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ABSTRACT 
 

This study focuses on the spatial variations in vegetative roughness associated with 
morphological channel adjustments due to the presence of check dams in Mediterranean 
torrential streams. Manning’s n values were estimated using methods established by 
previous studies of submerged and non-submerged vegetation in laboratory flume 
experiments and field work. The results showed a linear decrease in shrub density and rate 
of variation of the roughness coefficient versus degree of submergence with increasing 
distance upstream from the check dam, while downstream, the filling of the check dam and 
the bed incision had the most influence. A regression analysis was applied by fitting the data 
to different models: relationships between Manning’s n and the flow velocity were found to 
be of the power type for shrubs in all upstream sections, while relationships of flow velocity 
versus hydraulic radius in the sections closest to check dams showed a good fit to second-
order polynomial equations.  
 
Key words: hydraulic resistance; vegetative roughness; Mediterranean torrential streams; 
check dams; southeastern Iberian Peninsula 
 
 
 
1. INTRODUCTION 
 
The complex flow dynamics around vegetation has led to a large amount of research on 
vegetative roughness, mainly conducted in laboratory flumes and through field monitoring 
in open channels and floodplains (Hession and Curran 2013). Vegetative roughness in fluvial 
systems is a critical characteristic influencing water-surface elevations and flow velocity 
(Defra/EA 2003), sediment transport (Wu et al. 2006) and channel adjustments (Sandercock 
et al. 2007). Extensive research has been carried out to develop resistance laws for channels 
with rigid and flexible vegetation under different flow stages (e.g. Kouwen and Fathi-
Moghadam 2000, Righetti and Armanini 2002, Okamoto and Nezu 2010, Aberle and Järvelä 
2013). Most of the previous studies specifically focused on the flow resistance of either the 
submerged or the non-submerged vegetation in the main channels. Some researchers 
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developed specific methods to estimate the roughness for flows over submerged and flexible 
vegetation (e.g. Kouwen and Unny 1973, Stephan and Gutknecht 2002, Kubrak et al. 2008). 
Others, such as Petryk and Bosmajian (1975), proposed models to estimate 
Manning’s n as a function of hydraulic radius and vegetation density for unsubmerged rigid 
vegetation. 
Later, different experimental models were presented for evaluation of the unsubmerged and 
submerged vegetation resistance by hydraulic and vegetative parameters (e.g. Wu et al. 
1999, Negm2008). More recently, Wynn-Thompson and Hall (2012) investigated the effect 
of clumping vegetation on flow resistance and developed an empirical equation for 
predicting the friction factor or drag coefficient in herbaceous emergent wetlands. Many 
theoretical and numerical investigations have also been performed, focusing mainly on 
evaluation of flow velocity and shear stress profiles and characterization of mean turbulence 
in vegetated channels (e.g. 
Shimizu and Tsujimoto 1994, Fisher-Antze et al. 2001, Defina and Bixio 2005, Souliotis and 
Prinos 2010, Devi et al. 2017). However, the vegetative roughness in ephemeral streams has 
received relatively little attention. 
Specifically, studies on hydraulic effects of riparian vegetation in gully headwaters are very 
scarce. Effects of manmade channel alterations on vegetation have not been widely studied 
up until now. Alterations to vegetation are considered to result in significant modifications 
to the resistance of vegetation during a flow, which then 
greatly affects the channel hydraulics (Freeman et al. 2000, Dombroski et al. 2013). Changes 
in the composition, location and density of vegetation communities, associated with channel 
adjustments caused by these structures, contribute to important changes in resistance and 
flow hydraulics. Previous research has analysed the impact of check dams on riparian 
vegetation along torrential streams. Conesa-García and Pérez-Cutillas (2007) related the 
location of check dams to the adjacent vegetation cover in ephemeral gullies in southeastern 
Spain, using high-resolution QuickBird imagery. Bombino et al. (2014) investigated the 
effects on riparian species 
diversity induced by check dams in torrent headwaters of southern Italy. Other work focused 
on the hydrological response of streams restored with check dams, where 
vegetation plays a significant role (e.g. Norman et al. 2016). The installation of check dams 
breaks the longitudinal continuity of flash floods, influencing hydrological and sediment 
connectivity (Boix-Fayos et al. 2008), and thus causes drastic changes in vegetation and 
significant hydraulic effects. Vegetation acts to increase roughness and slow velocities, 
causing sediment to be deposited, thus developing a feedback mechanism whereby 
deposition can occur upstream above the height of the dam (Nichols et al. 2016). 
Downstream of check dams, scour holes also condition the development of vegetation and 
therefore its resistance to the flow. Such morphological adjustments have been studied by 
numerous authors in semi-arid environments (Puigdefábregas and García-Ruiz 1985, Boix-
Fayos et al. 2007, 2008, 
Castillo et al. 2007, Conesa-García et al. 2007, Conesa-García and García-Lorenzo 2009a, 
Conesa-García and García-Lorenzo 2010, Castillo et al. 2014, Galia and Skarpich 2016). 
This paper focuses on the effects of these morphological channel changes on spatial 
variations of vegetative roughness induced by the presence of check dams in Mediterranean 
semi-arid environments. 
The primary objective of the present study was to analyse the influence of the check dams 
on the hydraulic resistance offered by the vegetation in corrected torrential channels. The 
patterns of vegetative roughness and the associated velocity distribution were determined 
from the biotechnical data described in Section 4.1 and the spatial variation in plant density 
(Section 4.2). Particular attention has been paid to changes in vegetative roughness 
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associated with variations in hydraulic geometry, affecting the hydraulic radius and degree 
of submergence upstream and downstream of the check dams (Sections 4.3–4.5). 
 
2. STUDY AREA AND SELECTED CHANNEL REACHES 

 
The Torrecilla stream catchment (15.5 km2) is located in the southeast of Spain (Figure 1), 

within the internal area of the Betic ranges. The hydrological and rainfall regime here is 

dominated by a clear tendency towards aridity: mean annual rainfall below 300 mm, 

potential annual evapotranspiration higher than 850 mm, and prolonged periods of drought 

(Conesa-García et al., 2007). This contrasts with torrential rainfall of over 100 mm in just a 

few hours or even in a few 10-min periods, concentrated in late summer or autumn. The 

geological characteristics show complex structures worn down by ablation and metamorphic 

materials (slate, philites, schists, quarzites), locally mixed with sandstone and conglomerates 

rich in slates. The dense drainage network of this area produces a relief of rounded 

interfluves and channels that are generally not embedded (Figure 1). The high erodibility of 

the slatey schist materials and the steep mean slope of the catchment (32%) lead to high 

scouring potential (Conesa-García and García-Lorenzo, 2009b). 

The natural vegetation belongs to a transition zone between two bioclimatic stages: the upper 

thermo-Mediterranean and the warm meso-Mediterranean with a semi-arid ombroclimate 

(Alcaraz et al., 1999). Clear examples of this transition are found in the plant formations 

occupying ephemeral channels, known locally in Spain as ramblas, and gullies. In the lower 

reaches of the Torrecilla rambla there are small patches of the Almerian macroseries of 

ramblas characterized by Ziziphus lotus and Nerium oleander, with quite frequent and dense 

occurrences of Retama sphaerocarpa and Tamarix canariensis. In the middle and upper 

reaches there remain small riparian vestiges of Populus nigra with Rhamnus alaternus and 

N. oleander. All stretches show the presence of grasses (e.g Stipa tenacissima, Dittrichia 

viscosa), canes and reeds (e.g. Arundo donax and Phragmites australis), small shrubs (e.g. 

