (K+) and R (Cl-) values were not 

expected since the combination of the clay minerals identified, the low CEC values and 

the predominance of negative charges do not favor the retardation of K+ and Cl-. We 

believe that the structure of the soil played an essential role on the retardation. 

Moreover, the results of P and R can be explained by the distribution of the diameter 

of the pores in the soil, since the maximum Ma and Mi values were 0.15 and 0.36, 

respectively. Because of that, part of the solutes can move fast because of advection 

(in macropores) and part of them can be retarded due to the percolation through 

micropores and non-interconnected pores, behavior also stated by others (Jarvis, 

2007; Silva, van Lier, Correa, Miranda, & Oliveira, 2016; van Genuchten & Wierenga, 

1976). 
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Table 2.3 Descriptive statistics of transport parameters for 55 samples 

 Mean SD CV Skew Kurt Min Max 

P (K+) [ ] 2.07 2.12 1.02 2.15 5.61 0.11 10.80 

R (K+) [ ] 5.37 5.10 0.95 4.51 25.31 0.69 36.19 

Kd (K+) [cm3g-1] 1.71 2.27 1.33 5.61 36.75 0.01 16.75 

D (K+) [m2d-1] 1.07 1.77 1.65 2.64 7.42 0.02 8.77 

α (K+) [m] 0.18 0.19 1.06 1.82 3.32 0.01 0.88 

lnα (K+) [ln(m)] -2.21 1.11 n.d -0.45 0.71 -5.79 -0.12 

P (Cl-) [ ] 2.82 2.78 0.99 2.08 4.25 0.44 13.41 

R (Cl-) [ ] 2.35 1.29 0.55 0.61 -0.60 0.33 5.20 

Kd (Cl-) [cm3g-1] 0.55 0.51 0.93 0.66 -0.81 0.03 1.64 

D (Cl-) [m2d-1] 0.61 1.14 1.87 3.43 12.26 0.01 5.62 

α (Cl-) [m] 0.10 0.08 0.80 1.23 1.43 0.01 0.34 

lnα (Cl-) [ln(m)] -2.61 0.93 n.d -1.18 2.80 -6.18 -1.07 

SD: standard deviation, CV: coefficient of variation, Skew: Skewness, Kurt: Kurtosis, Min: minimum 
value, Max: maximum value, n.d.: undetermined, P: Peclet number, R: retardation coefficient, Kd: 
partition coefficient, D: longitudinal hydrodynamic dispersion coefficient, α: dispersivity, (K+) potassium, 
(Cl-): chloride. 

2.3.4 Correlation among variables 

To examine the relationship among soil properties, hydraulic conductivity and transport 

parameters, correlation coefficients were computed. Outliers were removed before the 

coefficients were computed and the analyses were performed using 50 values for each 

variable. As none of the variables was normally distributed, correlation analyses were 

performed using the original data (results not shown) as well as the standardized 

normal distributed transformed values. As the best correlations coefficients were 

obtained with standardized variables, all analysis hereafter were performed using 

these variables. Variables that are not intrinsic properties of the media such as P, D, 

R, and v, were not considered in the analysis of correlations. 

None of the physical soil property was strongly correlated to the transport 

parameters. According to Vanderborght and Vereecken (2007), texture has no 

significant effect in α and this result is also verified in our study. Since the studied soil 

has a structure characteristic of lateritic soils by forming agglomerates, texture itself 

may not show much about dispersivity. 
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lnα (Cl-) exhibits a statistically significant positive correlation with ρd and a negative 

correlation with n. This result is in accordance with the equation that relates dispersivity 

to D and v (D = αv, where v = q/ne). Since n is slightly negatively related to ne, as 

shown in Table 2.4, when v increases α decreases, justifying the relations obtained. 

On the other hand, lnα (Cl-) was the only variable significantly positively correlated to 

lnα (K+), suggesting that higher D smaller the influence of other soil properties. 

Kd (K+) showed a strong positive correlation with CEC and Kd (Cl-), showing the 

importance of the physico-chemical adsorption and the relation between the ions 

studied. A low, but still significant, positive correlation among Kd (K+) and Me was 

obtained. Kd (K+) was negatively correlated to Mi, indicating that neither Ma nor Mi 

contributed to higher R, contrary to our initial assumptions. Kd (Cl+) presented a low 

positive correlation with silt content and a strong positive correlation with CEC and Kd 

(K+) and no correlation with pore size was observed. 

Almost none correlation was obtained among CEC and clay content, indicating that 

the clay mineral present in the soil is not relevant to adsorb cations, as mentioned 

before. Significant positive correlations among lnK, n, ne, and Ma were verified, 

indicating that these properties dictate the values of lnK and of the water flow in soils 

(Biswas & Si, 2009). In a previous study, a high positive correlation was obtained 

among K, Ma, and n (Mbagwu, 1995). A significant negative correlation was also found 

among lnK and ρd, results in accordance with other studies (Bevington et al., 2016; 

Botros, Harter, Onsoy, Tuli, & Hopmans, 2009; Mbagwu, 1995; Papanicolaou et al., 

2015). These results show the higher ne (negatively related to n as shown in Table 

2.4), higher v, as expected. No significant correlation between lnK and texture was 

obtained. However, this result contrast with several previous studies in non-lateritic 

soils, showing the impact of the soil agglomerates in the relation among soil properties 

(M. Huang, Zettl, Lee Barbour, & Pratt, 2016; Igwe, 2005; Nemes, Timlin, Pachepsky, 

& Rawls, 2009; Pachepsky & Rawls, 2004; Søvik & Aagaard, 2003). 
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Table 2.4 Correlation coefficients among standardized variables 

α: dispersivity, (K+) potassium, (Cl-): chloride, Kd: partition coefficient, CEC: cation exchange capacity, K: hydraulic conductivity; ρd: bulk density, n: total porosity, 
ne: effective porosity, Mi: microporosity, Me: mesoporosity, Ma: macroporosity 

* significant at 0.01 level of significance. 

** significant at 0.05 level of significance. 

  lnα (Cl-) lnα (K+) Kd (K+) Kd (Cl-) CEC lnK ρd n ne sand silt clay Mi Me Ma 

lnα (Cl-) 1.00                             

lnα (K+) 0.71** 1.00 

             
Kd (K+) -0.03 0.06 1.00 

            
Kd (Cl-) -0.09 0.10 0.63** 1.00 

           
CEC -0.04 0.15 0.70** 0.81** 1.00 

          
lnK 0.13 0.11 -0.02 -0.14 -0.10 1.00 

         
ρd 0.33* 0.11 -0.22 -0.20 -0.26 -0.34* 1.00 

        
n -0.32* -0.10 0.23 0.19 0.26 0.33* -0.99** 1.00 

       
ne 0.25 0.12 0.06 0.02 -0.01 0.44** 0.06 -0.06 1.00 

      
sand 0.21 0.18 -0.27 -0.13 -0.17 0.01 0.22 -0.22 -0.28 1.00 

     
silt -0.07 -0.10 0.16 0.30* 0.21 0.05 -0.10 0.08 0.11 -0.29* 1.00 

    
clay -0.14 -0.10 0.15 -0.09 0.01 -0.05 -0.11 0.13 0.16 -0.69** -0.48** 1.00 

   
Mi -0.21 -0.18 -0.39** -0.25 -0.26 -0.02 0.04 -0.03 -0.22 0.10 -0.37** 0.18 1.00 

  
Me 0.08 0.06 0.36* 0.28 0.12 -0.19 0.18 -0.20 0.22 -0.15 0.40** -0.14 -0.68** 1.00 

 
Ma 0.10 0.03 -0.16 -0.20 0.03 0.38** -0.22 0.24 0.10 0.14 -0.02 -0.12 0.28 -0.63** 1.00 
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Table 2.5 presents the results of the stepwise multiple linear regression analysis at 

a 95% level of significance. This analysis was used for investigating the significance of 

the relationships among all selected variables. The best model for Kd (K+) was obtained 

by considering two variables, CEC and Ma, explaining 70% of the total variance in the 

model, with Pearson coefficient r equal to 0.84. The model that best represents Kd (Cl- ) 

was found by combining CEC, clay content and Me, which explain 60% of the total 

variability with a moderate r equal to 0.70. These results suggest that other variables 

that were not considered in this study could be added to better explain the total 

variability of Kd. For example, several authors have suggested that pH, EC, the content 

of Al and Fe, CaCO3 and organic carbon have a strong influence on the total variability 

of Kd (Che, Loux, Traina, & Logan, 1992; Erşahin et al., 2017; Porfiri, Montoya, 

Koskinen, & Azcarate, 2015). Additionally, some variables that were significantly 

correlated to Kd in the correlation analysis were not significant in the MLR. This can be 

related to possible collinearity effects of these variables, what is identified and excluded 

by using stepwise method. 

The only variables that were significant to model lnα(K+) and lnα (Cl-) were lnα (Cl-) 

and lnα (K+), respectively, and both have explained only 50% of the total variability, 

with a moderate r equal to 0.70 and 0.72, respectively. It demonstrates that other 

variables should be considered to better explain total variability in lnα. As α has some 

scale and spatial dependence (Erşahin et al., 2017; Freeze & Cherry, 1979), it could 

be interesting to take into account its spatial relationship with other parameters and not 

only the parameter itself. 

Only 40% of the total variability of lnK was explained by the combination of ne, ρd, 

and Ma with a moderate r equal to 0.63. Contrary to the correlation analysis, where the 

correlation between n and lnK was statistically significant, in the MLR, n had not 

explained lnK variability when combined with other variables. In future studies, it would 

be valuable to include other explanatory variables, such as soil structure and 

microstructure that in previous studies were recognized as direct drivers of K 

(Benegas, Ilstedt, Roupsard, Jones, & Malmer, 2014; Beven & Germann, 2013; Burke, 

Mulligan, & Thornes, 1999; Hillel, 2004; Nanzyo, Shoji, & Dahlgren, 1993; Narwal, 

2002; Zimmermann & Elsenbeer, 2008) and can be even more important for lateritic 

soils. 
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Table 2.5 Stepwise multiple linear regression results 

 Kd (K+) lnα (K+) Kd (Cl-) lnα (Cl-) lnK 

lnK - - - -  

n - - - - - 

ne - - - - 26.4 

ρd - - - - -3.90 

CEC 0.68 - 0.48 - - 

sand - - - - - 

silt - - - - - 

clay - - 0.03 - - 

Ma -0.03 - - - 0.09 

Mi - - - - - 

Me - - 0.02 - - 

Kd (K+)  - - - - 

lnα (K+) -  - 0.63 - 

Kd (Cl-) - -  - - 

lnα (Cl-) - 0.79 -  - 

Intercept -0.29 -0.26 -2.34 -1.15 -2.25 

R2 0.70 0.50 0.60 0.50 0.40 

r* 0.84 0.70 0.77 0.72 0.63 

* Pearson’s coefficient 
All results were significant at p =< 0.05 

2.3.5 Spatial correlation among variables 

As the correlation among variables in Table 2.4 neglects the spatial component of the 

sample points, in this section, the direct and the cross-variograms were used to explore 

further the spatial correlation among variables. The spatial structure of the 

standardized variables was evaluated using variograms functions. Table 2.6 

summarizes the parameters of the models that were used to fit the experimental 

variograms. Only clay content shows no spatial dependence (pure nugget effect), 

indicating that this variable is spatially random, despite being correlated to sand and 

silt content, which display spatial dependence. This result can be related to the more 

or less uniform distribution of the clay content in the studied site, with a CV of only 9%. 

Experimental variograms of all the remaining variables were fitted with a spherical 

model, indicating that abrupt changes in space may occur, while preserving an overall 

spatial structure. 

The spatial structure was similar for all the studied variables. The largest range was 

obtained for lnK (4.0 m), while silt content and Mi presented the smallest ones (2.5 m). 

Microporosity, as well as all studied solute transport parameters, displayed a nugget 
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effect behavior, which accounts for short-scale spatial variability or measurement 

errors. These variables had a moderate spatial dependence classified by measuring 

the nugget ratio (Rb = nugget/sill*100%), which is strong if Rb < 25%, moderate if 25% 

< Rb < 75%, weak if Rb >75% (Cambardella et al., 1994). Kd variograms resulted in a 

greater range than lnα variograms. Gupte et al. (1996), found a maximum range of 

2.3 m for Br- dispersivity. Contrary, Erşahin et al. (2017) reported no clear spatial 

structure for α and R under their sampling scheme. They argued that α is distance and 

time-dependent at both the column and field scale, which complicates its spatial 

structure. Jacques et al.(1999) found pure nugget effect in the variogram of Kf 

(Freundlich partition coefficient). Spatial structure of the Cl- mass recovery was studied 

in a 2 m x 2 m x 2 m cube and a range of 0.37 m was found. With these results, we 

can argue that the range of the studied variables may vary depending on the sampling 

scheme and on the size of the studied site. 

Table 2.6 Parameters of the variogram models used to fit the isotropic direct 

experimental variograms 

Variable Model 
Nugget 

(c0) 

Sill 

(c1) 

Range (m) 

(a) 

lnK Spherical 0.0 1.0 4.0 

n Spherical 0.0 1.0 3.0 

ne Spherical 0.0 1.0 3.0 

ρd Spherical 0.0 1.0 3.5 

CEC Spherical 0.0 1.0 3.0 

sand Spherical 0.0 1.0 3.0 

silt Spherical 0.0 1.0 2.5 

clay Pure nugget effect 1.0 0.0 - 

Ma Spherical 0.0 1.0 3.5 

Mi Spherical 0.45 0.55 2.5 

Me Spherical 0.00 1.0 3.0 

Kd (K+) Spherical 0.40 0.60 3.6 

lnα (K+) Spherical 0.50 0.50 3.0 

Kd (Cl-) Spherical 0.55 0.45 3.3 

lnα (Cl-) Spherical 0.30 0.70 2.7 
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Since the correlation among variables may depend on the spatial structure, the 

variation of the correlation coefficient among variables with the spatial scale was 

quantified. Fig. 2.3 (A to D) shows these results for the correlations between lnK, lnα 

(K+), lnα (Cl-), Kd (K+), and Kd (Cl-) and the variables which explained their variability, 

according to the MLR results. As stated by Wackernagel (1995), if the codispersion 

among the variables is constant in space, the structure of correlation of the variables 

is not affected by spatial scale. 

The correlation coefficient among lnK and Ma (Fig. 2.3 A) decreases until 2.2 m 

and from then on presents a variation around zero, showing that for distances larger 

than 2.2 m these variables are no longer correlated. The spatial correlation among lnK 

and ne (Fig. 2.3 A) showed that until 1.1 m the relationship became stronger and 

negative, changing completely the kind of relation between these variables since it is 

recognized that the increase in ne favors the water flow in soils. After that, the values 

became more positive (an expected relation) but the correlation weaker until 2.8 m, 

when the variation remained near zero. Similar behavior was also verified for the 

relation between ρd and Ma and between ne and Ma (Fig. 2.3 A), but the correlations 

were not statistically significant. Contrarily, the correlation coefficient between lnK and 

ρd became weaker and positive until 3.3 m and then the variables seem to be not 

related in space. The relation between ne and ρd was around zero for all studied 

distances (Fig. 2.3 A). 

The spatial correlation between Kd (K+) and CEC (Fig. 2.3 B) presented a fast 

decrease until 1 m and then these variables are no longer statistically significant. The 

spatial correlation among Kd (K+) and Ma and among CEC and Ma (Fig. 2.3 B) was not 

significant even for the distance equal zero, but these variables were identified as 

explanatory in the MLR, illustrating the importance of the spatial analyses for a better 

decision about the most relevant variables and their relations. 

Until a distance of 1m, only a slight decrease (become more negative) was 

observed in the spatial correlations among Kd (Cl-) and Me, Me and clay content, and 

CEC and Me (Fig. 2.3 C). Contrarily, the correlation between Kd (Cl-) and clay content 

(Fig. 2.3 C) showed a slight increase until 1m. From 1 m, those correlations increased 

slightly and ranging near zero, except the correlation between CEC and Me, which 

showed an erratic behavior that may be related to its poor spatial correlation. The 

correlation among Kd (Cl-) and CEC (Fig. 2.3 C) became weaker and negative until 2 m 
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but was statistically significant just until 1.5 m. No spatial correlation was obtained 

between CEC and clay content, result different from that obtained by Jacques et al. 

(1999) who observed a strong spatial correlation between CEC and clay content until 

2.03 m. Statistically significant correlation was verified between lnα (K+) and lnα(Cl-) 

(Fig. 2.3 D) until 1.5 m, and from 2 m these variables were no longer correlated. 

2.4. Conclusions 

In this study, the spatial correlation among soil properties (total porosity, effective 

porosity, cation exchange capacity, macroporosity, microporosity, mesoporosity, bulk 

density, silt, clay and sand content) and the variables of interest (hydraulic conductivity, 

partition coefficient and dispersivity of a reactive (K+) and a nonreactive solute (Cl-) 

was studied at the scale of a few meters using a dense sampling design. The soil was 

characterized as acid with low CEC and composed of minerals commons for lateritic 

soils. 

None of the variables studied were normally distributed. Soil properties presented 

a moderate coefficient of variation (CV). Differently, hydraulic conductivity and 

transport parameters were widely dispersed. None of the physical soil property was 

strongly correlated to the transport parameters. Nevertheless, some parameters such 

as CEC and Kd exhibits a statistically significant positive correlation with transport 

parameters. Stepwise multiple linear regression (MLR) analysis indicated that further 

studies should be performed aiming to include other explanatory variables such as pH, 

EC, the content of Al and Fe, CaCO3 and soil structure and microstructure, that are 

relevant variables for lateritic soils. Our findings show that the use of geostatistical 

methods allowed the evaluation of the spatial variation in the correlation coefficients. 

However, for the conditions analyzed, the use of the spatial correlation among 

transport parameters and soil properties would probably improve the estimation only 

in a small-scale study, since the spatial correlation were only observed up to 2.5 m. In 

addition, some correlations obtained have no physical explanation and more 

investigations must be done. It is important to mention that the study was performed 

for a specific field site and the results obtained may explain the spatial relation to the 

studied soil. This is an important contribution of our research since this soil is spread 

out in a huge area of the São Paulo State and a detailed spatial characterization study 
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had not been done. However, the application of the statistical parameters to estimate 

transport parameters and predict solute transport in other soils is thus questionable. 

