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constraints
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Abstract
The goal of this research work is to improve the accuracy of human pose estimation using the deformation part model
without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by
adding the depth channel to deformation part model, which was formerly defined based only on RGB channels, to obtain a
4-dimensional deformation part model. In addition, computational complexity can be controlled by reducing the number
of joints by taking into account in a reduced 4-dimensional deformation part model. Finally, complete solutions are
obtained by solving the omitted joints by using inverse kinematic models. The main goal of this article is to analyze the
effect on pose estimation accuracy when using a Kalman filter added to 4-dimensional deformation part model partial
solutions. The experiments run with two data sets showing that this method improves pose estimation accuracy com-
pared with state-of-the-art methods and that a Kalman filter helps to increase this accuracy.
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Introduction

Human pose estimation has been extensively studied for

many years in computer vision. Many attempts have been

made to improve human pose estimation with methods that

work mainly with monocular RGB images.1–5

With the ubiquity and increased use of depth sensors,

methods that use RGBD imagery are fundamental. One of

the methods that used such imagery, and which is currently

considered the state-of-the-art for human pose estimation,

is Shotton et al.’s method,6 which was commercially devel-

oped for the Kinect device. Shotton et al.’s method allows

real-time joint detection for human pose estimation based

solely on depth channel.

Despite the state-of-the-art performance of Shotton

et al.’s method6 and the commercial success of Kinect, the

many drawbacks of Shotton et al.’s method6 make it

difficult to be adopted in any other type of 3-D computer

vision system.

Some of the drawbacks of Shotton et al.’s algorithm6

include copyright and licensing issues, which restrict the

use and implementation of the algorithm for working on

any other devices. Another drawback of the algorithm is the

large number of training examples (hundreds of thousands)

that are required to train its deep random forest algorithm

and which could make training cumbersome.
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Another drawback of Shotton et al.’s algorithm6 is that

its model is trained only on depth information and thus

discards potentially important information that could be

found in the RGB channels and could help approach human

poses more accurately.

To alleviate these and other drawbacks in Shotton et al.,6

we propose a novel approach that takes advantage of both

RGB and depth information combined in a multichannel

mixture of parts for pose estimation in single frame images

coupled with a skeleton constrained linear quadratic esti-

mator Kalman filter (SLQE KF) that uses the rigid infor-

mation of a human skeleton to improve joint tracking in

consecutive frames. Unlike Kinect, our approach makes

our model easily trainable even for nonhuman poses. By

adding depth information, we increase the time complexity

of the proposed method. For this reason, we reduced the

number of points modeled in the proposed method com-

pared with the original deformation part model (DPM).

Finally, to speed up the proposed method, we propose an

inverse kinematics (IKs) method for the inference of the

joints not considered initially, which cuts the training time.

The main contribution of our method extends to (i) an

optimized multichannel mixture of parts model that

allows the detection of parts in RGBD images; (ii) a linear

quadratic estimator (LQE KF) that employs rigid informa-

tion and connected joints of human pose; (iii) after adding

depth information, time complexity was adversely

affected. However, we could reduce the number of joints

searched in our proposed method to overcome this incon-

venience; and (iv) a model for unsolved joints through IK

that allows the model to be trained with fewer joints and in

less time.

Our results show significant improvements over the

state-of-the-art in both the publicly available CAD60 data

set and our own data set.

Related work

Human pose estimation has been studied for many years,

and some of the methods in the literature that attempt to

solve this problem date back to the use of pictorial struc-

tures (PSs) introduced by Fischler and Elschlager.7 More

recent methods3,8,9 improve the concept of PS with

improved features or inference models.

Other methods that use more robust joint relationship

include Yang and Ramanan’s method1 which uses a mix-

ture of parts model, Sapp and Taskar’s method10 which, in

turn, uses a multimodel decomposable model, and Wang

et al.’s model11 consider part-based models by introducing

hierarchical poselets. Other methods that have attempted to

reconstruct 3-D pose estimation from RGB monocular

images include the methods of Bourdev and Malik,12

Ionescu et al.,13 and Gkioxari et al.14

Object detection has been done using RGBD with Mar-

kov Random Fields (MRFs) and features from both RGB

and depth.15

Recently, 3-D cameras such as Kinect have added a new

dimension to computer vision problems. Such cameras

allow us to capture not only RGB information as done with

monocular cameras but also depth information whose

intensities depict an inversely proportional relationship of

the distance of the objects to the camera.

Some methods that use depth images to reconstruct pose

estimations include the methods of Grest et al.,16 Plagemann

et al.,17 Shotton et al.,6 Helten et al.,18 Baak et al.,19 and

Spinello and Arras.20 Among such methods, Shotton et al.’s

method,6 which was developed for the Kinect algorithm, has

become the state-of-the-art for performing human pose esti-

mation that predicts 3-D positions of body joints from a

single depth image.

Proposed method

In this section, we first explain the preprocessing step for

the depth channels in which the background was removed

to improve the accuracy of our algorithm (see Figure 1).