Ballota hirsuta, Genista umbellata), and scrubs (e.g. Artemisia barrelieri, Rosmarinus 

officinalis, Bassia scoparia). To combat the erosion in this area the Spanish government, 

through the Ministry of Agriculture, approved and implemented a forestry-hydraulic 

restoration project, which includes the repopulation of 1237 ha with pine (Pinus halepensis) 

and the construction of 33 check dams, the majority between 1972 and 1979, four between 

1986 and 1988, and others after 1995. These check dams cause morphological adjustments 

both upstream (Up) and downstream (Dw), resulting in local changes in the spatial 
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distribution of the riparian vegetation, as shown by the NDVI index values estimated for a 

10-m buffer around the talweg (Conesa-García. and Pérez Cutillas, (2007) (Figure 1). 

The studied reaches were selected according to the location of the check dams within the 

basin, their level of filling, the materials used in their construction, and the type of structure. 

In particular, three channel reaches affected by check dams were analyzed: a first reach with 

a gabion mesh dam located in the lower part of the Torrecilla rambla (T1), a second, with a 

masonry dam in the middle-lower part (T2), and a third, with a gabion structure, in the 

middle (T3) (Figures 1 and2). 

The T1 check dam is a 2.7-m-high gabion construction, built in 1975. It is the closing dyke 

for the entire basin, but today it is no longer operational as a sediment trap since it has lost 

practically all of its storage capacity. This function has been taken upstream by the 6.7-m-

high T2 dam, built in 1996 with hydraulic masonry. In both cases, a vertical bed incision 

took place next to the base of the dam, which continues the formation of a new, relatively 

modest channel excavated on top of the alluvial sediments themselves. The materials 

released in the incision process are evacuated from this channel and deposited downstream 

when the flow loses transport capacity. Previously, during the filling phase of the check dam, 

the floodwater loses much of its sediment load downstream and the bed is impacted by linear 

erosion, and the rocky substrate is exposed locally. Greater morphological adjustment is 

shown by the reach T3, located in the middle part of the stream. The check dam built in this 

reach has an age similar to that of the final stretch (T1) and, with a height of 3.9 m, is almost 

blocked (it is only 0.5 m shy of being completely filled). Upstream, the sedimentary wedge 

appears well defined, and presents areas of temporary water logging in the vicinity of the 

transverse structure. Downstream, the scour hole reaches a certain longitudinal development, 

its depth being restricted by the outcropping of the metamorphic substrate. 

 

3. MATERIAL AND METHODS 

 

3.1. Field Data and Measurements 

 

To estimate vegetative roughness, different reference reaches, which have a channel length 

of 90–250 m and a width of 12–25 m, were selected both upstream (Up) and downstream 

(Dw) of the three check dams T1, T2 and T3 (Fig. 2). Reach T1 is affected by a completely 

silted dam, while the check dams located in the T2 and T3 reaches are filled to about 20 and 

75% of their capacity, respectively. Field data, including topographic and biotechnical 
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measurements, were collected during the period from December 2013 to February 2014, 

along sedimentary wedges and scour holes located upstream and downstream of the dams, 

respectively. 

 
Figure 1. Location of the selected reaches in the Torrecilla catchment. Circles represent locations of 
check dams and sampling reaches. 
 

For each reach (Up and Dw), biotechnical measurements were taken along three sections of 

20 m length, starting at the beginning of each third of the sediment wedges and the scour 

holes generated by the dams: (1) close to the dam, avoiding the immediate area of turbulent 

flow; (2) located in the middle third of each studied reach; and (3) the farthest section from 

the check dam, within the last third. Thus, each reference reach consisted of three upstream 

monitoring sections (Up1, Up2 and Up3) and three downstream sections (Dw1, Dw2 and 

Dw3), whose enumeration represents their location relative to the dam. When the total length 

of a sedimentary wedge or scour hole allowed, a separation strip of 5 m was established 

between each pair of consecutive sections, to avoid possible mixing of the sampled 
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individual plants at their boundaries (Fig. 3). As a general criterion, upstream and 

downstream of the dam, a flow length of 20 m projected over the vegetation was adopted 

within each section. 

 

Figure 2. Riparian vegetation consisting mainly of oleanders (Nerium oleander), reeds 

(Phragmites australis), retama (Retama sphaerocarpa), and taray (Tamarix canariensis), 

which was especially dense upstream of the check dams studied (T1, T2 and T3). Stipa 

tenacissima dominates both the hillside and the old beds, currently hanging above the scour 

hole excavated downstream of these dams. 
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Channel geometry and bed topography were obtained for each survey reach, using a Leica 

TCR 1103 total station and a Trimble 5700 dual-frequency GPS receiver. The GPS 

information was processed with Trimble Geomatics Office and Leica Survey Office software 

to obtain a common CAD-exportable file. This process gave centimetric precision in the 

digital elevation models thus generated and in the topographic profiles extracted from them. 

The study cross-sections were located in straight or non-sinuous channel reaches with little 

geometric variation, avoiding the proximity of gully junctions and turbulent sectors. Each 

channel cross-section selected for measurement was judged to be representative or typical 

after inspecting the entire reach. 

 

 

Figure 3. Explanatory sketch of the method used to delineate the sections where the 

transverse profiles of the channel and the biotechnical measurements of the vegetation were 

made. 
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3.2. Calculation of the Vegetative Roughness  

 

3.2.1. Roughness of shrubs and scrubs  

 

The method proposed by Freeman et al. (2000) was adopted for the calculation of the 

vegetative roughness factor, for conditions of partially (Eq. 1) or totally (Eq. 2) submerged 

vegetation. 

݊௩ ൌ 3.487 ൉ 	10ିହ ቆ
௦ܧ ൉ ௦ܣ

ߩ ൉ ଵܣ
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൉ ൬
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଴.ଶସଷ

൉ ሺܯ ൉ ଵܣ
∗ሻ ଴.ଶ଻ଷ ൉ ൬

ߥ

∗ܸܴ݄
൰
଴.ଵଵହ

൉ ቆ
ܴ݄ଶ/ଷܵଵ/ଶ

∗ܸ
ቇ 

(2)

 

 where ES is the modulus of plant stiffness (N/m2); ρ, the fluid density (kg/m2); As, the total 

cross-sectional area of all of the stems of an individual plant measured at h/4 (m2); A1, the 

frontal area of an individual plant blocking flow (m2); A1
*, the net submerged frontal area of 

a partially submerged plant (m2); M, the relative plant density (plants/m2); hs, the shrub 

height (m); hw, the water depth; ν, the fluid dynamic viscosity (m2/sec); V*, the  shear 

velocity (m/s), and S, the bed slope (dimensionless). The modulus of stiffness (ES) was 

estimated according to the equation of Freeman et al. (2000) (Eq. 3), obtained from field and 

laboratory assays: 

 

௦ܧ ൌ 7.648 ൉ 10଺ሺ݄௦ ⁄௦ܦ ሻ ൅ 2.174 ൉ 10ସሺ݄௦ ⁄௦ܦ ሻଶ ൅ 1.809 ൉ 10ଷሺ݄௦ ⁄௦ܦ ሻଷ (3)

 

A and A1* can be approximated by the equivalent rectangular area of blockage: 
 

ଵܣ ൌ ሺ݄௦ െ ܾ݄ܿሻ ൉ ௖ (4)ܦ

ଵܣ
∗ ൌ ሺ݄௪ െ ܾ݄ܿሻ ൉ ௖ (5)ܦ

while As can be calculated as:  
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௦ܣ ൌ ߨ ൬
௦ܦ
2
൰
ଶ

൉ ݊௦ (6)

 

where Ds is the trunk diameter (m); Dc, the crown diameter (m) of an individual plant; cbh, 

the crown base height (m), and ns, the number of stems. 