The present study was a first attempt to evaluate the spatial variation in the 

correlation coefficient of transport parameters of a reactive and a nonreactive solute. 

We showed the soil properties that may exert greater influence and suggested the one 

that should be included in future studies. Understanding the spatial relations between 

variables can be useful in perform reliable prediction of flow and solute transport and 

contribute to reducing uncertainties when studying groundwater contamination. 
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Fig. 2.3 Variation of the correlation coefficient among variables with the spatial scale 
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Chapter 3. Scale Effect on 
Hydraulic Conductivity and 

Solute Transport: Small and 
Large-Scale Laboratory 
Experiments and Field 

Experiments 

Submitted to Engineering Geology 

 

Abstract 

Hydraulic conductivity (K), dispersivity (α) and partition coefficient (Kd) can change 

according to the measurement support (scale) and that is referred as scale effect. 

However, there is no clear consensus about the scale behavior of these parameters. 

Comparison between results obtained in different support of measurements in field and 

in laboratory can promote the discussion about scale effects on K, α and Kd, and 

contribute to understand how these parameters behave with the change in the scale 

of measurement. This constitutes the main objectives of the present chapter. Small 

and large-scale laboratory tests using undisturbed soil samples and field experiments 

at different scales were performed. Results show that K increases with scale, 

regardless of the method of measurement, except for the results obtained using 

double-ring infiltrometers. Dispersivity displays a clear trend and increases with the 

sample height following an exponential function. Partition coefficient tends to increase 

with sample length, diameter and volume. These differences in the parameters 

according to the scale of measurement must be considered when these observations 

are later used as input to numerical models, otherwise the responses can be 

misrepresented. 
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3.1. Introduction 

Numerical models are tools used in the geotechnical and geoenvironmental practice 

to solve a wide range of problems related to water flow and solute movement in 

subsurface (Cho, 2012, 2014; Dou, Han, Gong, & Zhang, 2014; Ghiglieri et al., 2016; 

Navarro et al., 2017; Srivastava, Babu, & Haldar, 2010; W. Wang et al., 2017). 

Hydraulic conductivity (K) and the solute transport parameters such as hydrodynamic 

dispersion coefficient (D), dispersivity (α), distribution coefficient (Kd) and retardation 

factor (R) are key input parameters for these numerical models and their proper 

determination is fundamental (Bouchelaghem & Jozja, 2009; Chapuis, 2009; Chapuis 

et al., 2005; Elkateb & Chalaturnyk, 2003; Gurocak & Alemdag, 2012; Nikvar Hassani, 

Katibeh, & Farhadian, 2016; Sánchez-Vila, Carrera, & Girardi, 1996; Scheibe & 

Yabusaki, 1998a; Ye & Wang, 2016; Zairi & Rouis, 2000; Zuquette, Palma, & Pejon, 

2005). 

In common practice, these parameters are determined in the field or in the 

laboratory, and then they are used in models to conduct predictions, with no concern 

about the scale (support) at which they were measured (Bagarello, Di Prima, Iovino, & 

Provenzano, 2014; Dousset, Thevenot, Pot, & Šimunek, 2007; Eberemu, Amadi, & 

Edeh, 2013; Godoy, Zuquette, & Napa García, 2015; Internò, Lenti, & Fidelibus, 2015; 

Jellali et al., 2010; Latorre, Peña, Lassabatere, Angulo-Jaramillo, & Moret-Fernández, 

2015; J. Liu et al., 2014; Sadeghi, Tuller, Gohardoust, & Jones, 2014). But the value 

of these parameters can change according to the measurement support, and when 

that change is not considered, the reliability of the predictions may be compromised 

(Sánchez-Vila et al., 1996). The dependence of parameter values on measurement 

support is called scale effect, it is a result of the parameters spatial variability (Alletto 

& Coquet, 2009; Mulla & Mc Bratney, 2002; Sánchez-Vila et al., 1996), and it has been 

subject of many studies (Chapuis et al., 2005; Deng et al., 2013; Gelhar, Welty, & 

Rehfeldt, 1992; J. J. Gómez-Hernández et al., 2006; Hristopulos & Christakos, 1997; 

Li, Zhou, & Gómez-Hernández, 2011a; Neuman, 1994; Niemann & Rovey, 2000; 

Rovey & Cherkauer, 1995; Sánchez-Vila et al., 1996; Singh, Singh, & Gamage, 2016; 

X.-H. Wen & Gómez-Hernández, 1996; Yang, Liu, & Tang, 2017; Zhou, Li, & Jaime 

Gómez-Hernández, 2010). 
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In the last decades, scale effects on mechanical properties relevant to geotechnical 

problems have been the subject of many studies (Adey & Pusch, 1999; Bahaaddini, 

Hagan, Mitra, & Hebblewhite, 2014; Fardin, Stephansson, & Jing, 2001; Guo & Stolle, 

2006; Yilmaz, Belem, & Benzaazoua, 2015; Yoshinaka, Osada, Park, Sasaki, & 

Sasaki, 2008; Zhu, Clark, & Phillips, 2001). However, experimental studies of scale 

effects on hydraulic conductivity and solute transport parameters have received less 

attention. Most experimental studies of scale effects in solute transport are related to 

dispersivity and have shown that dispersivity increases with the scale (Domenico & 

Robbins, 1984; Gelhar & Axness, 1983; Gelhar et al., 1992; Khan & Jury, 1990; Pang 

& Hunt, 2001; Silliman & Simpson, 1987; Vik, Bastesen, & Skauge, 2013b). Regarding 

hydraulic conductivity, some authors suggest that there is no scale effect and that the 

differences in value at different scales are primarily due to problems during the 

measurements and not due to its measurement support (Butler & Healey, 1998a, 

1998b). However, many studies have shown that hydraulic conductivities computed in 

the laboratory tend to have a smaller mean and a larger variance than conductivities 

observed in the field over larger scales (Chapuis et al., 2005; Clauser, 1992; Parker & 

Albrecht, 1987; Rovey & Niemann, 1998; Sánchez-Vila et al., 1996; Sobieraj, 

Elsenbeer, & Cameron, 2004; Yang et al., 2017). In any case, scale effects may vary 

according to measurements conditions, geological characteristics and the spatial 

correlation length of hydraulic conductivity in a specific site (Neuman, 1994; Tidwell, 

2006). 

It is noticeable that there is no clear consensus as to the scale behavior of the water 

flow and solute transport parameters. Most of the investigations in scale effects on K 

compare small-scale laboratory tests (i.e., permeameter tests) with intermediate-scale 

aquifer tests (i.e., slug tests), and with large-scale tests (i.e., pumping tests). In the 

geotechnical and geoenvironmental practice the tests used to determine soil saturated 

K, such as column experiment, double-ring infiltrometer and falling-head infiltration 

ditch, are rarely used to analyze scale effects (Duong, Trinh, Cui, Tang, & Calon, 2013; 

Khan & Jury, 1990; Lai & Ren, 2007), resulting in a lack of knowledge that we hope to 

contribute to reduce. 

The scale effects on solute transport parameters normally are evaluated by 

comparing miscible displacement tests in the laboratory with field natural gradient 

experiments (Domenico & Robbins, 1984). Undisturbed soil cores of a range of sizes 
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have been used to evaluate time the scale effects on transversal and longitudinal 

hydrodynamic dispersion and dispersivity (Khan & Jury, 1990; Parker & Albrecht, 

1987), but, to the best of our knowledge, not on sorption aspects, such as R and Kd. 

The scale effect on retardation factor was studied numerically by some authors 

(Cassiraga et al., 2005; J. J. Gómez-Hernández et al., 2006), however, experimental 

studies are rare, mainly due to the difficulty in conducting large-scale reactive solute 

transport experiments. 

The main purpose of the present paper is to contribute to the discussion about scale 

effects on K, α and Kd and understanding how these parameters behave with the 

change in the scale of measurement. For this, we characterized a study area and 

performed small- and large-scale laboratory tests using undisturbed soil samples, and 

field experiments, at different scales. The studied geologic material is a tropical soil 

that is widely found across the São Paulo State in Brazil, and that was not been 

characterized yet in terms of scale effects on K, α and Kd. 

3.2. Materials and methods 

3.2.1 Soil sampling and characterization 

Large and small-scale undisturbed soil samples were taken from excavated ditches 

and slopes by carefully introducing rigid polyvinyl chloride (PVC) cylinders into the soil 

as detailed in the section 2.2.2. Fig. 3.1 (A-D) shows the sampling procedure for a 

large and small-scale undisturbed sample. Table 3.1 shows the dimensions and 

number of undisturbed samples studied. Next, the soil was physically, chemically and 

physico-chemically characterized as described in section 2.2.3. 
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Fig. 3.1 A) Extraction of a large-scale undisturbed soil sample (0.45 m height and 0.20 

m inner diameter) from a slope. B) Extraction of a large-scale undisturbed soil sample 

(0.60 m height and 0.15 m inner diameter). C) Ditch opened to take small-scale 

samples. D) Extraction of a small-scale undisturbed soil sample (0.15 m height and 

0.10 m inner diameter) from the ditch 

 

Table 3.1 Dimensions and number of undisturbed samples 

 Name 
Number of 

samples 
Height (m) 

Inner 

diameter (m) 

Small-scale 

sample 
SC 55 0.15 0.10 

Large-scale 

sample 

LC4510 4 0.45 0.10 

LC6010 4 0.60 0.10 

LC4515 4 0.45 0.15 

LC6015 4 0.60 0.15 

LC4520 4 0.45 0.20 

LC6020 4 0.60 0.20 

LC3020 2 0.30 0.20 
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3.2.2 Large- and small-scale column experiments  

The characteristics of the flow and transport laboratory experiments were the same for 

both small and large-scale experiments in order to allow the comparison between 

them. We used the PVC cylinders filled with undisturbed soil samples as rigid-wall 

permeameters and small and large-scale column experiments were conducted. Fig. 

3.2 shows some of the large and small-scale column experiments in progress. In 

sections 2.2.4 and 2.2.5 are provided detailed information about column experiments 

procedures and transport parameters determination, respectively. 

 

Fig. 3.2 Column experiments in progress. A) small-scale samples of 0.15 m height and 

0.10 m inner diameter; B) large-scale sample of 0.60m height and 0.10 m inner 

diameter; C) large-scale sample of 0.60 m height and 0.15 m inner diameter; D) large-

scale sample of 0.60 m height and 0.20 m inner diameter; E) large-scale sample of 

0.45 m height and 0.20 m inner diameter; F) large-scale sample of 0.45 m height and 

0.15 m inner diameter; G) large-scale sample of 0.45 m height and 0.10 m inner 

diameter; H) large-scale sample of 0.30 m height and 0.20 m inner diameter 

3.2.3 Field experiments 

In this section, field experiments are described. It is important to mention that solute 

transport experiments were not conducted in the field and only water flow was 

evaluated. 
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3.2.3.1. Double-ring infiltrometer (DRI) 

In the study area (Fig. 2.1), seven double-ring infiltrometer tests (DRI) were conducted 

according to ASTM D3385-09 (ASTM, 2009). This test was chosen because it is widely 

used when there is no groundwater table near the soil; it is an easy-to-perform test 

which minimizes the effect of lateral flow in the soil. The DRI is designed to force one-

dimensional, downward vertical flow from the inner ring. During the test, water was 

added in the annular space between the inner and outer rings to saturate the region 

beneath the rings. The DRIs used are made up of two concentric stainless-steel rings, 

with diameters of 0.30 m and 0.60 m. The height of water in the inner ring was 0.15 m 

in all tests. The water level in a Mariotte tube was measured at preset time intervals. 

The DRI experiments were carried out until steady-state flow was reached, that is, 

when discharge changes were < 0.5% over a 5-minute interval. The duration of the 

tests ranged between 135 and 192 minutes. The infiltration rate was calculated on the 

basis of the observations. Empirical relations show that the infiltration rate decreases 

with time and tends to an asymptotic value, generally equal to the hydraulic 

conductivity, K (Fatehnia, Tawfiq, & Ye, 2016a, 2016b). Fig. 3.3 shows the DRI 

experiment in progress. 

 

Fig. 3.3 A) Mariotte tube; B) outer ring infiltrometer during installation; C) double-ring 

infiltrometer test in progress 
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3.2.3.2. Infiltration in rectangular ditches  

The infiltration in rectangular ditches was done by using the modified inversed auger-

hole method (Porchet’s method) proposed by Stibinger (2014). According to this 

method, we used a rectangular infiltration ditch with width a [L] and length b [L]. The 

total infiltration flow (through the bottom and sides of the ditch) [L3T-1] can be measured 

by the variation in time of the volume of water in the ditch. If the water level is h, the 

volume water in the ditch is given by 

 V=a b h ,  (3.1) 

and, since width and length do not change in time, the infiltration flow results 

 Q= (ab)
dh

dt
 , (3.2) 

Assuming that the distance from the bottom of the ditch to the wetting front is large 

compared to the initial water level in the ditch (h0), then the hydraulic gradient 

approximates unity. In which case, if the Darcy Law is valid and the wetted soil below 

the ditch is practically saturated, the flux in the wetted soil approaches its hydraulic 

conductivity. 

Total infiltration (TI) in the ditch can be expressed as the sum of the infiltration 

through the bottom and the infiltration through the sides 

 TI=BI+WI, (3.3) 

The total area through which flow occurs is the sum of the bottom area (ab) and the 

sides area (2ah+2bh). Darcy’s law states that the total flow Q= - K i A, where i is the 

hydraulic gradient (equal to one in our case), and A is the flowing area, therefore 

 BI+WI= -(ab+2(a+b)h)K, (3.4) 

where the negative sign indicates that the z-axis is positive upwards, but water flow is 

downwards. By combining Eq. (3.2) and (3.4), we obtain 

 (ab)
dh

dt
=-(ab+2(a+b)h)K, (3.5) 

which, after integration, yields 

 K(tm-tj)= -
ab

2(a+b)
ln [

hj+
ab

2(a+b)

hm+
ab

2(a+b)

], (3.6) 
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where hj is the water level at time tj and hm is the water level at time tm. 

Eq. (3.6) can be rewritten by substituting B = ab/2(a+b) 

 K(tm-tj)= - Bln [
hj+B

hm+B
], (3.7) 

Replacing h0 for t0=0, the equation results 

 Kt
*
= - Bln [

h
*
+B

h0 + B
] , (3.8) 

where h* is the water level at time t*, from which the expression of the evolution of 

water level with time is 

 
h

*
=  

h0+B

exp
Kt

*

B

-B, 
(3.9) 

Hydraulic conductivity can be deduced from the fitting of the observed water level 

decline in time with Eq. (3.9). We conducted falling-head infiltration tests in rectangular 

ditches of 0.70 m width by 0.40 m depth and five different lengths: 1 m, 2 m, 4 m, 6 m 

and 8 m. All tests were performed twice with an interval of two weeks between the first 

and the second test. Before starting the measurements, the soil was saturated by 

continuously introducing water for one hour, using a water truck. The initial water height 

in the ditch, h0, was set to 0.19 m for all ditches. Total infiltration time ranged from 60 

to 90 minutes. Non-linear regression analysis using MATLAB function lsqcurvefit was 

used to fit Eq. (3.9) to the data and to determine the value of K. Water evaporation was 

measured and the infiltration flow was corrected when necessary. Fig. 3.4 shows the 

excavation of some of the rectangular ditches and Fig. 3.5 shows the infiltration 

experiments in progress. 
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Fig. 3.4 Excavation of the ditches 

 

 

Fig. 3.5 Infiltration in rectangular ditches in progress 

8 m 

2 m 
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3.3. Results and discussion 

3.3.1 Soil characterization 

The physical characterization of all 55 small-scale undisturbed soil samples is 

summarized in statistical terms in Table 3.2. It is noticeable that the soil presents a 

significant variability (Wilding & Drees, 1983) for some properties such as 

macroporosity and silt content. Our results confirm that soil heterogeneity is present 

even on a small scale (Chapuis et al., 2005; Lacasse & Nadim, 1996; Søvik & Aagaard, 

2003). Properties such as porosity and bulk density were more homogeneous and 

presented only a small variability. The highest percentages of pore diameters found in 

the soil correspond to mesoporosity and microporosity. The multimodal pore size 

distribution is characteristic of well-structured soils (Hajnos et al., 2006; Lipiec et al., 

2007) and can influence water flow and solute transport in these soils. Fig. 3.6 shows 

the results of three MIP tests performed with samples taken at 0.5 m, 1.0 m and 1.5 m 

depth: dual-porosity is evident. Fig. 3.7 shows two granulometric curves obtained for 

the same soil sample (divided into two smaller samples) prepared with and without 

deflocculant. When deflocculant was used, the soil is texturally classified as a clayey 

fine sand. But when the soil was analyzed in its natural condition, that is, no 

deflocculant was used, its texture is completely different, resulting in a coarser textural 

class. This behavior indicates the presence of aggregates in the soil, a characteristic 

of lateritic soils that can play an important role in water flow and solute transport. We 

also obtained a low CEC of 4.20 cmolc Kg-1, indicative of a soil with low capacity to 

adsorb cations by electrostatic adsorption (Fagundes & Zuquette, 2011). Finally, the 

mean values of the soil physical properties were in accordance with typical values 

found earlier in this type of soil (Giacheti et al., 1993; Zuquette & Palma, 2006). To 

better understand the solute transport results, soil mineralogy, and physico-chemical 

and chemical properties were also investigated, and the results are showed in sections 

2.3.1 and 2.3.2. 
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Table 3.2 Summary of the soil physical characteristics of 55 small-scale undisturbed 

soil samples 

Property Mean SD CV Min Max 

n [ ] 0.51 0.04 0.08 0.42 0.58 

ne [ ] 0.24 0.02 0.08 0.20 0.28 

ρd [g cm-3] 1.34 0.10 0.08 1.14 1.59 

CEC [cmolc Kg-1] 2.51 0.64 0.25 1.60 4.20 

sand (%) 56.20 3.24 0.06 48.50 61.50 

silt (%) 4.62 2.82 0.61 1.40 11.40 

clay (%) 39.18 3.51 0.09 32.50 46.10 

Ma [ ] 0.074 0.04 0.54 0.031 0.152 

Mi  [ ] 0.262 0.06 0.23 0.141 0.361 

Me [ ] 0.172 0.05 0.29 0.099 0.263 

SD: standard deviation, CV: coefficient of variation, Min: minimum value, Max: maximum value, ρd: bulk 
density, n: total porosity, ne: effective porosity Ma: macroporosity, Me: mesoporosity, Mi: microporosity, 
CEC: cation exchange capacity. 