The “Multichannel mixture of parts” section explains the

formulation of our 4-D mixture of parts model. The “Joint

detection in consecutive frames” section explains our struc-

tured LQE for correcting joints in consecutive frames.

Finally, the “Model simplification” section describes the

strategy to reduce the computational complexity of our

proposed method.

Data preprocessing

As a processing step of RGB channels, we isolate signifi-

cant foreground areas in these channels from background

noise. This is done by removing regions in the depth images

that are most stable to different thresholds that belong to the

background. Such a foreground and background template is

then transferred to the RGB images to thus remove noise or

conflicting object patterns that would confuse foreground

and background features in our method and would hinder

detection accuracies.

The intuition behind this approach is that objects or people

in the foreground seen through the depth sensor share areas

with similar pixel intensities. The reason for this is that the

infrared (IR) rays being reflected from the objects in the fore-

ground are reflected more or less at the same time and with

the same intensity. Other objects or areas that are much farther

away from the IR camera unevenly reflect such rays, and

these areas appear more noisy and with varying intensities.

Figure 2 shows the different intensities reflected from the IR

sensor that represents the depth coordinates of the objects.

Due to this property of the pixel intensities in the depth

images, our background removal method, which is used for

depth and later applied to the RGB images, uses a maxi-

mally stable extremal region (MSER)-based approach.21

These regions are the most stable ones within a range of

all possible threshold values being applied to them. A sta-

bility score d of each region in the depth channels is
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Figure 1. Outline of our method.

Figure 2. (a) Original depth; (b) depth after applying MSER; (c) original RGB; (d) combining images (c) and (d). MSER: maximally stable
extremal region.
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calculated so that d ¼ jDR�Rj
jRj , where jRj represents the area

of the region in question and D represents the intensity

variation for the different thresholds. Hence, we remove

those MSERs in which areas are above a T threshold. We

train the parameters for MSER based on a subset of the

training set. We can see in Figure 7 the results from our

background subtraction method. Note that most of the

noisy pixels in the background have been removed.

Multichannel mixture of parts

Until recently, Yang and Ramanan’s method1 has been a

state-of-the-art method for pose estimation in monocular

images. Yet as we can see in Figure 6 of our “Results” section,

Yang and Ramanan’s method performs poorly on images that

vary from those in its training set, and their method only

improves by a small margin even after retraining.

Although there have been other algorithms2,3,5 that have

improved Yang and Ramanan’s model, all these methods,

including Yang and Ramanan’s, use a mixture of parts for

only the RGB dimension of channels. Conversely, our

method uses a multichannel mixture of parts model that

allows us to extend the number of mixtures of parts to the

depth dimension of RGBD images.

The depth channel increases time complexity, but this

disadvantage has been solved by cutting the number of

joints modeled in our 4-dimensional DPM (4D-DPM)

method. Hence, our method differs significantly from other

previous methods in many important ways that we explain

in this section.

In our method, we formulate a score function (S) for the

parts or joints that belong to pose through an appearance

and deformation functions as follows1

SðI ; x; tÞ ¼
X
i2V

�iðI ; xi; tiÞ þ
X
ij2E

 i;jðI ; xi; ti; x
0
iÞ (1)

where I corresponds to the RGBD image, x is the location of

joint i, which corresponds to the type of joint being detected,

j is the potential joint being connected to i and t ¼ 1; . . . ; T
is the mixture component of joint i that expands to parts that

have undergone different transformations, such as rotation,

translation, orientation, and others, and where x
0
i ¼ ðxj; tjÞ.

The terms � and  in equation (1) correspond to appearance

model and deformation model, respectively. The appearance

model calculates a score for the features of type assignment

ti, whereas the deformation model provides a score for the

deformation distance of type assignments ti and tj. These

models are constrained with the tree structure represented

by GðV ;EÞ, where a vertex i 2 V represents a part and the

edge ði; jÞ 2 E deonotes the co-occurrence of parts i and j

for optimization purposes because the computation time of

all the possible assignments is exponential.

In order to obtain features and deformations in all

RGBD channels, we formulate � and  as a multichannel

mixture of parts in the following way

�iðI ; xi; tiÞ ¼
oti

i m � �ðIm; xiÞ þ b
ti
i m

oti
i d � �ðId ; xiÞ þ b

ti
i d

" #

 ijðI ; xi; ti; xj; tjÞ ¼
oti;tj

ij m �  ðxi � xjÞm þ b
titj
ij m

oti;tj
ij d �  ðxi � xjÞd þ b

titj
ij d

2
4

3
5 (2)

where �ðI ; xiÞ is the appearance function represented by

Histogram of Gradients (HOG)22 that extracts features

from monocular (Im) or depth (Id) images at pixel location

xi. m represents a monocular part and d denotes a depth

part. o are the previously trained filters. b
ti
i is a parameter

that corresponds to the assignment of part i in either chan-

nel and b
titj
ij is another parameter that describes the co-

occurrence assignments of parts i and j. Note that, unlike

Yang and Ramanan,1 the number of mixture parts in our

equation (2) is twice as many because a depth channel is

added. This extra number of mixture components is a

complement to mixtures from RGB dimensions and

allows to improve the detection scores for all RGBD chan-

nels. This property is also seen in Figure 3, which shows

the different scores collected from different channels.