 

3.2.2. Roughness of the herbaceous vegetation 

 

The roughness of the herbaceous plants upstream and downstream of the check dams was 

estimated using the parameters established by Kouwen and Unny (1973), Kouwen and Li 

(1980), and Kouwen (1988) in laboratory flume experiments and field work. In particular, 

Kouwen’s (1988) algorithm for grasses was applied to different submergence ratios (y/h) 

and hydraulic radii (Eq. 7).  

 

݊௩ ൌ 	 ቎	
1

ܽ ൅ ܾ ݃݋݈ ቀܴ݄݇ ቁ
቏
ܴ݄ଵ ଺⁄

ඥ8 ݃
 (7)

  

where nv is the Manning roughness coefficient for the vegetated channel area; Rh, the 

hydraulic radius of the channel; g, the acceleration due to gravity; k, the deflected roughness 

height of the grass stems, defined by Eq. 11; and parameters “a” and “b” are a function of 

shear velocity (V*), relative to critical shear velocity (V*
cr), where the critical shear velocity 

depends on the density-stiffness property of the grass stems. V* is defined by Eq. 8 from the 

bed shear stress (τ0) and water density (ρ), and V*
cr, is the minimum value computed from 

equations 9 and 10. 

ܸ∗ ൌ ඨ
߬଴
ߩ

 (8)

   

ܸ		௖௥∗ ൌ 0.028 ൅ 6.33 ܫܧܯ ଶ (9) 

ܸ		௖௥∗ ൌ 0.023 ܫܧܯ ଴.ଵ଴଺ (10)

  
Where MEI is an empirically defined vegetation parameter which represents the equivalent 

plastic flexural rigidity and density-stiffness. This refers to three significant stem properties: 

the stem density (M), the stem’s modulus of elasticity (E), and the stem area’s second 
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moment of inertia (I). The deflected roughness height of the vegetation (k) was calculated, 

using the Kouven and Li equation (Eq. 11), as a function of the amount of drag exerted by 

the flow and the parameter MEI: 

݇	 ൌ 	0.14 ݄௛		

ۏ
ێ
ێ
ۍ ቀ߬ܫܧܯ଴

ቁ
ଵ/ସ

݄௛
ے
ۑ
ۑ
ې
ଵ.ହଽ

 (11)

 

where τ is the bed shear stress, MEI the flexural rigidity, h the un-deflected vegetation height 

(m), and τ0 the bed shear stress (N/m2). MEI was calculated according to the equations 

provided by Darby (1999), from the specifications of Temple (1987) for growing and 

dormant grasses (Eqs. 12 and 13, respectively), as follows: 

 

ܫܧܯ ൌ 319 ݄௛
ଷ.ଷ (12)

ܫܧܯ   ൌ 25.4 ݄௛
ଶ.ଶ଺ (13)

   

Finally, the vegetative roughness was estimated for the overall channel (nvc), which includes 

vegetated stretches and active bed forms (natural bare bed surface), using:  

    ݊௩௖ ൌ 	 ሾ݊௩ ൉ %ሺܣ௩ሻሿ/100             (14) 

 

where nv is the vegetative roughness corresponding to the vegetated part of the channel (Av), 

and %(Av) is the percentage of vegetated area of the channel. The resistance data thus 

obtained were related to the flow velocity values estimated by the Manning equation (Eq. 

15) for different hydraulic radii, and then analyzed using regression analysis, by fitting them 

to trend models. 

    ܸ ൌ 	 ሺ1 ݊⁄ ሻܴ݄ଶ ଷ⁄ ܵଵ ଶ⁄              (15) 
 

where V is the mean velocity, n is Manning's roughness coefficient, Rh is the hydraulic 

radius, and S is the slope of the water sheet. 

 

4. RESULTS AND DISCUSSION 

The great spatial variability of the vegetation cover observed in the stretches of the studied 

stream results in values of global roughness that are also variable and bring about appreciable 

changes in the hydraulic regime. These changes, caused by the check dams, translate into 
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variations in the velocity and height of the floodwater over short distances, usually 

associated with substantial morphological adjustments in the channel (Galia and Skarpich, 

2016).  

 

4.1. Biotechnical data of the vegetation obtained for channel reaches with check dams 

The patterns of vegetative roughness and the associated velocity distribution were 

determined mainly by the different structural characteristics of each type of vegetation. 

Tables 1 and 2 show, by way of example, the values of the biotechnical parameters used in 

the calculation of the shrub and herbaceous roughness of reach T3, for flows with a hydraulic 

radius of 0.5 m. This hydraulic radius corresponds to 10-year flood peak discharges, 

generally responsible for the new bankfull channels developed downstream of these check 

dams (Conesa-García y García- Lorenzo, 2009c).  

 
Table 1. Biotechnical parameters of the shrub and scrub vegetation upstream (Up) and 

downstream (Dw) of the check dam T3, for Rh = 0.5 m 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VT = vegetation type; TC = Tamarix canariensis; NO = Nerium oleander; SC = Scrubs;  
ES = modulus of plant stiffness (N/m2); N = number of plants along a channel reach having length L (m); AS = 
total cross-sectional area of all of the stems of an individual plant measured at h/4 (m2); A1 =  frontal area of 
an individual plant blocking flow (m2); A1* = net submerged frontal area of a partially submerged plant (m2); 
M = relative plant density (plants/m2); Ds = trunk diameter (m); Dc = crown diameter (m) of an individual 
plant; hs = shrub height; cbh = crown base height (m). 
 