 

Fig. 3.6 Results of three MIP tests: frequency of pore diameters for samples taken at 

0.5 m, 1.0 m and 1.5 m depth 
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Fig. 3.7 Granulometric curves for soil samples prepared with and without deflocculant 

3.3.2 Evaluation of the scale dependence in the 

hydraulic conductivity  

Fig. 3.8 shows a histogram of the hydraulic conductivities derived from the 55 small-

scale column experiments. We can note that K values follow approximately a lognormal 

distribution with mean and standard deviation of 1.35 m/d and 1.65 m/d, respectively. 

The coefficient of variation indicates a highly variable parameter (Wilding & Drees, 

1983). We expect scale effects, since these are mostly related to the degree of 

heterogeneity (Sánchez-Vila et al. 1996; Mulla & Mc Bratney 2002; Alletto & Coquet 

2009). 
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Fig. 3.8 Histogram of hydraulic conductivity (K) derived from the 55 small-scale 

undisturbed samples 

The mean K values obtained from the large-scale column experiments were 

calculated for each set of samples. Previous studies have shown that scale effects are 

dependent on the sample volume (Al-Raoush & Papadopoulos, 2010; Ostoja-

Starzewski, 2006; Rong, Peng, Wang, Liu, & Hou, 2013; Valdés-Parada & Alvarez-

Ramírez, 2011; D. Zhang, Zhang, Chen, & Soll, 2000). But, before analyzing that 

dependence, we have analyzed if there are scale effects associated with the column 

height or the column diameter. Fig. 3.9 (A-B). shows the variation of K on column height 

and diameter. Average K values ranged between 1.35 m/d and 2.1 m/d. These 

differences can be considered moderate for water flow modeling, but they can be 

significant for solute transport predictions. Average hydraulic conductivity increased 

with the sample diameter. Hydraulic conductivity seems to increase with height, except 

for the samples with a diameter of 0.2 m, for which no clear trend was verified. Only a 

small range of diameters and heights were analyzed in this research, so these results 

should be taken as only indicative and not conclusive. 
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Fig. 3.9 Variation of average hydraulic conductivity with sample diameter (A) and height 

(B) 

Fig. 3.10 shows the infiltration rate as a function of time for seven double-ring 

infiltrometer tests. We can see that all tests behave similarly, although they have very 

different transition zones. The infiltration rate decreases rapidly at the beginning of the 

test, as expected due to high potential differences, then it tends to a limiting value that 

can be assimilated to the soil hydraulic conductivity. Double-ring infiltrometer tests 

resulted in K values ranging from 0.104 m/d to 0.538 m/d, with a mean value equal to 

0.36 m/d, standard deviation is equal to 0.147 m/d and the coefficient of variation is 

0.45, showing a moderate heterogeneity that, as discussed before, is present at all 

scales. Fig. 3.11 is a zoom in Fig. 3.10 to show the transition zones, where the greatest 

variability happens. 

Fig. 3.12 shows the reduction of the water table in ditches with time in the two tests 

performed. From these curves, hydraulic conductivity was determined using Eq. (3.9). 

Very similar results were obtained for each pair of tests performed in the same ditch. 

It is possible to see that the slope of the curves increases as the ditch length increases, 

indicating that the water level lowers faster as the test scale increases and, therefore, 

the hydraulic conductivity for the test tends to increase, with the exception of the ditch 

of 4 m length, which has the smallest slope. Hydraulic conductivity values ranged from 

1.44 m/d to 6.04 m/d, with a mean equal to 2.7 m/d and a standard deviation of 

1.68 m/d. 
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Fig. 3.10 Results of seven double-ring infiltrometer tests 

 

Fig. 3.11 Results of seven double-ring infiltrometer tests, highlighting the region of 

greatest variability 
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Fig. 3.12 Evolution of the water table in the ditches with time in test 1 and 2 

The scale effect on K was evaluated by analyzing the K values against the sample 

support, that is against the volume of the sample for which K was evaluated. For the 

small-scale samples, the sample volume is simply the permeameter volume, and for 

the double-ring infiltrometer and the ditches the sample support was the volume of 

saturated soil, assuming that the saturated zone at the end of the test reaches 0.5 m 

below the surface. Fig. 3.13 (A-C) shows the variation of K with sample volume. 

According to these results, K seems to increase with scale, despite some oscillations, 

regardless of the method of measurement. Similar conclusions were also mentioned 

by Rovey and Cherkauer (1995). Fig. 3.13A shows that K values obtained at the 

laboratory using small- or large-scale samples were smaller than the values obtained 

at field scale. However, it is important to mention that this result is not applicable to the 

DIR test that gives K values smaller than the ones obtained at the laboratory-scale. 

Differences in the boundaries conditions used in the laboratory and DRI tests could 

explain this result (Neuman, 1994; Tidwell, 2006). Fig. 3.13 B shows the results only 

for the laboratory tests and Fig. 3.13 C shows the results only for the field tests. In 

these figures, we can see the increase of K with the sample volume. The increase of 

the average K with the increase of the sample volume was also observed by other 

researchers (Chapuis et al., 2005; Clauser, 1992; Lai & Ren, 2007; Parker & Albrecht, 

1987; Rovey & Niemann, 1998; Sánchez-Vila et al., 1996; Sobieraj et al., 2004; Tidwell, 

2006) who attribute it to the high hydraulic conductivity features that are not present at 

small scales. We conclude that observed K values depend on the volume sampled and 

therefore on the method used. The variation of the K with the sample volume  must be 
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taken into account when these observations are later used as input to numerical 

models. The numerical model must be constructed with elements of a size similar to 

that at which the data were collected, or otherwise some upscaling rule must be used 

when observation and model scales are different (J. Huang & Griffiths, 2015; Li et al., 

2011a). 

 

Fig. 3.13 Variation of K with measurement scale A) all tests; B) only laboratory tests; 

C) only field tests (DRI and ditch infiltration) 

3.3.3 Evaluation of the scale dependence in the 

transport parameters 

Dispersivity and partition coefficient for Cl- and K+ from 55 miscible displacements tests 

in small-scale undisturbed soil samples were determined and their values are 

summarized by the histograms in Fig. 3.14. It is clear that these parameters display 

high variability as a consequence of its heterogeneity (Alletto & Coquet, 2009; Mulla & 
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Mc Bratney, 2002; Sánchez-Vila et al., 1996). The cation (K+) distribution coefficients 

were greater than the anion (Cl-) ones, in agreement with the soil characteristics that 

do not favor anion adsorption, given the low amount of organic matter and the negative 

charges in the surface of the soil particles. The cation dispersivity values were also 

higher than the anion ones. These results are illustrated in Fig. 3.15 where 

breakthrough curves of K+ and Cl- obtained experimentally in two of the miscible 

displacement tests are shown. K+ moves slower than Cl-, resulting in larger retardation 

factor and partition coefficient. The fitted values for the partition coefficients are high, 

even for Cl-, which is a nonreactive solute. Since the mineralogical and 

physicochemical characteristics of the soil cannot justify high retardation values, we 

argue that the soil structure and other physical characteristics, such as dual-porosity 

and particle aggregates, are playing an important role in the retention. For example, 

small pores can favor the formation of immobile domains where mass can temporarily 

be trapped, decreasing its velocity, in relation to the velocity of the flow, and increasing 

its retardation (Dousset et al., 2007; Jarvis, 2007; Silva et al., 2016; J Vanderborght, 

Timmerman, & Feyen, 2000). 

 

Fig. 3.14 Histograms and basic statistics of dispersivity and partition coefficient for Cl- 

and K+  



 

64 

 

Fig. 3.15 Breakthrough curves of Cl- and K+ for two miscible displacement experiments 

performed in small-scale samples 

The statistics of dispersivity and partition coefficients for K+ and Cl- derived from 

the analysis of large-scale miscible displacements tests are shown in Table 3.3 and 

Table 3.4. These results agree with those obtained in small-scale experiments and 

also display high variability. As in the small-scale tests, mean values for K+ were 

greater than those for Cl-. From these tables it is noticeable that Cl- partition coefficients 

are smaller than those for K+ and, therefore, moves faster than K+. 

Table 3.3 Basic statistics of K+ dispersivity and partition coefficient derived from 

the large-scale miscible displacements tests 

Sample 

Name 

Mean Maximum Minimum 

α [m] Kd [cm3g-1] α [m] Kd [cm3g-1] α [m] Kd[cm3g-1] 

LC4510 0.409 1.60 0.52 1.95 0.32 1.23 

LC6010 0.501 1.83 0.61 2.2 0.41 1.19 

LC4515 0.394 2.01 0.57 2.6 0.36 1.34 

LC6015 0.243 2.16 0.34 2.45 0.2 1.45 

LC4520 0.545 2.28 0.65 2.91 0.47 1.67 

LC6020 0.452 2.35 0.59 2.74 0.43 1.73 

LC3020 0.606 2.65 0.76 2.98 0.44 2.33 
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Table 3.4 Basic statistics of Cl- dispersivity and partition coefficient obtained for the 

large-scale miscible displacements tests  

Sample 

Name 

Mean Maximum Minimum 

α [m] Kd [cm3g-1] α [m] Kd [cm3g-1] α [m] Kd[cm3g-1] 

LC4510 0.187 0.99 0.25 1.2 0.15 0.89 

LC6010 0.442 0.80 0.52 0.97 0.37 0.8 

LC4515 0.212 1.42 0.29 1.5 0.16 1.15 

LC6015 0.143 1.49 0.17 1.71 0.13 1.2 

LC4520 0.422 1.57 0.47 1.94 0.27 1.05 

LC6020 0.225 1.42 0.3 1.57 0.17 1.12 

LC3020 0.522 1.60 0.65 1.77 0.39 1.43 

 

Fig. 3.16 and Fig. 3.17 for each sample size, BTCs of K+ and Cl- for one of the tests. 

The S shape of the BTCs is also indicative of the important role that dispersion plays 

as a transport mechanism in the studied soil, which can be readily related to small 

scale heterogeneity (Gerritse, 1996). 

 

Fig. 3.16 Breakthrough curves of K+ from one of the miscible displacement experiments 

in each large-scale sample size 
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Fig. 3.17 Breakthrough curves of Cl- from one of the miscible displacement 

experiments in each large-scale sample size 

Fig. 3.18 shows how dispersivity and partition coefficient vary as a function of the 

sample height (length in the solute transport direction), diameter and volume. As 

expected (Fetter, 1999; Freeze & Cherry, 1979), dispersivity displays a clear trend, 

which can be fitted with the following exponential functions: α = 0.12 e 2.55x (R2 0.95) 

for K+ and α = 0.05 e 3.52x (R2 0.93) for Cl-, where x is the travel distance. This trend can 

be attributed to heterogeneous arrangements in the soil sample since at larger scales 

a larger number of heterogeneities can be found inducing a higher dispersivity. Gelhar 

(1987) postulated that longitudinal dispersivity should initially increase linearly with 

distance and eventually reach a constant asymptotic value. Gelhar and Axness (1983) 

concluded that dispersivity is related to distance through the expression α=0.1x. Later, 

Gelhar (1992) observed that the linear relationship between dispersivity and travel 

distance should be reconsidered. Vik et al. (2013a) found a linear relation between α 

and distance, but their data resulted in lower slope than suggested by Gelhar and 

Axness’ expression (α=0.07x). Xu and Eckstein (1995) studied some regression 

formulas relating dispersivity and distance, and defined a relationship between 

dispersivity and field scale in the form α = 0.83 [log x]2.414 and mentioned that the slope 

of the curve approaches zero when the scale exceeds 1 km. Regarding the 

dependency of dispersivity with sample diameter and sample volume, the results in 

Fig. 3.18 show no clear dependence and the oscillations of data prevented a good fit 

by simple monotonic functions, with R 2 below 0.05 when attempting to fit dispersivity 

to sample diameter. When trying to fit a monotonic function of dispersivity as a function 
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of sample volume, the R2 equals 0.4 and 0.3 for K+ and Cl-, respectively. From a 

practical point of view, these results should serve as a cautionary note about routinely 

adopting dispersivities from a linear regression without further considerations; 

otherwise, excessively large or small dilution may be induced in solute transport 

predictions, and the environmental responses misrepresented. 

Fig. 3.19 shows how partition coefficients vary as a function of the sample height 

(length in the solute transport direction), diameter and volume. The partition coefficient 

of K+ tends to increase with length, diameter and volume (most clearly with the latter 

one), and the same can be said for the partition coefficient of Cl-. On the one hand, 

poor goodness of fit monotonic functions was conditioned for sample height and Kd 

and Cl-, with determinations coefficients equal to 0.19 and 0.08, respectively. On the 

other hand, Kd displays a clear trend, which can be fitted with the following functions: 

Kd = 14.2 x 0.40 (R2 0.81) for K+ and Kd = 2.43 ln(x)+8.13 (R2 0.82) for Cl-, where x is 

the dependent variable (height, diameter or volume of the sample). The variations of 

the K+ and Cl- Kd with sample volume displayed a trend, which was best fitted with the 

following linear functions: Kd = 158x+5.2 (R2 0.95) for K+ and Kd = 124x+2.3 (R2 0.70) 

for Cl-. With these results it noticeable that partition coefficients of K+ and Cl- do not 

stabilize with any of the dimensions studied here. The clear dependence on sample 

volume can be explained for larger number of sorption sites as the volume increases 

together with the larger heterogeneity of those sites. 
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Fig. 3.18 Variation of the dispersivity of K+ and Cl- with sample height, diameter and 

volume 
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Fig. 3.19 Variation of the partition coefficient of K+ and Cl- with sample height, diameter 

and volume 

3.4. Conclusions 

Small and large-scale laboratory experiments and field experiments were performed 

in order to study scale effects on hydraulic conductivity (K), dispersivity (α) and partition 

coefficient (Kd) in a tropical soil from Brazil. The study soil was characterized in detail. 

Small and large-scale undisturbed soil samples were used to perform column 
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experiments to determine K, α and Kd. Seven-double ring infiltrometer tests and five 

infiltration tests in rectangular ditches were also done to determine K. 

The soil has dual-porosity and contains aggregates, a characteristic of lateritic soils 

that probably played an important role in the soil K, α and Kd values. Due to its low 

CEC, the soil has a low capacity to adsorb cations by electrostatic adsorption. 

However, the predominance of negative charges in the soil particles surface favored 

cation adsorption. The coefficients of variation obtained in all laboratory and field tests 

indicated that K, α and Kd are highly heterogeneous at all scales. In agreement with 

the soil characteristics, the cation (K+) distribution coefficients and dispersivity were 

greater than the anion (Cl-) ones. From the BTCs it is clear that Cl- moves faster than 

K+. The fitted values for the partition coefficients are high, even for Cl-, which is 

considered a nonreactive solute. We attribute that result to the soil structure and 

physical characteristics. 

Average K increased with sample diameter and seems to increase with height. 

Since only a small range of diameters and heights were analyzed in this research, 

these results should be taken only as indicative and further investigations must be 

done. Except for the results obtained with the double-ring infiltrometer tests, K 

increased with sample support, regardless of the method of measurement, what can 

be attributed to the high heterogeneity and the high hydraulic conductivity features that 

are not present at small scales. K+ and Cl- dispersivity increases with sample support, 

a behavior that can be fitted with exponential functions. We attribute this trend to 

heterogeneous arrangements in the soil sample since at larger scales there exist larger 

heterogeneities that induce higher dispersivity. The results show that both the partition 

coefficient of K+ and Cl- tend to increase with length, diameter and volume. We argue 

that these results are due to the larger number of sorption sites as the volume 

increases together with the larger heterogeneity of those sites. 

Finally, this paper warns against the use of the hydraulic conductivity, dispersivity 

and partition coefficients in numerical models with no concern about the scale at which 

they were measured; not accounting for the difference of scale between observation 

and model may distort the predictions and compromise their reliability.  
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Abstract 

Hydraulic conductivity (K) heterogeneity is seldom considered in geotechnical practice 

for the impossibility of sampling the entire area of interest and for the difficulty of 

accounting for scale effects. Stochastic three-dimensional K upscaling can tackle these 

two problems, and a workflow is described with an application in a tropical soil. The 

application shows that K heterogeneity can be incorporated in the daily practice of the 

geotechnical modeler while discussing the aspects to consider when performing the 

upscaling so that the upscaled models reproduce the average fluxes at the fine scale. 

4.1. Introduction 

Hydraulic conductivity (K) is one of the most important parameters in many 

geotechnical studies such as when analyzing slope stability; the dewatering of an 

underground excavation the design of an earth dam; or the analysis of seepage, flow, 

and contaminant transport in liners and embankments. Most of these problems are 

approached using numerical simulations, where K is a key input parameter, the 

heterogeneity of which plays an important role even in apparently homogeneous soils 

(Chapuis et al., 2005; DeGroot & Baecher, 1993; Elkateb & Chalaturnyk, 2003; 

Lacasse & Nadim, 1996; Sánchez-Vila et al., 1996; Scheibe & Yabusaki, 1998b). 