Sección VT ES AS A1 A1
* M Ds Dc hs cbh 

Up1 

TC 226364247 8.04 3.3 1.52 0.02 0.02 5.5 2.2 0.04 

NO 253710222 0.79 1.4 0.66 0.06 0.03 1.5 0.8 0.03 

SC 1403348612 0.49 0.9 0.46 0.25 0.01 1 0.7 0.012 

Up2 
TC 573890664 7.07 2.9 1.36 0.01 0.05 3.1 2.3 0.03 

NO 532698496 5.31 2.1 0.92 0.05 0.05 3.4 2.2 0.06 

SC 686559399 0.43 0.8 0.41 0.32 0.01 0.9 0.7 0.013 

Up3 
TC 573890664 7.07 2.9 1.36 0.01 0.05 3 2.3 0.03 

NO 307156025 7.74 3.2 1.34 0.01 0.08 4.1 2.3 0.075 

SC 495598309 0.34 0.8 0.4 0.29 0.02 0.9 0.8 0.015 

Dw1 
TC 573890664 7.07 2.9 1.36 0.01 0.05 3.1 2.3 0.03 

SC 1269921507 0.09 0.5 0.26 0.22 0.01 0.6 0.6 0.012 

Dw2 
NO 532698496 5.3 2.1 0.92 0.05 0.05 3.4 2.2 0.06 

SC 1262373000 0.34 0.9 0.42 0.21 0.01 0.9 0.7 0.01 

Dw3 SC 715255404 0.28 0.7 0.33 0.26 0.014 0.7 0.7 0.014 
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From Table 1, it can be inferred that the stiffness modulus of the woody plants (Es) exerted 

its greatest influence on the vegetative roughness in the section upstream of the dam (Up1), 

with an Es value of 14.03·108 N/m2, and decreased with the distance from the said structure, 

reaching 3.07·108 N/m2 for Up3. Downstream, the relative influence of this module was also 

greater in the sections closest to the dam, where the values of Es were maximal, around 

12.65·108 N/m2. The number of individuals (N) was increased in the sections furthest from 

the dam in the Dw sub-reach, while the mean cross-sectional area of the scrub measured at 

h/4 (As) decreased from Up1 to Up3 and from Dw3 to Dw1. 

In all sections, Tamarix canariensis had similar values of stiffness (2.25·108 N/m2 < Es < 

5.75·108 N/m2), As (7-8 m2), and A1* (1.36 to 1.52 m2). In contrast, in the case of Nerium 

oleander and the scrubs, a wider range of values was observed for these parameters, 

depending on the distance to the check dam (Table 1). It is noteworthy also that the shrub 

species had a greater presence in the Up sections. 

Regarding the biotechnical parameters of the herbaceous vegetation, the height of deflected 

roughness of this type of plant (factor k) decreased slightly from Up1 to Up2 and from Dw2 

to Dw1, the empirical parameter of stiffness (MEI) varied in the same way, and the relative 

density of plants (M) was much lower throughout Dw and in Up3 (0.1 individuals/m2) than 

in Up1 (0.33 individuals/m2) (Table 2). 

 

Table 2. Biotechnical parameters of the herbaceous vegetation and hydraulic variables 
upstream (Up) and downstream (Dw) of the T3 check dam, for Rh = 0.5 m. 

 

Section τ0  V* V*
c V*/V*

c N M K hh a b MEI

Up1 117.7 0.34 0.32 1.08 49 0.33 0.074 0.92 0.2 2.7 21.27 

Up2 132.4 0.36 0.31 1.18 30 0.16 0.068 0.8 0.2 2.7 15.34 

Up3 147.1 0.38 0.34 1.13 18 0.10 0.070 1.21 0.2 2.7 39.04 

Dw1 137.3 0.37 0.27 1.36 15 0.10 0.057 0.49 0.2 2.7 5.07 

Dw2 152.0 0.39 0.31 1.25 13 0.09 0.065 0.84 0.2 2.7 17.13 

Dw3 156.9 0.40 0.31 1.26 26 0.12 0.065 0.87 0.2 2.7 18.74 

 

τ0 = bed shear stress (N/m2); V* = shear velocity (m/s); V*
cr = critical shear velocity; V*/V*

cr = ratio between 
shear velocity and critical shear velocity; N = number of plants along a channel reach (m); M, the relative plant 
density (plants/m2); K = Deflected roughness height of herbaceous vegetation, defined by Eq. 11; hh = local 
height of the strips; a and b = relative roughness parameters depending on the ratio between the shear velocity 
and its critical value;  MEI = empirical vegetation stiffness parameter. 
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4.2. Spatial variation of the vegetation density in channel reaches controlled by dams  

 

The check dams have had an important effect on the spatial distribution and density of the 

bed vegetation (M) (Figure 5). Upstream (Up), the density of vegetation tended to decrease 

progressively according to the distance to the dam, while downstream (Dw) the reverse 

happened. In addition, except for T2, whose downstream end barely showed any structural 

influence, the vegetation cover in the upstream section furthest from the dyke (Up3) was 

denser than in the most distant section downstream (Dw3). This behavior was particularly 

accentuated in the lower reach of the channel, especially in the closing dam (T1). In the 

middle-lower and middle stretches the differences between sections within each sub-reach 

were reduced, although the contrast was maintained from one sub-reach to another. 

The spatial variation of plant density along the bed was closely related to the morphological 

adjustments caused by the dams (Boix-Fayos et al., 2007; Bombino et al., 2010, 2014). In 

all cases, the upstream section closest to the dam (Up1) had a higher vegetation density (M 

> 0.3 individuals/m2). This section is located in the area that, since the construction of the 

dam, has suffered the greatest accumulation of water and sediments at times of flash floods. 

However, the degree of plant colonization and the nature of the dominant vegetation in these 

sections depend on the type of construction and the state of the dam. Overfilled check dams 

(e.g. T1) induce a significant reduction of the bed slope upstream (Up) and of the flow 

velocity, compared to what existed before construction (Conesa-García et al., 2007). In dams 

with 50% refill (e.g. T3), the greatest bed slope reduction and average shear stress are still 

produced immediately upstream of the check dam, in Up1. In this case, almost all the 

sedimentary wedge is covered by shallow waters and waterlogged sectors during the flood 

events, which ensures the wetting of the bed for several days or weeks and favors the growth 

of herbaceous plants, sedges, and reeds (M = 0.33 individuals/m2). Check dams with refill 

equal to or less than 20% (e.g. T2) represent recently built dams, where geomorphological 

effects are still incipient. Upstream from these check dams the channel morphology has 

hardly changed; there is also a reduced flat base formed on a thin layer of pebbles and 

gravels. The vegetation cover has undergone fewer changes than in the previously described 

cases, and different types of vegetation had similar occupation densities, although with a 

slight predominance of scrubs (M = 0.25 individuals/m2). The vegetation cover became 

somewhat less dense towards section Up2 and decreased notably in Up3 (Figure 4).  
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Figure 4. Density of the vegetation obtained for different formations and individuals in the 

upstream (Up) and downstream (Dw) sub-reaches of the studied check dams. 
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The vegetation was less dense in the stretches downstream of the check dams (Dw), a 

consequence of greater geomorphological activity (intense excavation and superficial 

washing of the bed). The scouring bed-forms produced here reach their maximum 

development before the check dams are refilled, frequently when the fill-up constitutes two-

thirds of the structure’s initial capacity (Conesa-García and García-Lorenzo, 2009b). Later, 

sediment provision recommences, draping the bedrock and boulders previously uncovered 

by erosion, while bed elevation remains relatively stable after the local erosion at the base 

of the check dam develops (maximum stability phase). These morphological adjustments are 

in accordance with those observed downstream of check dams in arid gully headwaters 

(Nyssen et al., 2004) and semi-arid watersheds (Polyakov et al., 2014; Norman et al., 2016). 

When the check dam is empty or there is little sediment, as at T2, the alluvial substrate, due 

to its permeable nature, allows sub-superficial flow under the structure. In this way a hole 

develops immediately downstream of the check dam, usually being smaller than those 

caused by the hydraulic jump. As a result of this, Dw1 was the section with the lowest 

vegetation density of all those analyzed. In the downstream direction, the presence of 

vegetation was more evident in the sections furthest from the dam (Dw2 and Dw3), where 

the effects of the erosion wedge fade.  

 

4.3. Variation of the vegetative roughness with the degree of submergence  

 

The contributions of different vegetative roughness types to the total flow resistance depend 

strongly on the type and combination of the vegetation and the variability exhibited in 

relation to submergence levels (Wu et al., 1999; Järvelä, 2002). Such variability is even more 

marked during flash floods that affect ephemeral channels corrected by check dams. Under 

these conditions, the roughness of the vegetation can register very frequent and abrupt 

changes, associated with rapid variations of the degree of submersion, which is defined as 

the ratio of the flow depth (y) to the height of the vegetation (h). 

Figure 5 shows the variations of nv with respect to the ratio y/h estimated for two types of 

characteristic shrubs in the Up sections of the dams studied: T. canariensis and N. oleander. 

From Figure 5, it is easy to see that the nv distributions have similar positive trends. In all 

cases, nv increases linearly as y/h rises. This result is in accordance with the previous 

hypothesis of Temple et al. (1987), who attributed the increase in the unsubmerged 

vegetative roughness coefficient to the greater bulk of overbank vegetation and 

branches/leaves encountered with the increasing depth. In particular, the frontal area of these 
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shrubs blocking the flow (A1) and the net submerged frontal area when they are partially 

submerged (A1
*) increased with the height of the flow in all the flash floods of Rh ≤ 1.5 m. 

Also, Fathi-Moghadam and Drikvandi (2012) found a linear increase in the n-value with 

increasing density and ratio of submergence for taray, in both cases due to increasing 

roughness elements. 

 

Figure 5. Relationships between Manning’s nv and the degree of submergence, y/h, for 

shrubs (Tamarix canariensis and Nerium oleander) upstream from check dams T1, T2 and 

T3. 
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However, the rate of variation of nv versus the submergence ratio differed depending on the 

species type and the development of the species. Taking as an example the section 

immediately upstream of T1 (Up1), as y/h rises from 0.1 to 0.7, there was an increase in A1* 

of 1.37 m2 and an increase in nv of 0.077 for T. canariensis, while for N. oleander such 

increases were somewhat smaller (ΔA1* = 0.86 m2 and Δnv= 0.062). With the distance from 

this dam, also the density of taray decreased- which, together with the lower values of Es, 

As, and A1* of this species in sections Up2 and Up3, means that the rate of variation of nv 

with respect to y/h decreased in an upstream direction. This was not the case with N. 

oleander, whose biotechnical parameters did not seem to be affected by the proximity to the 

check dam. Although incipient, the influence of the T2 dam was noticeable in the behavior 

of both types of shrub in the Up sections, especially for T. canariensis, whose nv value 

exhibited practically the same range of increase as in T1, y/h passing from 0.1 to 0.5. In T3 

the tarays had a lesser development and maturity, in addition to a very low density (M < 

10%); therefore, the effect of the submergence ratio was less significant. It is of note that the 

channel section affected by this check dam, still in the process of filling, was undergoing 

intense geomorphological activity. 

The roughness of the scrub and herbaceous plants showed different patterns. The scrub, less 

flexible in low-water conditions, offered greater initial resistance to the flow, associated with 

moderate roughness values that tended to increase to the submersion level (y/h ≥ 1) (Freeman 

et al., 2000), from which point this tendency changed with the height of the water. In 

contrast, in the case of herbaceous plants, the decrease in roughness in relation to the ratio 

y/h was continuous. The Manning's nv value calculated for herbaceous plants in the present 

study is in agreement with the results of El Hakim and Salama (1992), Reza Mahbub and 

Suzuki (1998), and Abood et al. (2006). The deflected height and the Manning's nv value 

decreased with increasing flow depth and velocity. Following total submersion, the 

coefficient nv decreased at a smoother rate relative to the ratio y/h, no longer depending on 

it after y/h reached a value of 2. Both patterns include specific modalities depending on the 

channel stretch affected by the dam. 

Figure 6 shows the relationships between Manning's nv and the degree of submergence, y/h, 

for scrubs upstream (Up) and downstream (Dw) of check dams T1, T2, and T3. The pattern, 

represented by the Up sections of the T1 and T3 stretches, is characterized by: i) a larger 

increase in nv associated with the increase in the ratio y/h until the minimum levels of 

submersion (1 < y/h < 1.25) in the sections closest to the dam, where the maximum difference 

is reached with respect to the most distant ones (Δn > 0.01); (ii) a high rate of increase of nv 
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up to y/h = 0.75 in the non-submersion phase in all cases, followed by a lower rate of climb 

until y/h = 1.25 in the sections furthest from the dam; (iii) a smoother, progressive descent 

of nv until y/h = 2.5, with roughness values becoming lower as the distance to the dam 

lengthens (e.g. for y/h = 2, nv decreases from 0.032 in Up1 (T1) to 0.024 in Up3 (T1), and 

from 0.035 in Up1 (T3) to 0.027 in Up3 (T3)). On the other hand, downstream, except in 

section T2, the scrubs exhibited less roughness than upstream, especially in the section 

closest to the dam (Dw1), where for y/h = 0.75 Manning's nv fell approximately 37% with 

respect to Up1. 

 

Figure 6. Relationships between Manning’s nv and the degree of submergence, y/h, for 

scrubs upstream (Up) and downstream (Dw) from check dams T1, T2 and T3. 
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The relationships between the scrub nv and the degree of submergence appear to depend here 

more on the filling state of the check dam and the degree of incision of the downstream bed 

than on the distance from the dam. Thus, for example, in T3 (a check dam with 75% filling 

and an active scour hole) the curves representing these relationships are parallel, indicating 

a similar rhythm of descent and rise of nv according to the ratio y/h. On the other hand, the 

curves of T1 (completely filled with sediment up to the crest of the dam and with bedload 

transport in the downstream restoration phase) exhibit a double behavior pattern: first, in 

low-water conditions, until it exceeds the submersion level, nv rises and falls at a distinct rate 

according to the section, and then, starting from y/h = 1.25, it decreases progressively and to 

the same extent in all sections. 

 

The pattern shown by the herbaceous plants also presents two different modalities according 

to the sub-reaches (Up or Dw). Generally, upstream of the check dams, the herbaceous plant 

roughness varied unevenly from one section to another according to the ratio y/h. For 

example, in T2, the coefficient nv versus y/h was usually higher in the densely vegetated and 

near-dam section, Up1, with values of 0.037 for y/h = 1 and 0.026 for y/h = 2, and tended to 

decrease with distance to the dam in less vegetated sections. These results show good 

agreement with the findings of Järvelä (2002b), for both submerged and unsubmerged 

conditions and high herbaceous plant density, and with the results obtained by Maghdam 

and Kouwen (1997), at low vegetation density. Manning's nv decreased with rising flow 

depth and with increasing velocity in all the Up sections. By contrast, downstream (Dw), the 

values of nv with respect to the degree of submergence were lower than Up, but there were 

hardly any differences between sections due to the intense erosive activity that affects the 

whole sub-reach. 