However, the use of heterogeneous K fields in numerical modeling in geotechnical 
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engineering is an exception rather than a rule (Geetha Manjari & Sivakumar Babu, 

2017; Jinsong Huang & Griffiths, 2016; Jinsong Huang, Griffiths, & Fenton, 2010), 

because, in general, deterministic approaches that consider K as a constant value for 

an entire soil layer are employed (Blake, Renaud, Anderson, & Hencher, 2003; 

Chapuis, 2009; Elkateb & Chalaturnyk, 2003; Feng, Zheng, & Xie, 2015). The 

impossibility of sampling the entire area of interest together with the difficulty of 

accounting for scale effects (Dousset et al., 2007; Li, Zhou, Gómez-Hernández, & 

Hendricks Franssen, 2012; Scheibe & Yabusaki, 1998b; Vik et al., 2013b; Vogel & 

Roth, 2003; Zhou, Gómez-Hernández, Hendricks Franssen, & Li, 2011) are the two 

main reasons why heterogeneity is not accounted for in practice. This study tries to 

address these two problems and describes how to cope with them. 

To face the problem of having scarce information for a completely description of 

the heterogeneity of K, there are geostatistical techniques, such as stochastic 

simulation or kriging estimation, that permit a coherent assignment of values at 

locations where measurements were not taken based on the values observed at 

measurement locations (Cassiraga et al., 2005; J. Jaime Gómez-Hernández & 

Cassiraga, 1994; A. G. Journel & Gomez-Hernandez, 1993; Li et al., 2011b; Zhou et 

al., 2010). Whether to employ simulation or estimation will depend on the use to be 

given to the generated maps. 

The coherent assignment of values mentioned above does not remove the 

uncertainty associated to having limited information about the spatial variability of K in 

the area of interest; a model of uncertainty is needed, which is built in the framework 

of stochastic random fields (Goovaerts, 2001). Hydraulic conductivity will be modeled 

as a random field, that is, as a set of spatially correlated random variables. At each 

location in space, K is modeled as a random variable with a probability density function 

(pdf) rather than a unique value; the pdf represents the likelihood that K takes a specific 

value at that location (Cassiraga et al., 2005). It is important to emphasize that K is not 

a result of a random process, but the concept of random field is a convenient modeling 

approach to formalize the problems of estimation and simulation. The random field is 

fully described by a multivariate probability density function, which, in turn, is described 

by a series of parameters, such as the mean, the variance, the autocorrelation or the 

variogram. In the last years, the number of researchers in geotechnical engineering 

that deal with K heterogeneity in a stochastic way has increased, but deterministic 
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analysis still prevails (Cho, 2014; Griffiths & Fenton, 1997; Jinsong Huang et al., 2010; 

L. Liu et al., 2017; Reddy, Kulkarni, Srivastava, & Babu, 2013; Zhu, Zhang, Zhang, & 

Zhou, 2013). 

To face the problem with scale effects, recall that in geotechnical practice, K is 

measured at the field or laboratory on a support of around a few centimeters (Osinubi 

& Nwaiwu, 2005; Tuli, Hopmans, Rolston, & Moldrup, 2005). Then, those K values are 

used to feed the K values of a numerical model, where the discretization support is 

generally orders of magnitude larger than the measurement support (X.-H. Wen & 

Gómez-Hernández, 1996). The change of support (from the measurement scale or fine 

scale to the numerical scale or coarse scale) implies a change of the properties of the 

random field. To deal with that discrepancy, it is necessary to use some upscaling 

technique that transfers the information obtained at the fine scale into the coarse scale 

to be used by the numerical code (J. Huang & Griffiths, 2015; Li et al., 2011a, 2011b). 

In other words, given a numerical block made up of a number of small-scale cells with 

a heterogeneous distribution according to the stochastic model of conductivities at the 

fine scale, the upscaling process seeks a block conductivity (KV) that preserves the 

total flow crossing the block observed in the block of heterogeneous cell conductivities 

(Kf) for the same hydraulic head gradient. During the transfer between scales, there is 

a loss of information, since the small-scale heterogeneity is not preserved; however, 

the fluxes occurring at the coarse scale should be the same as those obtained had the 

domain been modeled as fully heterogeneous at the small scale. To determine the 

block conductivity is not a simple task. Beware that the block conductivity as defined 

above is not the arithmetic average of the cell values within the block, which is a 

common geotechnical practice in order to upscale K when only a few measurements 

are available (Sánchez‐Vila, Girardi, & Carrera, 1995). 

Many authors had worked to improve the upscaling methods, which go from simple 

averaging to the Laplacian-with-skin method with uniform and non-uniform coarsening. 

They have achieved very good results, showing some advantages, limitations, and 

evolution of the K upscaling techniques in a variety of problems (Cardwell & Parsons, 

1945; A. J. Desbarats, 1992; Alexandre J. Desbarats, 1987; Dewandel et al., 2012; 

Fleckenstein & Fogg, 2008; Gómez-Hernandez, 1990; Gomez-Hernandez & Gorelick, 

1989; J. J. Gómez-Hernández & Wen, 1994; J. Huang & Griffiths, 2015; Li et al., 2011a; 

Matheron, 1967; Narsilio, Buzzi, Fityus, Yun, & Smith, 2009; Rubin & Gómez-
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Hernández, 1990; Sánchez‐Vila et al., 1995; Sarris & Paleologos, 2004; Warren & 

Price, 1961; Y. Zhang, Gable, & Sheets, 2010; Zhou et al., 2010). In addition, some 

relevant works related to geotechnical engineering showed that coupled approaches 

should be used in the upscaling of soil properties to model properly some behaviors of 

heterogeneous soils, e.g., consolidation (J. Huang & Griffiths, 2010; Jinsong Huang et 

al., 2010). There are also very complete reviews on saturated K upscaling methods 

(Renard & de Marsily, 1997; Sanchez-Vila, Guadagnini, & Carrera, 2006; X.-H. Wen & 

Gómez-Hernández, 1996) and the reader is encouraged to read these papers. The 

nomenclature used hereafter to refer to the different upscaling approaches is taken 

from the Wen and Gómez-Hernández (1996). Some conclusions found in the literature 

are that the K upscaling is site-specific, depends on the boundaries conditions, on the 

block size and shape, on the statistical isotropy, on the block size relative to the 

correlation length, on the dimensionality of the problem and on the complexity of the 

studied environment. Once the problem of upscaling is resolved, one should not forget 

that cell values (from which the block conductivities are computed) are never 

exhaustively known, and therefore it is necessary to quantify the uncertainty 

associated with the upscaled values using a stochastic approach 

(Gómez - Hernandez, 1990). 

In this chapter, we would like to focus on two upscaling methods, a simple 

averaging method, specifically the empirical power average (A. Journel, Deutsch, & 

Desbarats, 1986) or p-norm, and the Laplacian-with-skin method (Gómez-Hernandez, 

1990), which contrast in the usefulness, simplicity and widespread use of the former 

(A. J. Desbarats, 1992; J. Jaime. Gómez-Hernández & Gorelick, 1989; A. Journel et 

al., 1986; Phillips & Belitz, 1991; Sarris & Paleologos, 2004; Vidstrand, 2001) and the 

robustness and very good reproduction of the fine scale flows at the coarse scale by 

the latter (Gómez-Hernandez, 1990; Li et al., 2011a, 2011b; Zhou et al., 2010). 

It is important to stress that almost all the background information provided here 

was developed in petroleum engineering and hydrogeology. Very few studies related 

to K upscaling have been found in the geotechnical engineering literature (Benson, 

Zhai, & Rashad, 1994; J. Huang & Griffiths, 2010; Jinsong Huang et al., 2010; Narsilio 

et al., 2009), and, to the best of our knowledge, the more sophisticated Laplacian-

based upscaling methods have not yet been applied in geotechnical engineering. 

Tropical soils have a very specific behavior and are a source of many geotechnical 
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problems. In this chapter is presented, for the first time, an application of K upscaling 

to this type of soil. 

The power-average method was used to upscale K for a unique block size for a 3D 

anisotropic real aquifer (Li et al., 2011a) and for a bi-dimensional hypothetical aquifer 

(J. Jaime. Gómez-Hernández & Gorelick, 1989). Power average was also used to 

determine KV for a range of block shapes for synthetic cases (A. J. Desbarats, 1992). 

In the last two works, the exponent of the power average was determined based on 

numerical experiments. The simple-Laplacian technique was used in a bi-dimensional 

conceptual model based on data from a real site in the context of nuclear waste 

disposal (Cassiraga et al., 2005). K upscaling by the Laplacian-with-skin method was 

applied in a realization of a three-dimensional synthetic K field (Zhou et al., 2010). This 

technique was also used to determine KV for three block sizes in a bidimensional 

numerical example, after solving the flow equation by a finite-difference numerical 

model with the approximation of the interblock conductivity (Zhou et al., 2010). 

To summarize, this study has three objectives, (i) an analysis of stochastic 3D 

hydraulic conductivity upscaling using the Laplacian-with-skin method (Gómez-

Hernandez, 1990) for a variety of block sizes using real K measurements obtained in 

a tropical soil in Brazil, described in section 2.2.1, (ii) to demonstrate the errors that 

can be introduced by using a deterministic upscaling using harmonic, arithmetic and 

geometric averages of the measured K without accounting for the spatial correlation, 

and (iii) to show how and when the p-norm averaging can be used (for the tropical soil 

studied) as an alternative to the more complex and time consuming Laplacian-with-

skin method, with the aim of providing a practical and fast solution for the daily practice 

of the geotechnical modeler. As a by-product of this third objective, the dependence of 

the exponent of the p-norm as a function of the block size is analyzed. 

4.2. Hydraulic conductivity upscaling methods 

The main objective of upscaling is to obtain a (block) KV value that reproduces the 

groundwater flow at the coarse scale as if it had been computed at the fine (cell) scale, 

the aim is to replace a finely-discretized heterogeneous spatial distribution of 

conductivities at the fine scale, Kf, with a set of block values KV at a coarser scale, so 

that the flow response of the set of block values matches, at the coarse scale, the 
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response of the set of fine scale values. Upscaling methods can be classified as local 

and non-local (X.-H. Wen & Gómez-Hernández, 1996).  

Simple averaging techniques are local methods and assume that KV depends only 

on the Kf values within the block (Cardwell & Parsons, 1945; Freeze & Cherry, 1979; 

Matheron, 1967). For a perfectly layered soil, it can be shown that KV is equal to the 

harmonic mean (Kh) of the cell conductivities inside the block when the flow is 

perpendicular to the layers, and to the arithmetic mean (Ka) when the flow is parallel to 

the them (Freeze & Cherry, 1979). It can also be shown that for 2D flow in an 

isotropically heterogeneous field with lognormally distributed conductivities, KV is equal 

to the geometric mean (Kg) of the cell conductivities (J. J. Gómez-Hernández & Wen, 

1994; Matheron, 1967). For 3D-flow there is no closed form for the best average 

process since it will depend on the statistical isotropy and the spatial correlation 

structure (X.-H. Wen & Gómez-Hernández, 1996) of the cell conductivities. 

It is well established that KV must be between the arithmetic mean and the harmonic 

mean (Cardwell & Parsons, 1945). The p-norm average was proposed as a flexible 

easy-to-compute alternative since it can provide a value for KV between those two limits 

as a function of the exponent p (A. Journel et al., 1986): 

 KV,p= (
1

V
∫ Kf

p
(u)du

V

)

1
p

, (4.1) 

where V indicates the volume of the block; KV,p is the block conductivity determined 

using the p norm, and Kf represents the cell conductivities within the block. The power 

p is allowed to vary between -1 and +1. When p is equal to -1 KV,p equals Kh, when p 

is equal to 0 KV,p equals Kg and when p is equal to +1 KV,p equals Ka. The challenge 

of p-norm upscaling is to determine the exponent p that will result in a KV,p that 

reproduces the flows observed at the fine scale. The p-norm is a very practical method 

that can provide very good results in some situations (A. J. Desbarats, 1992; Elkateb 

& Chalaturnyk, 2003; J. Jaime. Gómez-Hernández & Gorelick, 1989). In cases where 

the degree of heterogeneity is mild, simple averaging methods compete favorably with 

more sophisticated methods (Vidstrand, 2001). However, the p-norm average cannot 

be used without resorting to some prior numerical modeling in order to find the best 

p- exponent (A. J. Desbarats, 1992). 
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KV depends not only on the cell values of flux and hydraulic head but also on the 

boundary conditions around the block, the fact that the same layered block will have 

different upscaled block values depending on whether flow is parallel or orthogonal to 

it proves it.  

KV is said to be non-local (X.-H. Wen & Gómez-Hernández, 1996), i.e., it depends 

not only of the cell values within the block but also on external factors. The simple-

Laplacian is a non-local approach (Gómez-Hernandez, 1990; X.-H. Wen & Gómez-

Hernández, 1996) that was developed to deal with the need to determine KV 

considering the boundary conditions that are acting on the block boundaries. The 

introduction of this method represented a big improvement of the upscaling techniques 

when compared to local methods. Nevertheless, in this approach, the principal 

components of KV are assumed to be parallel to the block sides and the boundary 

conditions used to solve the flow at the fine-scale do not necessarily coincide with the 

real boundary conditions that the block may have when embedded in a larger model. 

(X.-H. Wen & Gómez-Hernández, 1996). 

To obtain the head values around the block to be upscaled, which would represent 

the actual boundary conditions of the block when within the studied area, it would be 

necessary to solve the flow equation for the entire studied area (at the fine-scale) 

(White & Horne, 1987). Such a procedure is not practical since the main purpose of 

the upscaling is to avoid solving the flow equation at the fine-scale. To overcome the 

need of solving the flow equation over the entire model and the assumption that the 

principal directions of the KV tensor are parallel to the block sides, the Laplace-with-

skin method was proposed (Gómez-Hernandez, 1990; Zhou et al., 2010). In this 

method, the KV is represented by a tensor that is not necessarily diagonal and flow is 

solved on a small numerical model containing the block plus a “skin” around it. The 

skin surrounding the block has information about the boundary conditions near the 

block, with no need to solve the entire flow problem to obtain the true boundary 

conditions at the block sides. For a three-dimensional upscaling, the Laplacian-with-

skin method is described in detail in Zhou et al. (2010). Computing the block 

conductivity tensor using the Laplacian-with-skin method can be summarized as 

follows: (i) a block size is decided and a block discretization is overlain on the fine scale 

K realization, (ii) a skin size is decided, generally about half the size of the block, (iii) 

each block and its surrounding skin is extracted from the fine scale realization and 
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subject to a number of local flow numerical simulations with a variety of boundary 

conditions that impose piezometric head gradients in different directions (it is 

recommended to use of at least four boundary conditions in two dimensions and eight 

in three dimensions (Zhou et al., 2010), (iv) from the local solution corresponding to 

each boundary condition, the average specific discharges and the average piezometric 

head gradients are computed, these average values should be related to each other 

through a version of Darcy’s law formulated at the coarse scale, for example, in 3D, it 

would be the following expression 

 (

q̅
x

q̅
y

q̅
z

)= - (

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

)  (

∇h̅x

∇h̅y

∇h̅z

) , (4.2) 

where Kxx, Kxy, Kxz, Kyy, Kyz, Kzz are the unknown components of the block conductivity 

tensor KV and q̅x, q̅y, q̅z and ∇h̅x, ∇h̅y, ∇ℎ̅z are the arithmetic mean of the specific 

discharge and the head gradient, respectively, within the block, and (v) Equation (4.2) 

results in three linear equations for each boundary condition, for eight boundary 

conditions, it will result in an overdetermined linear system of 24 equation and 6 

unknowns that is solved by least squares yielding the conductivity tensor that best 

relates average gradients to average fluxes for a variety of boundary conditions. 

4.3. Characterization of the spatial variability  

Aiming to characterize the spatial variability of hydraulic conductivity, 55 undisturbed 

cylindrical samples of 0.05 m radius and 0.15 m height were taken in a domain of 12 

m in the x-direction, 7 m in the y-direction and 2 m in the z-direction as described in 

section 2.2.2. The hydraulic conductivity was measured at the laboratory using a 

rigid- wall permeameter, under constant-head conditions inducing a hydraulic gradient 

equal to one, and at a constant temperature of 20 ºC, as detailed in section 2.2.4. 

The histogram of the measured K values is best fitted by a lognormal distribution 

with mean and standard deviation of 1.35 m/d and 1.65 m/d, respectively. The 

lognormal model implies that the natural logarithm of K (lnK) is modeled by a Gaussian 

distribution with mean -0.38 (ln(m/d)) and standard deviation 1.25 (ln(m/d)). The 

normality of the lnK was confirmed by the Kolmogorov-Smirnov test with a 95% 
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confidence interval. Fig. 4.1A and Fig. 4.1B show the histograms and summary 

statistics of K and lnK, respectively. 

 

Fig. 4.1 Histograms and statistics of the measured K (A) and lnK (B) 
 

The lnK spatial variability was analyzed using geostatistical techniques. The theory 

of geostatistics is defined as the application of regionalized variables to the study of 

spatial relationships. This theory, formalized by Matheron in 1963 (Matheron, 1963), 

assumes that the correlation between properties (e.g. hydraulic conductivity) at 

different locations is some function of distance. We used the Stanford Geostatistical 

Modeling Software (SGeMS) (Remy, 2004) to compute the experimental variogram 

from the 55 K measurements using many combinations of distance and angle 

tolerances and bandwidths. SGeMS was then used to fit a variogram model. We could 

not identify any direction of preferential continuity (observed ranges in different 

directions were all in the 3.9 m – 4.2 m range) and the best fit to the experimental 

variogram of lnK was an isotropic spherical variogram 

 γ(h)=c0+c1.sph(|h|,a), (4.3) 

where a is the range with a value of 4 m in all directions, h is the directional lag 

distance, |·| is the modulus operator, and sph() is the spherical function (Isaaks & 

Srivastava, 1989). The total variance, c0 + c1, of lnK is 1.57 (ln(m/d))2 and represents 

a moderate heterogeneous media. No nugget (c0) was used to fit the model. The 

experimental variogram and the fitted model are shown in Fig. 4.2. 
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Fig. 4.2 Isotropic experimental variogram and fitted model for the lnK measured data 

4.4. Simulation of the hydraulic conductivity 

random fields 

Gaussian random fields are completely defined by their first two moments, mean and 

covariance. A Gaussian random field is represented by the infinite set of multivariate 

Gaussian distributions that can be built with any combination of points in some spatial 

domain (Griffiths & Fenton, 2008; Vanmarcke, 1983). Within the framework of random 

field theory, lnK is modeled as a random variable at each location in space, the 

resulting random field is assumed second-order stationary, i.e., the expected value of 

all random variables is constant, and the covariance of any pair of random variables is 

translation independent. Under these assumptions, seventy equally-likely realizations 

(regionalized fields) were generated using the Sequential Gaussian Simulation (SGS) 

algorithm implemented in the code GCOSIM3D (J Jaime Gómez-Hernández & Journel, 

1993) with the mean lnK computed from the data and the variogram function showed 

in Fig. 4.2. These regionalized fields were, by construction, isotropic and conditioned 

to the 55  measured data, that is, realizations not only reproduced the statistical spatial 

patterns of the data but also honored the data at their locations. This is achieved using 

the sequential simulation decomposition of a n-variate probability distribution as the 

product of n univariate conditional distributions, whereby drawing a realization from the 

n-variate distribution can be replaced by drawing (sequentially) from n univariate 

distributions (Goovaerts, 2001). 