 

4.4. Changes in vegetative roughness associated with variation of the hydraulic radius  

 

New bed forms originated by the construction of dams introduce significant changes in the 

channel geometry, therefore, in the hydraulic radius, on which depends the degree of 

roughness of the vegetation (Sandercock et al., 2007). The water depth, and particularly the 

hydraulic radius, has an unequal effect on the vegetative roughness, depending on the 

biotechnical characteristics of each species or plant formation, and whether it is totally or 

partially submerged (Coon 1998; Defra/EA, 2003; Mustaffa et al., 2016). Figure 7 displays 

the relationship between the hydraulic radius and the vegetation roughness coefficient (nv) 
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estimated for different shrub and scrub formations in the sections upstream of the final check 

dam (T1). It shows clear behavioral differences in the hydraulic resistance offered by shrubs 

and scrubs, depending on the variation of the hydraulic radius and the relative distance to 

the dam. For example, larger shrubs - such as T. canariensis, N. oleander, or R. sphaerocarpa 

(the latter included in the category of "Other shrubs") - showed elevated hydraulic resistance 

due to their structure, height, and poor flexibility, with roughness (nv) values increasing in 

linear progression with the hydraulic radius from Up3 to Up1 and from Dw1 to Dw3. This 

is in agreement with the linear relationship between the effective-drag coefficient for verified 

n values and the hydraulic radius, in densely wooded cross-sections, found by Arcement and 

Schneider (1989). 

By species, the maximum value of nv corresponds to T. canariensis in the Up1 section (nv = 

0.037, 0.07, and 0.12 for Rh = 0.5, 1.0, and 1.5 m, respectively) (Figure 7). In the rest of the 

Up sections, this species also exerts the greatest hydraulic resistance, albeit to a slightly 

lower degree. These results are consistent with findings from Masjediet al. (2009) and Fathi-

Moghadam et al. (2011), who obtained a higher value of n for taray in comparison to other 

shrubs and even poplars. The increased channel roughness caused by taray stems contributes 

highly to increase deposition of sediment along all of this channel reach, in line with the 

findings of Everitt (1980). Other retama-type shrubs (e.g. R. sphaerocarpa) and N. oleander 

maintained nv values above 0.05 in flash floods with Rh exceeding 1 m, adopting the same 

pattern of decreasing roughness from Up1 to Up3. 

The roughness of the scrubs had a very different pattern: the coefficient nv increased with 

the hydraulic radius up to Rh = 0.75 m, a threshold from which most of the existing scrubs 

in Up (T1) were submerged and nv began to decrease. Also, the loss of scrub roughness 

associated with increasing distance from the dam increased noticeably with the hydraulic 

radius when the scrub was totally submerged, and to a lesser degree under partial immersion. 

As a result, Manning’s nv values calculated for this type of vegetation do not appear to be 

normally distributed along all of the restored channel reach; in accordance with Dombroski 

et al. (2013), species-specific parameters could cause the calculated roughness values to be 

biased low. 
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Figure 7. Roughness coefficient nv versus hydraulic radius, calculated for shrub and scrub 

vegetation upstream and downstream of check dam T1. 

 

The roughness of the herbaceous vegetation also decreased with the hydraulic radius at a 

higher rate in the sections upstream of the check dams, especially in Up1 (e.g. in Up1-T1, nv 

is reduced by 0.045 when Rh rises from 0.25 to 1.5 m). However, the differences in nv 

between sections within the same sub-reach did not maintain the same pattern in all cases. 

In flows with a low hydraulic radius (Rh = 0.25 m), the range of nv variation along the whole 

channel sub-reach, upstream and downstream of the dam, was very similar (for T1, Δnv Up3 

to Up1 = 0.012; Δnv Dw1 to Dw1 = 0.011). The trend changed when the hydraulic radius 

increased and the factor k started to show a smaller relative effect on the vegetative 

roughness. Thus, differences in herbaceous plant roughness became more pronounced 

between the sections of the sedimentary wedge than between those monitored downstream, 

within the new embedded course (for T1 and Rh = 1.5 m, ∆nv Up3 to Up1 = 0.003; ∆nv Dw1 

to  Dw1 = 0.007).  

The differences in vegetation roughness between sections upstream and downstream of the 

check dams are even more conspicuous if one considers the morphologically active zones 

along the channel. Field observations revealed that these retention structures changed the 
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distribution of vegetated patches and created new areas of local erosion and deposition, thus 

altering the impact of vegetation on channel roughness (Gurnell et al., 2006; Hession and 

Curran, 2013).Table 3 and Figure 8 show the vegetative roughness estimated for the entire 

channel section (nvc), including scour holes, pools, and riffles, for different hydraulic radii, 

upstream and downstream of the studied check dams. Upstream, the sediment wedge is 

crossed by a minor channel which usually ends by forming pipes close to the gabion 

structure, while downstream a scour hole is developed, followed by final gravel bars. These 

active bed forms, devoid of vegetation, occupy differing proportions of the surface on the 

two sides of the dam, thus influencing, in an uneven manner, the overall vegetative 

roughness (nvc) of both sub-reaches of the channel. 

 

Table 3. Values of vegetative roughness calculated for the overall channel (nvc), upstream 
and downstream of check dams T1, T2, and T3, at different hydraulic radii. 

 

Channel 
reach 

Rh (m) 
Up sections Dw sections 

Up1 Up2 Up3 Dw1 Dw2 Dw3 

T1 

0.25 0.015 0.014 0.013 0.007 0.009 0.015 
0.5 0.029 0.026 0.023 0.019 0.021 0.030 

0.75 0.036 0.035 0.029 0.018 0.025 0.029 
1 0.038 0.037 0.034 0.017 0.027 0.026 

1.25 0.041 0.038 0.041 0.015 0.031 0.025 
1.5 0.044 0.042 0.036 0.014 0.033 0.024 

        

T2 

0.25 0.015 0.014 0.014 0.012 0.014 0.014 
0.5 0.031 0.032 0.028 0.024 0.026 0.029 

0.75 0.033 0.030 0.030 0.030 0.034 0.036 
1 0.033 0.028 0.030 0.026 0.031 0.033 

1.25 0.036 0.027 0.031 0.025 0.029 0.031 
1.5 0.038 0.027 0.032 0.023 0.027 0.029 

        

T3 

0.25 0.042 0.032 0.016 0.016 0.014 0.016 
0.5 0.038 0.036 0.032 0.024 0.027 0.028 

0.75 0.036 0.041 0.038 0.022 0.030 0.031 
1 0.034 0.038 0.035 0.020 0.027 0.026 

1.25 0.030 0.034 0.029 0.017 0.023 0.023 
1.5 0.028 0.032 0.027 0.014 0.019 0.020 

 

 

The greatest contrast of the vegetative roughness of the channel was marked by the 

differences between the nvc values of the sections closest to the dam (Up1 and Dw1) (Figure 

8). This contrast was maximal around the check dams with fillings of 50 to 75% (e.g. T3), 

decreased as the dam filled up and bedload transport was restored (e.g. T1), and barely 

existed during the initial filling phase (e.g. T2).  
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Figure 8. Radial graphs showing the nvc values estimated for different channel sections 

and hydraulic radii. 
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The patterns of variation of nvc as a function of Rh had, however, a closer relationship with 

the density of vegetation and the type of plant formation dominant in each channel reach. In 

general, with similar density values, in sections with predominance of shrubs, the values of 

nvc tended to increase with the hydraulic radius (Up1, Up2, and Dw2 in T1; Up1 and Up3 in 

T2). In contrast, in the sections mainly occupied by herbaceous plants, the values of nvc 

tended to decrease (Up1 in T3) and - where scrubs predominate - nvc rose or decreased 

depending on whether the plant was partially or totally submerged. This led to a wider range 

of vegetative roughness accompanying the hydraulic radius than in previous studies on 

uniform stream reaches (Jarrett, 1985; Righetti and Armanini, 2002; Okamoto and Nezu, 

2010). 

The relationships between nv and nvc in flash floods of differing hydraulic radius also show 

the unequal influence of the active bed forms developed on both sides of the dam. In all 

cases, the best fit of nvc versus nv was obtained with equations of the power type (Figure 9). 

However, the correlation between the two variables was lower in the Dw sections, especially 

in high-water conditions, with Rh > 0.75 m, where r2 = 0.665 (Figure 9). This could be 

explained by a greater heterogeneity of forms of erosion on the bed downstream, associated 

with different degrees of filling of the check dams. Upstream of the dam the vegetated 

surface closely resembled the total area of the channel in each section, so that the presence 

of small incisions or gravel bars barely introduced variations between the values of nv and 

nvc (r2 = 0.94 for 0.25 < Rh < 1.5 m) (Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

Figure 9. Graphs of nvc versus nv for the analysed Up and Dw sections and different 

hydraulic radii. 
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4.5. Influence of the vegetative roughness on the flow velocity 

 

As other authors have already shown for open-channel flows (Temple, 1987; Defra/EA, 

2003; Huthoff and Augustijn, 2006; Panigrahia and Khatua, 2015), the distribution of the 

flow velocity maintains a close relationship with the vegetative roughness coefficient of the 

channel. In fact, the velocity in the restored reaches studied here was better correlated with 

the Manning (nv) friction factor (r2 = 0.89) than with the slope of the bed (r2 = 0.82).  

The higher roughness coefficients observed in the upstream sections closest to the check 

dams imply that the lowest values of velocity would be found in the Up1 sections (Table 4, 

Figure 10). As the hydraulic radius of the flash flood increases, such differences from the 

more distant sections become more conspicuous. 

Figure 11 shows the effect of the roughness arising from different types of vegetation on the 

flow velocity for a hydraulic radius of 0.25 to 1.5 m. The variation of the velocity with the 

hydraulic radius reflects the patterns already described for the roughness of each species in 

relation to the water level and the ratio y/h. Thus, for example, the roughness imposed by N. 

oleander on the final part of the rambla (T1) implies a continuous tendency of the velocity 

to decrease with the hydraulic radius in both stretches, upstream and downstream of the dam. 

Upstream, however, the velocity values were lowest in Up1, while downstream the lowest 

values occurred in the sections furthest from the dam (Dw2 and Dw3). For T. canariensis 

(Tc) and N. oleander (No), the relationships between Manning's nv and the flow velocity 

were found to be of the power type, with r2 > 0.97 in all sections upstream of the dam T1 

(sections Up-T1-) (Figure 10): 

 

Up1: ்݊௖ ൌ 0.625 ଷ.ଶଵ ݊ே௢ିݒ ൌ 1.249  ଷ.ଶିݒ

Up2: ்݊௖ ൌ 0.87 ଷ.ଶଵ ݊ே௢ିݒ ൌ 1.495  ଷ.ଵସିݒ

Up3: ்݊௖ ൌ 1.314 ଷ.ଵଽ ݊ே௢ିݒ ൌ 2.215  ଷ.ଵହିݒ
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Table 4. Hydraulic variables applied in the calculation of the roughness of the herbaceous 
vegetation and of Nerium oleander, upstream (Up) and downstream (Dw) of the T2 check 

dam, for Rh = 0.5 m. 
 

 
S = bed slope (m/m); τ0 = bed shear stress (N/m2); V* = shear velocity (m/s); y/h = ratio of submergence (water 
depth / vegetation height); n = Manning roughness coefficient; V = flow velocity (m/s).  

   Nerium oleander Herbaceous 
Section Rh S τ0 V* y/h n V y/h n V 

 

Up1 

0.25 0.028 68.6 0.26 0.11 0.019 3.56 0.56 -- -- 

0.50 0.028 137.3 0.37 0.23 0.037 2.88 1.11 0.036 2.90 

0.75 0.028 205.9 0.45 0.34 0.054 2.54 1.67 0.027 5.09 

1.00 0.028 274.6 0.52 0.45 0.072 2.33 2.22 0.025 6.68 

1.25 0.028 343.2 0.59 0.57 0.089 2.17 2.78 0.024 8.16 

1.50 0.028 411.9 0.64 0.68 0.107 2.06 3.33 0.020 10.8 

 

Up2 

0.25 0.032 78.4 0.28 0.11 0.017 4.15 0.46 -- -- 
0.50 0.032 156.9 0.40 0.23 0.034 3.35 0.93 -- -- 

0.75 0.032 235.3 0.49 0.34 0.050 2.96 1.39 0.027 5.39 

1.00 0.032 313.8 0.56 0.45 0.066 2.71 1.85 0.025 7.13 

1.25 0.032 392.2 0.63 0.57 0.082 2.53 2.31 0.024 8.71 

1.50 0.032 470.7 0.69 0.68 0.098 2.39 2.78 0.023 10.2 

 

Up3 

0.25 0.033 80.3 0.28 0.17 0.017 4.14 0.32 -- -- 
0.50 0.033 161.8 0.40 0.33 0.034 3.35 0.64 -- -- 

0.75 0.033 242.7 0.49 0.50 0.051 2.96 0.96 0.028 5.33 

1.00 0.033 323.6 0.57 0.67 0.067 2.70 1.28 0.026 7.02 

1.25 0.033 404.5 0.64 0.83 0.084 2.52 1.60 0.025 8.60 

1.50 0.033 485.4 0.70 1.00 0.100 2.38 1.92 0.024 10.1 

 

Dw1 

0.25 0.026 63.7 0.25 0.10 0.017 3.75 0.34 -- -- 
0.50 0.026 127.5 0.36 0.21 0.034 3.04 0.68 -- -- 

0.75 0.026 191.2 0.44 0.31 0.051 2.69 1.01 0.033 3.98 

1.00 0.026 255.0 0.50 0.42 0.067 2.46 1.35 0.027 6.08 

1.25 0.026 318.7 0.56 0.52 0.084 2.30 1.69 0.025 7.47 

1.50 0.026 382.4 0.62 0.63 0.100 2.18 2.03 0.024 8.78 

 

Dw2 

0.25 0.024 58.8 0.24 0.11 0.018 3.40 0.32 -- -- 
0.50 0.024 117.7 0.34 0.22 0.035 2.75 0.65 -- -- 

0.75 0.024 176.5 0.42 0.33 0.053 2.43 0.97 0.034 3.76 

1.00 0.024 235.3 0.49 0.43 0.070 2.23 1.30 0.027 5.76 

1.25 0.024 294.2 0.54 0.54 0.086 2.08 1.62 0.025 7.09 

1.50 0.024 353.1 0.59 0.65 0.103 1.97 1.95 0.024 8.33 

 

Dw3 

0.25 0.029 71.1 0.27 0.11 0.018 3.73 0.31 -- -- 
0.50 0.029 142.2 0.38 0.22 0.035 3.02 0.63 -- -- 

0.75 0.029 213.3 0.46 0.32 0.053 2.67 0.94 0.033 4.23 

1.00 0.029 284.4 0.53 0.43 0.070 2.45 1.25 0.026 6.47 

1.25 0.029 355.5 0.60 0.54 0.086 2.29 1.56 0.025 7.93 

1.50 0.029 426.6 0.65 0.65 0.103 2.16 1.88 0.024 9.32 
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Figure 10. Roughness coefficient nv versus flow velocity for Tamarix canariensis and 

Nerium oleander upstream from the check dam T1. 