 

91 

The random field domain is a parallelepiped with dimensions of x = 24 m, y = 16 m 

and z = 8 m and it is discretized into 3 072 000 cubic cells of side 0.1 m to keep the 

numerical cells with a magnitude similar to the scale of the permeameter 

measurements. We have generated realizations within a domain twice the size of the 

studied area because the upscaling technique requires an outer skin composed by a 

certain number of additional elements, but only the inner domain consisting of x = 12 

m, y = 8 m and z = 4 m will be used to simulate groundwater flow and to perform 

upscaling (Gómez-Hernandez, 1990). The 70 conditional realizations make up a model 

of the spatial uncertainty of K at the fine-scale; they were used to analyze the efficiency 

of the upscaling techniques. The statistics of the random fields were checked in order 

to verify the random field generator. Fig. 4.3 shows realizations numbers 1 and 70. 

Before performing the groundwater flow numerical simulation, the lnK random fields 

were back-transformed into K fields. 

 

Fig. 4.3 Realizations numbers 1 (A) and 70 (B) of lnK at the fine-scale 

4.5. Groundwater flow numerical modeling at 

the fine scale  

Steady-state flow in the absence of sinks and sources of an incompressible fluid in a 

saturated porous media was modeled. Under these conditions the flow equation at the 

fine scale can be expressed by the following equation (Freeze & Cherry, 1979): 

 ∑∑
∂

∂xi

(Kij(x⃗ )
∂h(x⃗ )

∂xi

)

3

j=1

3

i=1

=0 , (4.4) 
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Eq. (4.4) results from the combination of Darcy’s Law and the continuity equation, 

where h is the piezometric head, and K is a second-order symmetric hydraulic 

conductivity tensor at the fine scale. 

Since the observed spatial variability of K is isotropic and it is well known that spatial 

correlation anisotropy is, among other reasons, the responsible for flow anisotropy 

(Lake, 1988), we have decided to model fine-scale conductivities as isotropic to flow, 

that is, as scalar values. Each of the 70 realizations of K at the fine-scale was used as 

input to 70 numerical models. For each realization, three-dimensional flow was solved 

by the finite element method (FEM) using pre-conditioned conjugate-gradient method 

via FEFLOW 7.1 (Diersch, 2014). 

A MATLAB routine was written to manage the entire modeling process. This routine 

couples the execution of GCOSIM3D and FEFLOW to automatically perform the 

generation of the realizations and the flow simulations. MATLAB calls GCOSIM3D to 

generate the random fields and reformats the output files to adequate them to the input 

format of FEFLOW. The FEFLOW runs were configured and executed in MATLAB 

using the command-line mode with a code written in the Python language using 

interface manager API functions. 

A finite element mesh was generated using the transport mapping method (also 

called transfinite interpolation) on a rectangular discretization of the grid into 

120 x 80 x 40 cuboid cells of 0.1 m by 0.1 m by 0.1 m for a total of 384 000 elements. 

Confined flow was modeled on the realizations with no flow boundary conditions at the 

top and bottom faces of the parallelepiped, and prescribed constant heads of 50 m at 

the right face and 38 m at the left side, forcing flow from right to left. The hydraulic 

gradient induced by these constant head boundaries is equal one, replicating 

laboratory conditions. From the solution of the flow equation we retrieved the hydraulic 

head in each node of the model, and the specific discharge in the x-direction (qx) 

through a control plane orthogonal to the flow direction, for each realization. 

4.6. Hydraulic conductivity upscaling  

In this section, the flow equation at the coarse-scale is presented and the details of the 

upscaling are defined. 
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4.6.1 Flow equation at the coarse scale  

At the coarse-scale, block conductivity (KV) is defined, using an upscaled version of 

Darcy’s law, as the quantity that relates the average specific discharge within a given 

block to the average head gradient q̅=-KV∇h̅, where the bar denotes volumetric 

average. KV is a symmetric and positive-definite three-dimensional full tensor, which 

will be considered as scalar in this chapter (Giudici & Vassena, 2007). The decision of 

model Kv as a scalar was made after performing several tests and checking that the 

differences in Kv values in the x, y, and z directions were not significant; an expected 

result since the underlying fine-scale realizations were modeled as spatially isotropic 

random fields (Lake, 1988). 

4.6.2 Upscaling design 

Each of the 70 realizations of the K fields generated at the fine-scale was upscaled 

with the Laplacian-with-skin method using the code provided by Zhou et al. (Zhou et 

al., 2010) after a minor modification that allowed the automatic upscaling of all 

realizations. A MATLAB code was written with the objective of coupling GCOSIM3D, 

FEFLOW and the upscaling code. We have performed upscaling with cubic block sizes 

2, 4, 5, 8, 10 and 40 times the side size of the block at the fine-scale (0.1 m). Also, an 

upscale with a unique block with the same size as the entire domain (12 m x 8 m x 4  m) 

was performed. Table 4.1 shows the block side size of the upscaled models, the total 

number of elements for each model, and the reduction factor in the number of elements 

when compared to the fine scale. 

The size of the outer skin for the purpose of upscaling each individual block was 

set equal to half the block size in each direction. Previous work showed that this skin 

size is adequate to upscale hydraulic conductivity (Zhou et al., 2010). We have 

performed some initial tests with different skin sizes and it was found that this size of 

skin is adequate for our problem. 

It is important to clarify that the generated domains have dimensions of x = 24 m, 

y = 16 m and z = 8 m, because the maximum dimension of the block side size was 

equal to the entire domain (12 m x 8 m x 4 m) and we have opted to use a skin equal 

half the block size of each side of the model. Only the inner area of x = 12 m, y = 8 m 

and z = 4 m was used to verify the efficiency of the upscaling approach; however, the 
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external area was needed to compute the block conductivities when using the 

Laplacian-with-skin approach. 

Table 4.1 Block size used in the coarse models, total number of elements for the model 
and reduction 

Block side size 

(m) 
0.2 0.4 0.5 0.8 1 2 4 12a 

Total number of 

elements 
48 000 6 000 3 072 750 384 48 6 1 

Reduction factor 8 64 125 512 1 000 8 000 64 000 384 000 

a: this value represents only the size at x-direction 

The conductivity was computed at block centers and the FEM was used to solve 

the groundwater flow equation. After isolating each block to be upscaled (with the 

corresponding skin), groundwater flow was solved for nine different sets of boundary 

conditions; these boundary conditions were chosen so that the overall head gradient 

through the block is parallel to the directions given by the vectors (1, 0, 0), (0, 1, 1), 

(1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (-1, 0, 1), (0,-1, 1). All the analyses 

mentioned hereafter were made for all realizations and all block sizes mentioned in 

Table 4.1. Once the block values have been calculated, they were assembled to build 

the coarse-scale numerical model, and the groundwater flow equation was solved with 

the same boundary conditions used for the fine-scale numerical model. Fig. 4.4 shows 

the upscaled lnK realizations for the fine-scale realization number 1 for all block side 

sizes considered. 
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Fig. 4.4 Upscaled lnK for realization number 1 for all block sizes 
 

In order to evaluate upscaling performance, the hydraulic head obtained in each 

node of each flow model at the coarse-scale was compared to the corresponding value 
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obtained after solving the flow model at the fine-scale. As we have seventy realizations 

and many nodes in each realization, we opted to show these results in terms of 

average relative bias of head (RBh) for each realization and block size, given by 

 RBh=
1

NN
∑⌈

hf,i-hc,i

hf,i

⌉ .100

NN

i=1

, (4.5) 

where NN is the total number of coarse model nodes for the given block size and 

realization; hf,i is the hydraulic head obtained from the fine-scale numerical model for 

node i and hc,i is the hydraulic head obtained from the coarse-scale model at the same 

node. 

The reproduction of the mean specific discharge in the x-direction (qx) at a control 

plane orthogonal to flow was evaluated using the relative bias of specific discharge 

(RBq), given by 

 RBq=
1

NR
∑⌈

q
f,i

-q
c,i

q
f,i

⌉ .100

NR

i=1

, (4.6) 

where NR is the number of realizations; qf,i is the specific discharge through the control 

plane obtained from the fine-scale numerical model for realization i, and qc,i is the 

specific discharge through the same control plane from the coarse-scale model for the 

same realization. One would expect that the RBq would increase with block size. 

After determining the block values with the rigorous and time-consuming Laplace-

with-skin approach, our next objective was to determine if these values could be 

approximated with the simple local technique of p-norm averaging. For the evaluation 

of the p-exponent (which, presumably, should be a function of the block side) we 

perform an optimization in MATLAB using the function “fminbnd”, which is based on a 

golden section search and parabolic interpolation to minimize the objective function  

 error(p)= ∑∑|ln KV,l,ij - ln KV,p,ij|

NN

J=1

NR

i=1

. (4.7) 

where KV,l.ij is the block value computed with the Laplacian-with-skin method, and KV,p,ij 

is the value computed as a p-norm average. The exponent was constrained to be 

between –1 and +1 (corresponding to the harmonic and arithmetic averages). Once 

the best p-exponent was determined, groundwater flow at the coarse-scale was solved 
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with the optimal KV,p values using the same boundary conditions used previously. In 

addition, and for comparison purposes, flow was also solved with the block values 

obtained with p equal to -1, 0 and 1, that is, with block values equal to the harmonica, 

geometric and arithmetic average of the cell values within the block. 

4.7. Results and discussion 

4.7.1 Reproduction of the flow at the coarse scale 

In this section, the results of the upscaling using the Laplacian-with-skin method will 

be discussed. Fig. 4.5 shows the comparison of the specific discharge in the x-direction 

(qx) obtained from the model performed at the fine-scale versus the results obtained 

from the model built with the block conductivity values computed by upscaling using 

the Laplacian-with-skin method. We show only the results in the x-direction since the 

boundary conditions imposed in the model force the flow in that direction. We expect 

that the results regarding fluxes in the y- or z-directions would have had similar 

changes in the boundary conditions to force flow in those directions. The relative bias 

of the specific discharge increases with the increase of the block size side, except for 

the block side size equal to 2 m that presented slightly higher RBq than the block side 

size equal to 4 m. Given that the skin size is half the block side size, blocks greater 

than 2 m will result in blocks greater than the correlation length (4 m) and in that 

situation the flow behavior is mainly determined by the conductivities within the blocks 

and the influence of the skin is apparently reduced (Gómez-Hernandez, 1990). The 

increase of the RBq with the block side size is due to the smoothing of the heterogeneity 

caused by the upscaling procedure. The relative variations of the variance and the 

mean of the block conductivities as a function of the block side size are shown in Fig. 

4.6. A reduction of up to 83.5 % of the variance with the increasing of the block side 

sizes was observed. This smoothing of the heterogeneity can be clearly verified as 

mentioned in previous research (Hunt, 2006; Tidwell & Wilson, 1999; Vik et al., 2013b). 

The block side sizes up to 1.0 m resulted in a small increase of the mean of up to 4 %. 

The higher effect was obtained for the block side sizes equal to 4 and 12 m, where the 

increase in the mean was 17 % and 23 %, respectively. The increase of the mean was 

also mentioned by other authors (Tidwell, 2006) which attribute it to the impact of high 

conductivity features in KV when the block increases.
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Fig. 4.5 Comparison of the specific discharge in the x-direction (qx) through a plane orthogonal to the flow direction obtained from the 

model at the fine scale versus the results obtained from the models at coarser scales after computing the block values using the 

Laplacian-with-skin method 
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The reproduction of the specific discharge at the coarse scale is good given the 

relative small errors obtained, indicating that the upscaling method works well, in 

consonance with the results obtained by other authors (Li et al., 2011a; Zhou et al., 

2010). Upscaling implies smoothing and loss of heterogeneity, we have tested 

upscaling for the purpose of reproducing the total flux crossing the model, and for this 

purpose, the upscaling method is very effective. Previous works focused on capturing 

some local features show that for blocks larger than half the correlation length the 

influence of these local features is lost (J. Huang & Griffiths, 2015). Other works 

focused on magnitudes at the scale of the model have obtained good results with 

blocks up to three times the correlation length (as is the case for our most extreme 

upscaling) (A. J. Desbarats, 1992). In our work, the reproduction of the total flow 

crossing the model is good for all block sizes, although the RBq deteriorates with the 

block size. These results are very encouraging since we can compute the average flow 

through the domain of study using a model with blocks of 4 m, which has 64 000 times 

less elements than the model built at the scale at which the data are collected. 

Continuing with the investigation of the efficiency of the upscaling using the 

Laplacian-with-skin method, the relative bias of the head, RBh, for each realization and 

all block side sizes is shown in Fig. 4.7. For the block side size with the same size of 

the domain, the RBh is always zero as there are only eight nodes at the coarse-scale 

and are coincident with the boundary conditions at fine-scale. The RBh is greater when 

the block side size increases. The largest RBh occurs for the block with a side size 

equal to the correlation length, yet its value is very small, with the maximum RBh below 

0.9%. The small errors of the RBq is also due to the small spatial variability of the 

piezometric heads. 

Deterministic models disregard uncertainty. However, uncertainty is inherent to 

heterogeneity when this is characterized from a limited set of observations. Such an 

uncertainty on conductivity propagates through the groundwater flow model onto 

uncertainty on the results of the model, like the specific discharges. We have evaluated 

the uncertainty on specific discharges by analyzing their statistics as computed from 

70 realizations (which are equally-likely representations of reality given the random 

field model adopted) of K. And then, we have analyzed how this uncertainty changes 

after performing upscaling. 
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Table 4.2 shows the statistics of mean qx at the fine scale and after upscaling for 

the different block sizes. From Table 4.2 is clear that upscaling preserves the 

uncertainty of qx at fine-scale even for the block size equal to the entire domain. 

 

Fig. 4.6 Variation of the mean and the standard deviation of the upscaled conductivities 

relative to the mean and standard deviation of the fine-scale conductivity values 
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Fig. 4.7 Relative bias of head, RBh, for all block side sizes and all realizations when 

block values are computed with the Laplacian-with-skin upscaling method 

Table 4.2 Statistics of qx computed form the model built at the fine-scale and for the 
models with all block side sizes studied 

Statistics of the qx 

 Fine 0.2 m 0.4 m 0.5 m 0.8 m 1 m 2 m 4 m 12 m 

Mean 

[m/d] 
0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 1.09 

Std. Dev. 

[m/d] 
0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.54 

Minimum 

[m/d] 
0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.37 

Maximum 

[m/d] 
2.18 2.14 2.13 2.13 2.13 2.18 2.17 2.18 2.56 

Coef. var. 

[ ] 
0.40 0.39 0.39 0.39 0.39 0.38 0.38 0.40 0.50 

 

A common practice in geotechnical investigations is to build homogeneous models 

using some average value of the measured data. For this reason, and for comparison 

purposes, we have also computed the single specific discharge associated with 
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homogeneous models with conductivities equal to the harmonic, geometric and 

arithmetic averages of K. The resulting qx values were equal to 0.29 m/d for the 

harmonic mean, 0.68 m/d for the geometric mean and 1.32 m/d for the arithmetic 

mean. When these values are plotted in the cumulative frequency distribution function 

of the qx at fine-scale (Fig. 4.8) the importance of the stochastic modeling is obvious. 

The probability of qx being larger than the value obtained using the harmonic mean is 

100 %. When K is computed using the geometric mean, there is a probability of 66% 

that the qx calculated using this K value be exceeded. Lastly, the probability of qx being 

smaller than the value obtained using the arithmetic mean is almost 86%. These results 

clearly demonstrate that the use of a unique K value with no consideration of the spatial 

correlation of the K can result in a specific discharge not representative of the real flow 

and potentially induce large errors in the calculation of flow rate. 

 

Fig. 4.8 Cumulative frequency distribution function of qx at the fine-scale and qx values 

obtained for a homogeneous formation with conductivity equal to the harmonic, 

geometric and arithmetic means 

4.7.2 Variation of the p-exponent with the block size 

The p-exponent that produces the best approximation of Kv,l by Kv,p was computed 

for each block side size after minimizing Eq. (4.7). Fig. 4.9 shows the variation of the 

best p-exponent with the variation of the block side size. We can notice that the 

p - exponent increases up to a limit and then stabilizes. The p-exponent lies between 
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0.26 and 0.29. This variation can be fitted with the following exponential model, with 

an error on p below 5%: 

 p
model

=-3.27 exp(-7.72 BlockSize-0.79) +0.28 (4.8) 

 

Fig. 4.9 Variation of the p-exponent with block side size 
 

Selvadurai and Selvadurai (2014) found, for a deterministic isotropic 

three - dimensional upscaling, that the geometric mean (p = 0) was the best p-norm to 

compute KV (Selvadurai & Selvadurai, 2014). For a case when the block side size was 

equal to three times the range, the best p-exponent was found to be 1/3 in a 3D mildly 

heterogeneous and statically isotropic media with arbitrary boundary conditions (A. J. 

Desbarats, 1992). 

The variation of the p-exponent with the number of realizations was also 

investigated and it was noticed that when computed using less than 20 realizations the 

p-exponent presented great oscillation. When the number of realizations was bigger 

than 20, the p-exponent tends to stabilize. The variance of the K random fields will also 

influence the p-exponent value and future research may be needed to analyze this 

behavior. In preliminary analyses in synthetic K fields, we have found that the 

p - exponent tends to increase with the magnitude of the variance for isotropic fields, 

while for anisotropic fields the block value must be a tensor, in which case, the 

p - exponent that approximates the component in the direction of maximum continuity 

increases with variance, but it decreases for the component in the direction of minimum 

continuity. 
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The reproduction of the qx obtained from the model performed at fine-scale was 

compared to the results obtained after upscaling using a p-norm and the results are 

shown in Fig. 4.10. Similarly, as in Fig. 4.5, the relative bias of the specific discharge, 

RBq, increases with the increase in the block side size. For block side sizes up to 1.0 m 

the RBq obtained with the Laplacian-with-skin method and p-norm are almost equal. 

Block side sizes bigger than 1.0 m resulted in different RBq, and for the block side size 

equal to 12.0 m the RBq was 17% for the p-norm and 27% for Laplacian-with-skin 

method. The quality of the upscaling can also be checked by the very good agreement 

between the qx values obtained at the fine and at coarse-scales. 

Fig. 4.11 shows the relative bias of head, RBh, for all block side sizes and all 

realizations obtained with the p-norm using the best p-exponent. As mentioned before 

in the results of the Laplacian-with-skin method, the relative bias of the piezometric 

head, RBh, is always zero for the block with the same size of the entire domain. With 

the increase of the block side size the RBh increases, reflecting the effects of the 

reduction of the heterogeneity. In this situation, the RBh was greater than the one 

obtained with the Laplacian-with-skin method, but yet the maximum RBh was 1.44 %, 

a very satisfactory reproduction of the flow at the coarse-scale. 

The specific discharge in the x-direction (qx) computed with block values obtained 

using p-norms equal to -1 (harmonic mean), 0 (geometric mean) and 1 (arithmetic 

mean) was compared with the values computed on the fine-scale model and shown in 

Fig. 4.12, Fig. 4.13 and Fig. 4.14. The purpose of this comparison is to show the errors 

that could be incurred when using an incorrect p-exponent. The RBq increases with the 

increase of the block side size. For block side sizes equal to 0.2 m and 0.4 m all the 

upscaling procedures seem to be adequate, the reason being that the heterogeneity 

within the blocks at this size is small and all p-norms yield similar values. In general, 

the geometric mean (Fig. 4.13) resulted in the smallest errors and the arithmetic mean 

(Fig. 4.14) in the largest ones. Also, in general, qx was underestimated by the harmonic 

mean (Fig. 4.12) and overestimated by the arithmetic mean (Fig. 4.14). We also 

analyzed the reproduction of h when upscaling using p = –1, p = 0 and p = +1 and we 

found that the RBh increases with the block side size and that the smallest RBh was 

obtained with the geometric mean. 

.
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Fig. 4.10 Comparison of the specific discharge in the x-direction (qx) obtained from the model performed at the fine-scale versus the 

results obtained from the models at coarser scales after computing the block values using p-norm average with the best p - exponent 
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Fig. 4.11 Relative bias of the piezometric head, RBh, for all block side sizes and all 

realizations when block values are computed using p-norm average with the best 

p – exponent 

These results are of interest for future applications in which there is an interest in 

performing block conductivity upscaling in tropical soil like the one studied here. The 

p-exponent could be read from the fitted curve given by Eq. (4.8) and p-norm upscaling 

used to quickly compute block values. However, the application of this approach to a 

new soil would require first to perform an analysis similar to the one performed here to 

find out the best p-exponents before conducting the upscaling with the p-norm 

average. 

The workflow would be as follows: 

Collect samples in the area of interest and characterize their spatial variability. 

Perform non-local upscaling analyses to investigate whether the quantities of 

interest (in our case it was average flow crossing the domain, and piezometric heads 

at discretization nodes) are well reproduced by the upscaled models. 

Determine the best p-exponent that produces results similar to those obtained with 

the non-local techniques by means of some minimization technique. 

Generate realizations at the small scale using the algorithm of your choice. 

Use the p-exponent found before to build quickly coarse models using p-norm 

upscaling and use the coarse models for the purpose of the study.
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Fig. 4.12 Relative bias of the qx obtained with blocks computed using p-norm with p = - 1 (harmonic mean) 
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Fig. 4.13 Relative bias of the qx obtained with blocks computed using p-norm with p = 0 (geometric mean) 
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Fig. 4.14 Relative bias of the qx obtained with blocks computed using p-norm with p = 1 (arithmetic mean)
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4.8. Conclusions 

Stochastic three-dimensional upscaling of hydraulic conductivity using the Laplacian-

with-skin method was performed in a flow model of a tropical soil from Brazil, where 

conductivity had been measured at 55 locations over the support of rigid laboratory 

permeability. Eight different block sizes were analyzed. Deterministic analyses using 

simple averaging of K were also done to show the importance of using a stochastic 

approach. The upscaling efficiency with the variation of the block side size was 

investigated. The behavior of the p-exponent of the p-norm with the increase in the 

block side size was also studied. 

Upscaling conductivities using the Laplacian-with-skin method gave excellent 

results showing small relative bias for the quantities computed both at the fine and 

coarse scales, even for a single block with the size of the entire domain. The relative 

biases of specific discharge and of piezometric head tend to increase with block side 

size. The variance of specific discharge tends to decrease with the increase in the 

block side sizes, reflecting the heterogeneity smoothing effect of upscaling. The mean 

of the specific discharge increased with block side size. The uncertainty in qx is well 

captured by the upscaled K values. The analysis of the variation of the p-exponent with 

the block side sizes showed that the p-exponent increases with block size up to the 

block side is 0.8 m and then it remains stable about p = 0.29. This variation was fitted 

with an exponential expression that gives p as a function of block side. The upscaling 

using the p-exponent that best reproduces the Laplacian-derived Kv,l resulted in very 

good reproduction of the flow even for large block side sizes. The results obtained in 

this work allow the use of the p-norm in a practical, reliable, and fast way for K 

upscaling in tropical soils of the studied region. The workflow for the application of the 

proposed method in other soils is also provided. Finally, this paper shows the errors 

that could be incurred when using certain deterministic analysis for the analysis of 

groundwater flow and the importance to rely on well-proven methods such as the 

Laplacian-with-skin method for upscaling in a geotechnical context.   
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Abstract 

Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed 

using real data collected in the laboratory. Upscaling of hydraulic conductivity, 

longitudinal hydrodynamic dispersion, and retardation factor were done using three 

different approaches of varying complexity. How uncertainty propagates after 

upscaling was also studied. The results show that upscaling must be taken into account 

if a good reproduction of the flow and transport behavior of a given soil is to be attained, 

even when simple upscaling methods are used. The results also show that uncertainty 

propagates well after upscaling. This work represents a first demonstration of flow and 

reactive transport upscaling in a soil based on laboratory data. It also shows how 

simple upscaling methods can be incorporated into the modeling practice using 

commercial flow and transport codes. 

5.1. Introduction  

Solute transport numerical modeling is a powerful tool to predict aquifer response 

to a remediation plan, to evaluate the impact of a radioactive underground repository 

to the bisophere, to verify the efficacy of geological materials to be used as liners in 
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landfills, to assess health risks due contaminant exposure, or to be used in decision-

making processes (Bellin, Lawrence, & Rubin, 2004; Dagan, 2004). Numerical models 

require input parameters that must be determined reliably to guarantee the quality of 

their predictions (Willmann, Carrera, & Guadagnini, 2006). 

Hydraulic conductivity (K) and transport parameters such as the hydrodynamic 

dispersion coefficient (D), dispersivity (α) and retardation factor (R) are determined in 

the laboratory at a scale of a few centimeters (fine scale) (Jarvis, 2007; Jellali et al., 

2010; Logsdon Keller & Moorman, 2002; Osinubi & Nwaiwu, 2005; Tuli et al., 2005; J 

Vanderborght et al., 2000). Modeling water flow and solute transport at a fine-scale 

resolution is impractical, especially when modeling must be repeated many times, such 

as in stochastic analyses (Feyen, Gómez-Hernández, Ribeiro, Beven, & De Smedt, 

2003; Lawrence & Rubin, 2007). 

Numerical models are performed in a scale of meters to kilometers (coarse scale), 

using equivalent parameters, homogeneous in each model cell (X.-H. Wen & Gómez-

Hernández, 1996). This implies a simplification of the problem since not all the fine-

scale information is transferred to the coarse scale (Bellin et al., 2004; Fernàndez-

Garcia & Gómez-Hernández, 2007). In addition, the lack of exhaustive information, 

implies uncertainty on flow and transport predictions, which should also be taken into 

account when performing upscaling (Fernàndez-Garcia & Gómez-Hernández, 2007; 

J. J. Gómez-Hernández & Wen, 1994; Li et al., 2011a). 

We face two main problems in solute transport modeling. The first one is how to 

treat parameter spatial heterogeneity and the second one how to account for the 

difference of scales between measurements and modeling (J. J. Gómez-Hernández et 

al., 2006; Taskinen, Sirviö, & Bruen, 2008). Therefore, it is necessary to define 

upscaling rules that incorporate subgrid heterogeneity of the parameters that control 

flow and solute transport, and that transfer the information obtained at the fine scale 

onto the coarse scale to be used in the numerical code (Deng et al., 2013; Fernàndez-

Garcia & Gómez-Hernández, 2007; Li et al., 2011b). 

The first problem can be tackled by using geostatistical techniques such as 

simulation or estimation, that permit a coherent assignment of values at locations 

where measurements were not taken based on the values observed at measurement 

locations (Capilla, Rodrigo, & Gómez-Hernández, 1999; Cassiraga et al., 2005; Li et 

al., 2011b; Morakinyo & Mackay, 2006; X. H. Wen, Capilla, Deutsch, Gómez-
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Hernández, & Cullick, 1999; Zhou, Li, Hendricks Franssen, & Gómez-Hernández, 

2012; Zhou et al., 2010). The second problem can be solved using upscaling. The 

upscaling of hydraulic conductivity is well established in the literature, and several 

approaches have been reported, showing the limitations and effectiveness of local and 

non-local upscaling methods for the reproduction of the water flow patterns under 

different types of heterogeneity (Cadini, De Sanctis, Bertoli, & Zio, 2013; Cassiraga et 

al., 2005; Fernàndez-Garcia & Gómez-Hernández, 2007; J. J. Gómez-Hernández et 

al., 2006; Li et al., 2011a; Lourens & van Geer, 2016; Renard & de Marsily, 1997; 

Sánchez-Vila et al., 1996; Selvadurai & Selvadurai, 2014; X.-H. Wen & Gómez-

Hernández, 1996). However, upscaling hydraulic conductivity only is not enough to 

reproduce the fine-scale transport behavior at the coarse scale due to the loss of the 

K heterogeneity present at the fine scale (Cassiraga et al., 2005; A. Journel et al., 

1986; Scheibe & Yabusaki, 1998a). Fernàndez-Garcia and Gómez-Hernández (2007) 

proposed a method to compensate for the loss of information due to K upscaling, by 

introducing an enhanced block hydrodynamic dispersion tensor and found that the 

median travel times of the breackthrough curves were well reproduced, but the tails 

were not. 

While less common than flow upscaling studies, some solute transport upscaling 

works can be found in the literature showing the characteristics and limitations of 

different transport upscaling methods using deterministic and stochastic approaches, 

of varying complexity (Bellin et al., 2004; Cadini et al., 2013; Cassiraga et al., 2005; 

Fernàndez-Garcia & Gómez-Hernández, 2007; Fernàndez-Garcia, Llerar-Meza, & 

Gómez-Hernández, 2009; J. J. Gómez-Hernández et al., 2006; Moslehi, de Barros, 

Ebrahimi, & Sahimi, 2016; Salamon et al., 2007; Tyukhova & Willmann, 2016; Vishal 

& Leung, 2017; Z. Xu & Meakin, 2013).  

Most of the transport upscaling studies are based on synthetic experiments for 

nonreactive solute transport, and focus on the upscaling of only a single transport 

parameter. There is still a lack of studies that intend to define upscaling rules based 

on real data from laboratory experiments of reactive solute transport in heterogeneous 

soils. In addition, to the best of our knowledge, performing upscaling considering at the 

same time dispersivity and the retardation factor at the local scale has not been 

discussed in the literature. The determination of equivalent transport parameters in 

tropical soils, present in many regions of the world and a source of important 
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engineering problems has not been performed before, either, and it is also addressed 

in this paper. 

The purpose of this study is to build up upscaling rules for reactive solute transport, 

using fine-scale data obtained at the laboratory via water flow and reactive solute 

transport experiments using undisturbed tropical soil columns. In line with the work of 

Fernàndez-Garcia and Gómez-Hernández (2007), we use the enhanced 

macrodispersion coefficient approach but, as a novelty, the determination of the 

macrodispersion coefficient was made by considering also the heterogeneity of the 

dispersivity at the local scale. To study the upscaling of the retardation factor, the p-

norm was used to compute an equivalent retardation factor after a prior analysis to 

determine the optimal exponent p (Gómez-Hernández et al., 2006a). Contrasting with 

most previous studies that focused on a single realization, we perform a stochastic 

analysis to study the variability of the upscaled parameters and the propagation of 

uncertainty after upscaling. Differently from earlier studies (Fernàndez-Garcia & 

Gómez-Hernández, 2007; Fernàndez-Garcia et al., 2009), we use the sophisticated 

Simple Laplacian-with-skin method to upscale hydraulic conductivity (Gómez-

Hernandez, 1990; Li et al., 2011b) in order to obtain the best reproduction of water flow 

at the fine scale. The assessment of the upscaled models is based upon the 

reproduction at the coarse scale of the breakthrough curves obtained at the fine scale 

for a selected control plane. 

5.2. Upscaled transport model 

The macrodispersion method as described by Fernàndez-Garcia and Gómez-

Hernández (2007) was used to upscale the local scale hydrodynamic dispersion and 

to account for the reduction of within-block heterogeneity. The retardation factor was 

upscaled using the p-norm approach. These two methods were used for their simplicity 

and for its readiness to use in commercial transport codes based on the classical 

advection-dispersion equation (ADE). In this section, some details about them are 

provided. We recognize that sometimes the use of the ADE at the coarse scale may 

be inadequate to reproduce reactive solute transport at the fine scale as discussed in 

previous studies (Fernàndez-Garcia et al., 2009; Li et al., 2011b; Riva, Guadagnini, 

Fernandez-Garcia, Sanchez-Vila, & Ptak, 2008). However, transport at the field scale 

has been adequately modeled using the ADE when a high-resolution description of 
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heterogeneity, as done is the present study, was performed (Riva et al., 2008; Salamon 

et al., 2007). In this context, we also intend to show the possible limitations of the use 

of the ADE to upscaling transport solute parameters. 

5.2.1 Hydrodynamic dispersion upscaling using ADE 

At the fine scale, the flow equation, assuming steady-state flow in the absence of sinks 

and sources for an incompressible fluid in a saturated porous media, is given by 

 ∇.(K
f(x)∇h(x))=0, (5.1) 

and is a result of the combination of Darcy’s Law and the continuity equation, where h 

is the piezometric head, Kf is a second-order symmetric hydraulic conductivity tensor 

(observed at the fine scale) and x represents the spatial location, ∇ is the gradient 

operator, and ∇ · the divergence operator. 

Assuming that Fick’s law is appropriate at the local scale, solute transport is given 

by the ADE equation, which is a mass balance equation written, for a nonreactive 

solute, as 

 nf
∂C(x,t)

∂t
=-∇.(q(x)C(x,t))+∇.(nf(D

f∇C(x,t)), (5.2) 

where q is the Darcy velocity given by q(x) = - Kf (x)∇h(x), nf is the porosity, C is the 

solute concentration, and Df is the local hydrodynamic dispersion coefficient tensor with 

eigenvalues given by 

 Di
f
=Dm+αi

|q
f
|

nf
, (5.3) 

where Dm is the effective molecular diffusion coefficient and αi are the local dispersivity 

coefficients. Components parallel and transverse to the flow direction are designated 

as longitudinal and transverse dispersivities, αL and αT. 

Eq. (5.1) and Eq.(5.2) are used to solve the water flow and transport at the fine 

scale, respectively. However, due to the need to solve those problems on a grid 

coarser than the scale of the measurements, it is necessary to use block equivalent 

parameters (hereafter, block properties are identified by the subscript b). According to 

Fernàndez-Garcia and Gómez-Hernández (2007), block equivalent hydraulic 

conductivity tensors, Kb, must preserve the fine-scale average flux through the block. 
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Whereas block equivalent hydrodynamic dispersion tensors, Db, should consider not 

only the dispersive forces at the fine scale (herein referred as local or fine scale 

hydrodynamic dispersion) but also account for the loss of spreading caused by the 

homogenization of the conductivities. The enhanced block hydrodynamic dispersion 

tensor Db includes an equivalent fine-scale local dispersivity (αeq) plus a 

macrodispersivity term (Ai), which is computed to increase the dispersion in the 

upscaled (homogeneous) block. It can be expressed as 

  Db=Dm+(αeq+Ai)
|q

f
|

nf
. (5.4) 

In the macrodispersion approach, the upscaling is based on the macrodispersion 

concept (Gelhar & Axness, 1983) and the resulting transport equation to be used at 

the coarse scale has the same form as the local ADE at the fine scale, but replacing 

the local hydrodynamic dispersion tensor by a new macrodispersion tensor. The term 

Ai is constant over time but vary in space between blocks. According to Gelhar et al. 

(1992), Ai can range from meters to kilometers while αi ranges in the order of 

millimeters. 