 

These equations reveal a decrease in the nv-value as flow velocity increases, a result of 

streamlining of vegetation and flattening of roughness elements, as pointed out before by 

Järvelä (2004), Ebrahimi et al. (2008), and Fathi-Moghadam and Drikvandi (2012). 

The effect of the scrub on the channel roughness is clearly noticeable in the change in 

velocity with the hydraulic radius, which follows the behavior patterns already defined 

upstream and downstream of the check dam. The initial tendency of the roughness to 

increase was maintained until the scrub submersion level, where nv = 0.037 for Up1, and 

corresponds to a decrease in water velocity - which reached 2.4 m/s at that level and section. 

After this threshold, with Rh = 0.8 m, the velocity increased with the hydraulic radius to 5.1 

m/s in the section Up1 (Figure 11).  
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Figure 11. Flow velocity, V, versus vegetative roughness, nv, for shrubs and scrub at 

different hydraulic radii, in channel sections upstream (left) and downstream (right) of the 

check dam T1. 

 

The same behavior was observed in the upstream sections more distant from the dam (Up2 

and Up3), but with progressively lower velocities in the initial phase of partial submergence 

of the scrub and greater velocities once it was totally submerged (Figure 11). Downstream 

of the dam, the variation in velocity in relation to the hydraulic radius was similar to that 

upstream, but the values and rate of variation were quite different from one section to 

another. From total submersion onwards, the variation between the Dw sections grew 

according to the hydraulic radius, with the difference from Dw1 to Dw2 being greater as the 

Rh augmented.  

 

The regression analysis, applied to relationships of flow velocity (V) versus Rh in the 

sections closest to check dam T1, gave a good fit for polynomial equations in the form of: 
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ܸ ൌ 0.858	ܴ݄ଶ െ 2.436	ܴ݄ ൅ 3.512 r2 = 0.988 (shrubs in section Up1) 

ܸ ൌ 1.183	ܴ݄ଶ െ 3.357	ܴ݄ ൅ 4.871 r2 = 0.989 (shrubs in section Dw2) 

ܸ ൌ 4.933	ܴ݄ଶ െ 5.521	ܴ݄ ൅ 4.311 r2 = 0.979 (scrubs in section Up1) 

ܸ ൌ 6.939	ܴ݄ଶ െ 6.136	ܴ݄ ൅ 5.502 r2 = 0.975 (scrubs in section Dw1) 

 
In the case of herbaceous plants, the velocity increased continuously as the hydraulic radius 

increased, due to the lower friction that they produce in accordance with their height and 

submerged area projected into the stream (Kutija and Hong, 1996). As opposed to the tall 

shrubs, a very low initial velocity was abruptly replaced by high values, especially 

downstream (Dw), due to the decrease in roughness imposed by the submersion of the 

herbaceous stems. A wide range of deflected height in this type of flexible plant was found 

to be highly dependent on the flow velocity and depth by Stephan and Gutknecht (2002), 

and Järvelä (2004). 

The influence of the dams was even more notable in the variations of the flow velocity 

associated with the changes in the overall vegetative roughness of the channel (nvc) in 

relation to the hydraulic radius. Figure 12 shows such variations in the sections monitored 

upstream of the check dams T1, T2, and T3. From this it can be inferred that the relationships 

of nvc and V with Rh differ among the sections of the same stretch, such differences 

increasing with the morphological alteration imposed by each grade control structure. 

The behavior of the three sections considered in the morphologically least disturbed stretch 

(T2) was very similar, with a clear inflection point in the velocity curve around Rh = 0.5 m 

(Figure 12). By contrast, in T3, affected by a check dam filled to 75% of its capacity, the 

curves of the nvc and velocity of the section nearest to the dam contrasted with those of the 

more distant sections. There was greater variation among the sections of the stretch T1, 

affected by a completely silted dam: the inflection point of the velocity curve occurred at Rh 

= 0.7 m in Up1 and Up2 and at Rh = 1.25 m in Up3, the forms of the curve being very 

different. 
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Figure 12. Flow velocity, V, versus vegetative roughness along the overall channel bed, 

nvc, in sections upstream from check dams T1 (upper graph), T2 (middle graph) and T3 

(lower graph). 
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CONCLUSIONS 

It is evident that the check dams installed for the control of erosion in torrential streams such 

as those analysed here, besides modifying the morphology of the affected channels, also 

have very significant effects on the spatial distribution of vegetation along the new bedforms 

created. 

The geomorphological changes that they introduce imply important adjustments in the 

sedimentary dynamics (upstream) and the erosion processes (downstream), which alter the 

conditions of colonization and plant growth for each corrected channel reach. 

Upstream, vegetation roughness increased with proximity to the check dam and downstream 

the tendency was reversed – the most distant sections recovered part of their natural 

dynamics, the vegetation contributing a higher coefficient of roughness. Concerning the 

hydraulic radius and the degree of submergence during the flash floods, the variation of the 

vegetative roughness was diversified and included different trend modalities and more 

complex patterns, depending on the state of submersion (total or partial) of the plants, 

associated with the level of sedimentary filling of the check dams. 

Hence, it can be verified that, although each type of plant behaved differently in relation to 

its resistance to the flow, its relative effect on the overall vegetative roughness of each 

channel reach always followed the same differentiated behaviour according to the sections. 

Thus, the density and roughness values of the channel decreased progressively upstream, 

from the section adjacent to each dam to the tail of its sediment wedge, while downstream 

this tendency was reversed, the minimum values occurring in the sections located at the foot 

of the structures and the maximums at the end of the scour holes. 

Consequently, upstream of the check dams, it was the section closest to them (Up1) that 

normally registered the lowest velocity values, while downstream it was the distal section 

(Dw3), where the bed becomes more stable and vegetation colonizes more easily. In this 

type of corrected channel – in which the morphological adjustments produced by the 

installation of check dams have significantly diminished the bed slope, thus reducing the 

differences between the slopes of the analysed channel reaches – it is beyond doubt that the 

vegetative roughness has played an essential role in the variation of the flow velocity. The 

consideration of such plant roughness patterns and their effects on hydraulic resistance in 

torrential channels affected by check dams is thus a very useful instrument for the prevention 

and management of flash floods in semi-arid Mediterranean basins that are the object of 

hydrological correction projects and works. However, the effects of these grade control 

structures on the dynamics of torrential Mediterranean streams are multiple and complex, 
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and their study requires consideration of other components of roughness, in particular the 

bed particle size. The combined action of both types of roughness (vegetative and based on 

surface-sediment texture) and its variation, mainly associated with morphological changes 

imposed by check dams, are aspects that deserve to be analysed in more depth in future 

investigations. 
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