5.2.2 Upscaling of the retardation factor  

The governing equation of solute transport subject to advection, hydrodynamic 

dispersion, and sorption in a physically and chemically heterogeneous aquifer at the 

fine scale can be expressed as 

 ∂C(x,t)

∂t
+

ρ
d

nf

∂S(x,t)

∂t
=-

1

nf
∇.(q(x)C(x,t))+

1

nf
∇.(D

f∇C(x,t)), (5.5) 

where ρd is the matrix bulk density and S is the nonaqueous-phase concentration of 

sorbed solutes. The relation between C and S is established through a sorption 

isotherm. The simplest sorption isotherm function assumes that sorption is 

instantaneous, reversible and that the number of solutes sorbed onto the solid is 

directly proportional to the concentration of dissolved solutes (Freeze & Cherry, 1979). 

The constant of proportionality between C and S is the partition coefficient (Kd)  

 Kd(x)=
S(x)

C(x)
≥0, (5.6) 
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that quantifies the interaction between contaminants and the soil particles. This 

parameter is spatially variable and its variation can exert a key role in the solute plumes 

(Brusseau, 1998; Brusseau & Srivastava, 1999; Robin, Sudicky, Gillham, & 

Kachanoski, 1991). There is no consensus about the cross-correlation between Kd and 

K. According to Robin et al.(1991), this correlation, in real fields, may range from 

weakly negative to mildly positive. In the studied soil, a very weakly negative correlation 

between lnK and Kd was found (-0.02) and because of that, we assumed no correlation 

between them. 

The retardation factor is related to the Kd by,  

 R (x)= 1+
ρ

d

nf(x)
Kd(x), (5.7) 

and can be interpreted as the ratio of the average fluid velocity (v) (v = q (x)/ nf ) to the 

velocity at which the solute propagates (vs) (Freeze & Cherry, 1979) 

 R (x)= 
v

vs

≥1. (5.8) 

When the solutes do not interact with the solid medium (i.e., they are nonreactive), 

R = 1. Solutes with R > 1 are called reactive solutes (Freeze & Cherry, 1979; 

Shackelford, 1994). According to Jury, Gardner and Gardner (1991), retardation 

factors larger than 3 indicate a high degree of interaction between solid and solute. 

Including R in the transport equation by combining of Eq. (5.5), Eq.(5.7) and Eq. 

(5.8) results in the reactive transport equation given by: 

 R(x)nf+∇. (nfv(x)C(x,t)) =∇. (D
f∇C(x,t)) . (5.9) 

Since the information obtained at the fine scale cannot be used directly at the 

coarse scale, it is necessary to calculate a block equivalent retardation factor Rb 

representative of the heterogeneity of R within the block. This block value must be able 

to reproduce the mass flux breakthrough curve (BTC) obtained at the fine scale 

simulation when applied to the transport equation with homogeneous parameters 

within model blocks at the coarse scale. 

Since the reproduction of the complete BTC is impossible to achieve, it is necessary 

to select which part of the BTC one would like to reproduce best, according to the 

objective of the numerical modeling (J. J. Gómez-Hernández et al., 2006). 
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For the calculation of the block retardation, the power norm of R(x) will be used. 

Depending on the power exponent used, the power norm will be more affected by the 

low values, or by the high values within the block, 

 Rb= (
1

V
∫ Rf

p
(x)dx

V

)

1
p

, (5.10) 

where V indicates the volume of the block; Rb is the block retardation factor, and Rf 

represents the retardation factors at the fine scale. In this approach, the challenge is 

to find the p-exponent that will result in an Rb that best reproduces the transport 

observed at the fine scale; to find it, many numerical simulations must be performed. 

This technique follows the line of the power averaging equation used for calculating 

equivalent hydraulic conductivity (J. Jaime. Gómez-Hernández & Gorelick, 1989; A. 

Journel et al., 1986). 

It is important to mention that in FEFLOW (the computer code used in this work) 

the R is expressed as a function of the Henry's adsorption constant, k [-], as  

 R (x) =1+
1-nf

nf
 k(x). (5.11) 

5.3. Spatial variability 

The exploratory statistics of the 55 measurements of the studied random variables 

(hydraulic conductivity, porosity, dispersivity at local scale and retardation factor) are 

summarized in Table 5.1 and the cumulative frequency distribution (CDF) are showed 

in Fig. 5.1. The hydraulic conductivity and the dispersivity at the local scale displayed 

high variability in accordance with previous (Fu & Jaime Gómez-Hernández, 2009; 

Robin et al., 1991). The measured K and R values are best fitted by a lognormal 

distributions. The lognormal model implies that the natural logarithms of K (lnK) and α 

(lnα) are modeled by Gaussian distributions. The normality of lnK and lnα was 

confirmed by the Kolmogorov-Smirnov test with a 95% confidence interval. The 

measured n and R could not be fitted by a normal distribution and they were 

transformed into normal variables using an empirical anamorphosis (also known as 

normal-score transform). All transformed variables were standardized to normal 
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distributions of mean zero and variance one. Variogram analysis was performed in the 

standardized variables.  

Table 5.1 Summary statistics of the random variables 

Variable Mean SD CV 

K [m d-1] 1.35 1.65 1.26 

lnK [ln(m d-1)] -0.38 1.25 n.d 

n [ ] 0.24 0.02 0.08 

α [m] 0.18 0.19 1.06 

lnα [ln(m)] -2.21 1.11 n.d 

R [ ] 5.37 5.10 0.95 

SD: standard deviation, CV: coefficient of variation, n.d: undetermined, K: hydraulic conductivity; n: 
porosity, R: retardation factor, α: dispersivity 

 

Fig. 5.1 Cumulative distribution functions of the variables studied 

Geostatistical techniques were used to build a model of the spatial variability of the 

parameters with the purpose of estimating the properties at unsampled locations 

(Goovaerts, 1999). The theory of geostatistics, formalized by Matheron (1963), is 

based on the random function model assumption, where variables are modeled as 

spatially correlated random variables. Within this framework, it is possible to perform 

coherent inferences about a variable and its spatial variability. 
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Using the Stanford Geostatistical Modeling Software (SGeMS) (Remy, 2004), 

geostatistical analyses of the 55 measurements showed that their spatial variability can 

be modeled by an isotropic spherical variogram of the form 

 γ(h)=c0+c1.sph(|h|,a), (5.12) 

where a is the range, c0 is the nugget effect, c1 is the sill, h is the directional lag 

distance, and sph() is the spherical function. We have decided to use an isotropic 

variogram after investigating the ranges of the variograms in several directions and 

observing that there is no significant difference on the continuity patterns with 

orientation. Table 5.2 shows the parameters of the variogram models used to fit the 

isotropic experimental variograms. 

Table 5.2 Parameters of the variogram models 

Variable Model Nugget Sill Range (m) 

ln K Spherical 0.00 1.0 4.0 

n Spherical 0.00 1.0 3.0 

ln α Spherical 0.50 0.50 3.0 

R Spherical 0.55 0.45 3.3 

K: hydraulic conductivity; n: porosity, R: retardation factor, α: dispersivity 

The variograms of the solute transport parameters contain a nugget effect, which 

implies short-scale spatial variability and/or measurement error. According to the 

nugget-to-total-sill ratio classification, these variables had a moderate spatial 

dependence (Cambardella et al., 1994). 

5.4. Numerical simulations 

5.4.1 Simulation of the random fields 

Within the random field theory (Griffiths & Fenton, 2008; Vanmarcke, 1983), the 

variables, lnK, lnα, n (actually its normal-score transform) and R (actually, its normal-

score transform) are modeled as random variables at each location in space. These 

random variables are represented by a probability density function (pdf) rather than by 

a unique value; the pdf represents the likelihood that the random variable takes a 

specific value at that location (Cassiraga et al., 2005). First- and second-order 
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stationary Gaussian random fields were used to model all variables. A Gaussian 

random field is completely defined by their first two moments, mean and variance, and 

its autocorrelation function and it is represented by the infinite set of multivariate 

Gaussian distributions that can be built with any combination of points in some spatial 

domain (Griffiths & Fenton, 2008; Vanmarcke, 1983). 

Thirty equally-likely and conditioned realizations of lnK, n, lnα and R were 

generated using the Sequential Gaussian Simulation (SGS) algorithm via the code 

GCOSIM3D (J Jaime Gómez-Hernández & Journel, 1993) using the variogram 

functions whose parameters are shown in Table 5.2. The number of realizations 

analyzed here may be considered small for performing a rigorous estimation of 

uncertainty. However, since our objective is to identify trends and the impact of the 

upscaling in uncertainty propagation, we believe that a set of 30 realizations is enough 

to achieve it. Fig. 5.2A to D show the realizations number 1 of the variables K, n, α and 

k (Henry coefficient related to the R by the Eq. (5.11)). Before performing water flow 

and solute transport numerical simulations, all realizations were back-transformed 

according to the cumulative distribution function of the measured data. 

The lnK random field domain is a parallelepiped with dimensions of ∆x = 24 m, 

∆y = 16 m and ∆z = 8 m and it is discretized in 3 072 000 cubic cells of side 0.1 m, 

magnitude similar to the scale of the permeameter measurements. The lnK domain is 

twice the size of the studied area because the lnK upscaling technique demands a skin 

composed by a certain number of additional elements (Gómez-Hernandez, 1990). 

However, only the inner domain consisting of ∆x = 12 m, ∆y = 8 m and ∆z = 4 m will 

be used to simulate flow at the coarse and fine scales. The random fields of the other 

variables, conditioned on the 55 measurements, were generated in a domain equal to 

the studied area (∆x = 12 m, ∆y = 8 m and ∆z = 4 m) and discretized in 384 000 cubic 

cell of side 0.1 m since no skin was necessary in their upscaling methods. 
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Fig. 5.2 Realizations number 1 of ln K (A), n (B), ln α (C) and k (D) at fine scale 

5.4.2 Flow and transport solutions 

The finite element method (FEM) with a pre-conditioned conjugate-gradient algorithm 

as implemented in FEFLOW 7.1 was used to solve the water flow and solute transport 

for each one of the 30 realizations (Diersch, 2014). The realizations of K were used as 

input parameter to the flow model while the realizations of n, α and R were used as 

input parameters to the solute transport models. 

We wrote a MATLAB routine to manage the entire modeling process. This routine 

couples the execution of GCOSIM3D and FEFLOW to repeatedly perform the flow and 

solute transport simulations. MATLAB calls GCOSIM3D to generate the random fields 

of lnK, n, lnα and R and reformats the output files into the input format of FEFLOW. 

The FEFLOW runs were constructed and executed in MATLAB using the command-

line mode with a code written in the Python language using interface manager API 

functions and callbacks. 

At the fine scale, the numerical domain is a parallelepiped discretized into 

120 x 80 x 40 cuboid cells of 0.1 m by 0.1 m by 0.1 m for a total of 384 000 elements. 

The transport mapping method (also called transfinite interpolation) algorithm was 

used to generate the rectangular mesh. 
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Steady-state flow was simulated by considering a confined problem under a 

constant gradient set to one to reproduce the laboratory conditions. The boundary 

conditions were no-flow at the top and bottom faces and constant-head was set equal 

to 50 m at the left face and to 38 m at the right face, forcing flow from left to right. The 

specific discharge in the x-direction (qx) was calculated for each realization at a control 

plane, positioned on the exit face, orthogonal to the flow direction. 

In order to reduce the number of heterogeneous variables, a homogeneous value 

of porosity was considered for all realizations equal to the arithmetic mean of the 55 

observations. The reactive solute transport was simulated by adopting a first-type 

boundary condition at the left side, using a mass concentration of 100 mg/L (Fig. 5.3). 

At the top and bottom faces, no mass flow boundary condition was assumed. The 

solute transport was modeled as transient for a period of 35 days for the nonreactive 

problems and 100 days for the reactive ones. The time discretization was made based 

on a grid Courant number of 0.04. The BTCs were obtained at the exit plane of the 

domain. 

 

Fig. 5.3 Sketch of solute transport models indicating the source zone (purple 

rectangle) and the exit control plane where mass concentration was measured. 

5.5. Upscaling of flow and transport parameters 

The whole domain, heterogeneous at the fine scale, was replaced by a unique 

homogeneous block (Zhou et al., 2010). The effectiveness of the K upscaling was 

evaluated by comparing the mean specific discharge in the x-direction (qx) at the 
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control plane computed at the fine and coarse scales, and it was quantified by the 

relative bias of specific discharge (RBq) 

 RBq=
1

NR
∑⌈

q
f,i

-q
c,i

q
f,i

⌉ 100

NR

i=1

, (5.13) 

where NR is the number of realizations; qf,i is the specific discharge through a control 

plane obtained from the numerical modeling at the fine-scale for the realization i, and 

qc,i is the specific discharge through a control plane at coarse-scale for the realization i. 

The determination of the macrodispersivities was made by solving the local 

transport problem releasing solute mass from one side of the block and collecting it at 

the opposite side, then, the macrodispersivity coefficients are computed from the 

breakthrough curves at the exit plane. The upscaling of hydrodynamic dispersion was 

performed in two steps. First, for each realization at the fine scale, purely advective 

transport was solved using a heterogeneous K, allowing us to calculate the 

macrodispersion coefficients associated with the heterogeneity of K (Ai). Second, K 

was assumed homogeneous, and transport was solved with a heterogeneous α, 

allowing us to calculate the equivalent dispersivities (αeq). Lastly, Ai and αeq were 

summed up to give the upscaled block hydrodynamic dispersion. Both Ai and αeq were 

calculated based on the first and second moments of the BTC at the exit plane 

(positioned on the far right of the domain), using the expressions (X. H. Wen & Gómez-

Hernández, 1998) 

 αeqL or A
iL

=
L

2

σt
2

Ta
2
, (5.14) 

 αeqT or AiT=
1

2

σy
2

L
, (5.15) 

where subscripts L and T refer to the components parallel and transverse to the flow 

direction, respectively, L is the block length, Ta is the average of arrival times, σt
2 is the 

variance of arrival times and σy
2 is the variance of path transversal deviations with 

respect a to straight line. 

The variance of the path transversal deviations was determined based on the 

vertical distribution of solute mass at the exit plane, calculated by solving a transport 

problem (for each realization) where solute mass was released in a cell positioned at 

z = 2.0 m. The vertical spread was measured, and its moments were determined. 
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However, due to the characteristics of our transport problem, the transversal 

components were irrelevant when compared to the longitudinal ones and had no 

impact in the results of the solute transport. 

An alternative way to compute the macrodispersion was also used, considering the 

heterogeneity at the local scale of both K and α simultaneously, and solving a transport 

problem at the local scale from which a single macrodispersion value was derived.  

The performance of hydrodynamic dispersion upscaling was evaluated by 

comparing the BTCs at the exit plane obtained from the fine- and coarse-scale models. 

These comparisons were also done for a few points of the BTC, more precisely, at the 

mean (Tmean), 5% (early, T05%), 50% (median T50%) and 95% (late, T95%) arrival times. 

It is important to mention that the selection of the part of BTC used to calculate the 

upscaled transport parameters is a very important step for the correct application of 

upscaled transport parameters in daily practice. According to Fu and Gómez-

Hernández (2009) and Gómez-Hernández et al. (2006), early arrival times must be 

well reproduced if, for example, the objective of the transport model is the design of an 

underground repository for toxic or radioactive waste; median arrival times, if the 

objective is to asses health risks associated with contaminant exposure by drinking 

water (Lemke, Barrack II, Abriola, & Goovaerts, 2004), and late arrival times, if the 

objective is to design a remediation plan. Failing to take this into account will yield 

under- or overestimation of the arrival times for the purposes of the study. 

For each arrival time mentioned before, the mismatch between the concentrations 

obtained at fine and coarse scales was quantified by the relative bias of hydrodynamic 

dispersion (RBd), expressed as 

 RBd=
1

NR
∑⌈

cf,i-cc,i

cf,i

⌉100 

NR

i=1

, (5.16) 

where cf,i is the concentration through a control plane obtained from the numerical 

modeling of a nonreactive solute at the fine scale for realization i, and cc,i is the 

concentration of the same nonreactive solute through the same control plane at the 

coarse-scale for the same realization. 

The upscale of R was performed by solving the reactive solute transport at the fine 

scale considering K, α and R as heterogeneous and uncorrelated. Solute mass was 

released from one side of the block and collected at the opposite side and then the 
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breakthrough curves at the exit plane were computed. From these breakthrough 

curves, R was inversely determined using Eq. (2.4). The resulting values were 

considered as the equivalent ones (Req), and, from them the exponent p that yields a 

p-norm of the fine values that gives a results as close to Req is chosen. 

We determined an exponent p for each realization individually, and for the 

ensemble of realizations considered altogether. The optimization of the value of p was 

obtained using the MATLAB function called “fminbnd” based on a golden section 

search and parabolic interpolation that minimizes the objective function 

 error(p)= ∑|Req- Rb| 

NR

j=1

. (5.17) 

Solute transport models were then solved at the coarse-scale using the Rb 

determined by the p-norm. 

The performance of the retardation factor was made evaluating the reproduction at 

the coarse scale of the entire BTC, and also the reproduction only of the mean, early, 

median and late arrival times obtained at the fine scale. It was quantified by the relative 

bias of retardation factor (RBR), given by 

 RBR=
1

NR
∑⌈

cfr,i-ccr,i

cfr,i

⌉ 100

NR

i=1

, (5.18) 

where cfr,i is the reactive solute concentration through a control plane obtained from 

the numerical modeling at the fine scale for realization i, and ccr,i is the reactive solute 

concentration through the same control plane at the coarse scale for the same 

realization. 

The uncertainty analysis of the reactive solute transport modeling was performed 

by comparing the ensembles of BTCs obtained at the fine and coarse scales at the exit 

plane. Also, the cumulative frequency distributions obtained at the fine and coarse 

scales for the mean, early, median and late arrival times were compared. 
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5.6. Results and Discussion 

5.6.1 Hydrodynamic dispersion upscaling 

Fig. 5.4 shows the breakthrough curves (BTCs) of realizations numbers 1 and 30 at 

the fine scale and after upscaling only the hydraulic conductivity. As demonstrated by 

others in the literature (Cassiraga et al., 2005; A. Journel et al., 1986; Scheibe & 

Yabusaki, 1998a), upscaling only hydraulic conductivity, even using a sophisticated 

non-local method, is not enough to reproduce the BTCs at the coarse scale. When only 

K upscaling is done, the coarse scale BTCs overestimate early arrival times and 

underestimate late arrival ones. This finding was also reported by Li et al. (2011b) and 

Fernàndez-Garcia and Gómez-Hernández (2007). Homogenization produces a 

reduction of dispersion due to loss of K heterogeneity, justifying the inclusion of a term 

that will represent this loss: the macrodispersion coefficient. 

The macrodispersion method was used to upscale the transport at the fine scale, 

in order to take into account the loss of dispersion caused by the K upscaling. Fig. 5.5 

shows a cross-plot between the macrodispersion coefficients determined in two steps, 

that is, by accounting for the heterogeneity of K and α separately, and when they are 

determined in one step, by accounting simultaneously for the heterogeneity of those 

two parameters, in each one of the thirty realizations. The results show that the 

macrodispersion method, initially thought to consider only the dispersion caused by 

the K heterogeneities, can be used directly to quantify the effects of local-scale 

heterogeneity of both dispersivity and K heterogeneity, since the results obtained by 

the two approaches are very similar with relative bias of only 4.2 %. 
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Fig. 5.4 Breakthrough curves of the realizations number 1 and 30 at fine scale and the 

results after upscaling only the hydraulic conductivity 

 

Fig. 5.5 Cross-plot between macrodispersion coefficients obtained in two steps 

(considering separately the heterogeneity of dispersivity and that of K) and in one step 

(considering simultaneously the heterogeneity of dispersivity and that of K) 

These macrodispersion coefficients were used in the transport equation at the coarse 

scale and BTCs at the control plane were determined. Fig. 5.6 shows the BTCs of 

realizations numbers 1 and 30 after and before the upscaling including the 

macrodispersion coefficient. It is noticeable that the inclusion of the macrodispersion 

coefficient in the transport equation at the coarse scale was not enough to properly 

describe the heterogeneous processes taking place within a block to reproduce the 
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BTCs obtained at the fine scale, as also mentioned by others (Fernàndez-Garcia & 

Gómez-Hernández, 2007; Fernàndez-Garcia et al., 2009; Frippiat & Holeyman, 2008). 

The slopes of the BTCs are almost the same, indicating that the dispersion was 

quantified correctly, however it seems that solute arrives earlier in the coarse scale 

transport model, underestimating the arrival times. A similar result was also mentioned 

by Fernàndez-Garcia et al. (2009) and can be related to anomalous (non-Fickian) 

solute transport. This result could be related to the double porosity of the soil. 

 

Fig. 5.6 Breakthrough curves of the realizations number 1 and 30 at fine scale and at 

the coarse scale using the macrodispersion coefficient 

Fig. 5.6 shows that the prediction efficiency of the macrodispersion method is not 

the same for the entire BTC, and, according to the solute modeling objective, the ADE 

approach can be more or less suitable. For this reason, we focused on the early, mean, 

median and late arrival times to quantify the differences between arrival times at the 

fine and coarse scales after macrodispersion upscaling. Fig. 5.7 (A - D) shows the 

comparison of the mean time and the times when 5%, 50% and 95% of the 

concentration has arrived at the control plane computed at both the fine and coarse 

scales for each of the thirty realizations. It is remarkable that none of the arrival times 

was well reproduced at the coarse scale by the macrodispersion upscaling, with the 

worst reproduction obtained for the early times and the best one to the median ones. 

In a previous work, with a lnK standard deviation equal to 1.0 (in the present paper it 

is 1.25 Table 5.1) the error between the BTC at the fine and coarse scales using the 

macrodispersion approach was bigger than for models with small standard deviations. 
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In all situations analyzed, the macrodispersion method overestimates the 

concentrations at any given time. Different results were obtained by Fernàndez-Garcia 

et al. (2009), Fernàndez-Garcia and Gómez-Hernández (2007) and Cassiraga et al., 

(2005), where the macrodispersive model was capable to reproduce T05%. In the works 

of these researchers, the late arrival time (T95%) resulted in the worst reproduction of 

the BTC at the coarse scale, contrary to our results. 

 

Fig. 5.7 Comparison of early (A), median (B), mean (C) and late (D) arrival times 

obtained from the model performed at the fine-scale versus the results obtained at the 

coarse scale after upscaling using macrodispersion coefficients 

The underestimation of the arrival times by the model at the coarse scale was 

investigated in more detail. Since solute arrives earlier in the coarse scale transport 

model, a “fictitious” retardation factor (Rfictitius) was added to each solute transport 

model to retard the arrival times and improve the prediction capacity of the 

macrodispersion method, as suggested by Cassiraga et al. (2005). This retardation 

factor does not represent chemical heterogeneity, but rather a delay associate to the 

physical heterogeneity that is removed after upscaling. We measured the solute 

velocity at early, mean, median and late arrival times relative to the velocity of the same 
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problem solved with a homogeneous R (R=1), and then we quantified a fictitious 

retardation factor as the ratio between the “apparently” retarded solute and the non-

retarded solute for each arrival time. Fig. 5.8 shows the BTCs for realizations numbers 

1 and 30 at the fine and coarse scales, including the fictitious retardation. Observe that 

the reproduction of the concentrations at the coarse scale is more precise and presents 

smaller errors. 

 

Fig. 5.8 Breakthrough curves for realizations numbers 1 and 30 at the fine and coarse 

scales using the macrodispersion coefficient plus a fictitious retardation factor 

The performance of the new upscaling, including the fictitious retardation factor was 

also investigated for the early, mean, median and late arrival times. The results are 

shown in Fig. 5.9(A-D). Although the inclusion of a fictitious retardation factor improved 

the results, it was not enough to reproduce the transport at the coarse scale for all 

arrival times studied. Again, the best results were obtained for the mean arrival times, 

indicating that this method can be suitable for performing, for instance, health risk 

analysis of contamination by drinking water. The early arrival times were not well 

reproduced. 

It is important to mention that, in the literature, there are methods where robust and 

complex memory functions are used to attempt to describe the processes leading to 

slow advection within a block (Fernàndez-Garcia et al., 2009; Li et al., 2011b). 

However, in this paper, a simple correction using a fictitious retardation factor was 

enough to reproduce the transport at the coarse scale, and it can promptly be used in 

daily practice, improving the quality of the solute transport predictions. 
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Fig. 5.9 Comparison of the early (A), median (B), mean (C) and late (D) arrival times 

obtained from the model performed at the fine scale versus the results obtained after 

upscaling using macrodispersion coefficients and a fictitious retardation factor 

5.6.2 Retardation factor upscaling 

Since a single retardation factor is not able to reproduce the entire BTC, the upscaling 

was performed considering different retardation factors for the early, median, mean 

and late arrival times. Aiming to observe only the effects of chemical heterogeneity, 

the fictitious retardation introduced before (to take into account the loss of K 

heterogeneity) was removed before the calculation of the Rb (Rb=Req / Rfictitius). Fig. 

5.10 illustrates that different retardation factors must be used to represent different 

parts of the BTC. 

The block retardation factors were determined using two approaches: first, a p 

exponent was calculated for the ensemble of realizations and, second, a p exponent 

was calculated for each realization. Fig. 5.11 presents the comparison of the early, 

median, mean and late arrival times obtained from the model performed at fine scale 
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vs. the results obtained after upscaling using the best p exponent for the ensemble of 

realizations. 

 

Fig. 5.10 Breakthrough curves for realizations number 1 and 30 at the fine scale and 

breakthrough curves computed at the coarse scale using three different block 

retardation factors, aimed at the reproduction of the early, median and late arrival times 

When the same exponent is used for all realizations, the arithmetic mean (p=1) 

resulted in the smallest RBR and, therefore, was found to be the best approximate for 

all arrival times, except for the early arrival time (Fig. 5.11(A)) where the geometric 

mean (p=0) was the best average. There is not clear indication of systematic under or 

overestimation of the results. However, using a single p-exponent to predict all the 

curves gives errors as large as 21%.  

Next, a p-exponent was calculated for each realization to improve the prediction 

quality. Fig. 5.12 shows the cumulative frequency distribution function of the p 

exponents found for early, median, mean and late arrival times. We can observe that 

they present high variability, ranging from -10.25 to 12.60 with a very similar shape of 
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their CDFs.

 

Fig. 5.11 Comparison of the early (A), median (B), mean (C) and late (D) arrival times 

obtained from the model performed at fine-scale versus the results obtained after 

upscaling using best p-exponent for the ensemble 
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Fig. 5.12 Cumulative frequency distribution function of p-exponent for early, median, 

mean and late arrival times for 30 realizations 

The effectiveness of using a different (the best) p-exponent for each realization in 

the transport solute upscaling was quantified by means of the RBR and the results are 

shown in Fig. 5.13. There is an improvement in the results and all arrival times have a 

small relative bias. Fig. 5.14 shows in detail the behavior of the BTCs of realization 

number 30 at the fine and coarse scales using the RB calculated for the best p exponent 

for that specific realization. 

 

Fig. 5.13 Comparison of the early (A), median (B), mean (C) and late (D) arrival times 

obtained from the model performed at the fine scale versus the results obtained after 

upscaling using best p-exponent for each individual realization 
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Fig. 5.14 Breakthrough curves for realization number 30 at the fine and coarse scales 

using the best p exponent for this specific realization, and considering three different 

retardation factors depending on whether the focus is in predicting the early, median 

or late arrival times 

5.6.3 Uncertainty propagation 

Since exhaustive knowledge of the area of interest is unattainable due to the large 

spatial variability of the parameters and limited sampling, we need to perform 

stochastic models where multiple possible scenarios (realizations) are considered for 

the quantification of uncertainty. When performing solute transport upscaling, model 

uncertainty must also be upscaled at the coarse scale. In this sense, we evaluated how 

uncertainty propagates after solute transport upscaling. In Fig. 5.15 (A and B) we show 

the range of possible BTCs obtained in the thirty conditional realizations of the different 

parameters, computed at the fine and coarse scales. When the fictitious retardation 

factor computed in the previous section is not used, the ensemble mean of the BTCs 

computed from the coarse scale simulations cannot reproduce the ensemble mean of 

the fine scale simulation (see Fig. 5.15(A)), but, when the fictitious retardation is 

included, the reproduction of the fine scale ensemble mean is very good (see Fig. 5.15 

(B)). 
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Fig. 5.15. A: Ensemble of fine-scale BTCs, together with the ensemble means of BTC 

at the fine scale (blue) and at the coarse scale results computed without the fictitious 

retardation correction (red). B: Ensemble of coarse-scale BTCs, together with the 

ensemble means of BTC at the fine scale (blue) and at the coarse scale computed with 

the fictitious retardation correction (red). 

The cumulative frequency distribution function (CDF) is used to measure the 

uncertainty about each of the different arrival times. Fig. 5.16(A to D) shows the results 

of the uncertainty reproduction after dispersion upscaling by comparing the CDFs of 

the early (a), median (b), mean (c) and late (d) arrival times at both scales with and 

without inclusion of the fictitious retardation factor. We can see that the model without 

the fictitious retardation is not capable to propagate the uncertainty from the fine to the 

coarse scale for none of the arrival times. The inclusion of a fictitious retardation factor 

resulted in a much better uncertainty propagation for all arrival times. However, for the 

early arrival time, even with the inclusion of the fictitious retardation factor the 

uncertainty was not properly propagated and was underestimated. These results show 

that the inclusion of the fictitious retardation factor in the dispersion upscaling was 

necessary for the propagation of the uncertainty about the arrival times. 
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Fig. 5.16 Cumulative frequency distribution functions of the early (A), median (B), mean 

(C) and late (D) arrival times obtained from the BTCs computed at the fine scale versus 

the results obtained after upscaling using only macrodispersion coefficients and using 

macrodispersion coefficients plus a fictitious retardation factor 

We also evaluated the uncertainty propagation of the retardation factor upscaling 

and the results are shown in Fig. 5.17, where the CDF of the early, median, mean and 

late arrival times obtained at the fine scale are compared with those obtained at the 

coarse scale using the best exponent p for each realization. We can notice that the 

larger the arrival time, the larger the uncertainty. The uncertainty was properly 

propagated for the early and mean arrival times. For the median arrival time, the 

upscaling procedure resulted in a good propagation of the uncertainty. The upscaling 

of the retardation factor at the late arrival time was not sufficient to preserve the 

uncertainty, underestimating it. 
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Fig. 5.17 Cumulative frequency distribution of the early, median, mean and late arrival 

times before and after upscaling using the best p-exponent for each realization 

5.7. Conclusions 

Stochastic solute transport upscaling using real data from a tropical soil was 

performed. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion 

and retardation factor were done using different techniques of varying complexity. 

Macrodispersion coefficients were determined considering heterogenous 

conductivities and dispersivities at the local scale. Uncertainty analyses were also 

performed to evaluate how uncertainty propagates after upscaling.  

Upscaling of the hydraulic conductivity only, even when using a sophisticated non-

local method, was not enough to reproduce the BTCs at the coarse scale; there is a 

need to include a macrodispersion coefficient. The macrodispersion method can be 

used directly to quantify both the effects of heterogeneity of dispersivity and K at the 

local scale with a small relative bias. However, the inclusion of the macrodispersion 

coefficient in the transport equation at the coarse scale was not enough to properly 

describe the heterogeneous processes at the coarse scale. There is a need to include 

a fictitious R for the macrodispersion model to get a small relative bias. R was well 

reproduced at the coarse scale only when a specific p exponent was used for each 

realization. The best results were obtained for the mean and late arrival times, while 

the early arrival time resulted in the worst relative bias. The uncertainty was properly 

propagated after D upscaling only when a fictitious R was included. R upscaling 
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propagated well the uncertainty for the early and mean arrival times. The uncertainty 

was slightly overestimated for the median arrival time. Underestimation of the 

uncertainty was observed for the late arrival time. In general, the larger the arrival time, 

the larger the uncertainty. Lastly, the results obtained show that the upscaling of the 

solute transport can be incorporated to the practice of the numerical modeler even 

using commercial codes, but it may need some corrections as observed with the need 

to include a fictitious retardation factor in some cases.  
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Chapter 6. Conclusions 

In this thesis the main point was to study the scale effect on water flow and solute 

transport parameters by means of numerical, laboratory and field experiments. Aiming 

to define upscaling rules for the tropical soil studied, numerical studies consisted of 

application, comparison and analysis of sophisticated and simple average upscaling of 

hydraulic conductivity (K), hydrodynamic dispersion (D) and retardation factor (R). Both 

column experiments and miscible displacement tests were performed at laboratory in 

small and large-scale undisturbed soil column with the purpose of spatially 

characterize the parameters of interest and study the scale dependence in K, 

dispersivity (α) and partition coefficient (Kd). Double-ring infiltrometer (DRI) tests as 

well as infiltration in rectangular ditches were performed in the studied field in order to 

verify the scale dependence in K values, to compare with the laboratory results, and to 

evaluate the impact of the method of measurement. Some of the conclusions obtained 

are the following: 

• The studied soil presented dual-porosity and particles aggregates that played 

an important role in the retention. 

• Hydraulic conductivity, dispersivity, retardation factor, partition coefficient and 

hydrodynamic dispersion coefficient are highly heterogeneous at all scales. 

• Only a small-scale study would present improvements in the estimation of the 

α, K, and statistically significant variables due to cross-correlated variables 

since the spatial cross-correlation were only observed up to 2.5 m. 

• Results from laboratory and field tests showed that the scale effect can be 

attributed to heterogeneous arrangements in the soil sample that influence K, α 

and Kd values. 

• The cation (K+) partition coefficients were greater than the anion (Cl-) ones, in 

agreement with the soil characteristics that do not favor anion adsorption, given 

the low amount of organic matter and the negative charges in the surface of the 

soil particles. 
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• The fitted values for the partition coefficients are high, even for Cl-, which is 

commonly considered a nonreactive solute. 

• The results showed that K increases with scale, regardless of the method of 

measurement. 

• Dispersivity of K+ and Cl- displays a clear trend and increase with the sample 

height following exponential functions. 

• Partition coefficients, clearly tend to increase with sample volume, but also with 

sample length and diameter. These results can be explained for larger number 

of sorption sites as the volume increases together with the larger heterogeneity 

of those sites. 

• Upscaling K using the Laplacian-with-skin method gave excellent results 

showing small relative bias for the quantities computed both at the fine and 

coarse scales. Besides that, the uncertainty in specific discharge at x-direction 

is well captured by the upscaled K values. 

• The relative biases of specific discharge and of piezometric head tend to 

increase with block side size. 

• The upscaling using the p-exponent that best reproduces the Laplacian-derived 

Kv,l resulted in very good reproduction of the flow even for large block side 

sizes. 

• The variation of the p-exponent with the block side sizes was fitted with an 

exponential expression that gives p as a function of block side and allow the 

use of the p-norm in a practical, reliable and fast way for K upscaling in tropical 

soils of the studied region. 

• Only the upscaling of the hydraulic conductivity, even using a sophisticated non-

local method, was not enough to reproduce the breakthrough curves (BTCs) at 

the coarse scale. 

• The macrodispersion method can be used directly to quantify both the effects 

of the dispersivity at local scale and of the K heterogeneity with a small relative 

bias. 

• The macrodispersion model only worked well to reproduce hydrodynamic 

dispersion at coarse scale after the inclusion of a fictitious R the upscaling using, 

otherwise, the concentrations were overestimated at a given time. 
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• When a different p-exponent was used for each realization, R was well 

reproduced at coarse scale. 

• The uncertainty was properly propagated after D upscaling only when a fictitious 

R was included.  

• R upscaling propagated the uncertainty well for the early and mean arrival times, 

while overestimation was obtained for the median arrival time and 

underestimation for the late arrival time. In general, the bigger the arrival time, 

the bigger the uncertainty. 

• Finally, this thesis shows that there is scale effect on water flow and mass 

transport parameters for the studied soil. In this sense, we conclude that 

numerical model must be constructed with elements of a size similar to that at 

which the data were collected, or some upscaling rules must be postulated to 

render the model reliable for future predictions. 