The deformation function is given by  ðxi � xjÞc ¼
dx dx2 dy dy2
� �

, where dx ¼ xi � xj and dy ¼
yi � yj, which correspond to the location of part i compared

to j in image Ic for the respective type of image c.

As the structure of GðV ;EÞ is a tree, we use dynamic

programming to calculate the S for each node in the tree

with an extra second term compared to Yang and Rama-

nan1 to calculate the scores and message passing in a way to

accommodate for depth channels. Let kidsðiÞ be the set of

children of part i in G. We compute the message part i that

passes to its parent j in this way

scoreiðti; xiÞ ¼ b
ti
i þ

oi
ti m
� �ðIm; piÞ

oi
ti d
� �ðId ; piÞ

2
664

3
775

þ
X

k2 kidsðiÞ
mkðti; xiÞ

(3)

L = 1 L = 7 L = 12

RGB

Depth

Figure 3. Score maps of component at different levels. The figure
shows that mixture of parts in RGBD is complementary.
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miðtj; xjÞ ¼ max
ti

b
ti;tj
ij max

xi

scoreðti; xiÞ

þ
w

ti;tj
ij m �  ðxi � xjÞm

w
ti;tj
ij d �  ðxi � xjÞd

2
4

3
5 (4)

Equation (3) computes the local score of part i, at all the

pixel locations pi and for all possible types ti, by collecting

messages from the children of part i. Equation (4) computes

every location and type of its child part i. Once messages

are passed to the root ði ¼ 1Þ, score1ðc1; x1Þ represents the

best scoring configuration for each root type and position.

In contrast to Yang and Ramanan,1 we parametrize

equation (1) as SðI ; x; tÞ ¼ � � FðI ; x; tÞ and � ¼ ðw; bÞ to

solve the following structural support vector machine pri-

mal with the following conditions for processing positive

and negative samples, which allows us to solve the most

violated constraint as independent steps i and to thus

improve training times compared to Yang and Ramanan1

arg min
w;��0

1

2
� � �þ C

X
n

�n

s :t : 8n 2 pos� � FðIni; xni; tniÞ � 1� �ni

8n 2 neg; 8xn; tn � � F ðIn; xn; tnÞ � �1þ �n

(5)

Joint detection in consecutive frames

To date, we have dealt only with pose estimation for each

single frame independently. However, most of the joint

movement performed in normal circumstances displays uni-

form and constant changes of displacement and velocity.

Hence, we can use the properties of the velocity and accel-

eration of joints to make predictions based on the past where

joints would most likely be. This motion-based prediction

could help us to validate our frame-based prediction.

One way of predicting joint location based on previous

detections is by using an LQE KF.23 Using a simple LQE

works well when the joints being tracked are independent

of each other and their movement does not correlate. How-

ever, in our case, our joints are connected to each other

through limbs, which are rigid connections and allow the

movement of one joint related to the other one to be con-

nected; for example, the foot joint movement would be

relative to a parent joint such as a knee or a hip.

In order to utilize this joint relationship, we introduce a

novel SLQE, which uses joint relationship constraints from

a human skeleton model to predict the location of joints at the

same time. In this section, we explain this step of our approach.

We first define a state joint obtained by equation (6)

with its respective vector components for position (xi, yi),

velocity (vxi, vyi), and acceleration (axi, ayi) as follows

x0i ¼ xi yi vxi vyi axi ayi½ �T (6)

We also define the measurement matrix for a joint as H1

that considers only location components xi and yi of the joint

H1 ¼
1 0 01�4

0 1 01�4

04�1 04�1 04�4

2
64

3
75

6�6

(7)

Thus, the measurement matrix for all the joints is

represented as

H ¼

H1 06�6 06�6 06�6

06�6 H1 06�6 06�6

..

. ..
. . .

. ..
.

06�6 06�6 06�6 H1

2
66664

3
77775

48�48

(8)

Given a state model A, which models the relationship of

each joint to all the other joints being considered, we define a

pair of joints that are connected to each other as A1 and A2 to be

A1 ¼

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

6�6

(9)

where the main diagonal represents the same elements as

equation (6) and the upper diagonal denotes the relation-

ships between these elements (e.g. vxi to depend on xi). We

take 1 to describe these relationships

A2 ¼

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

6�6

(10)

where the upper diagonal represents how the relationships

in the consecutive frames change. By changing this value,

we can change the velocity of the predicted joints, and to

what extent a point, compared to a previous one, can be

predicted. After some experiments, we took �1 to repre-

sent velocity in the system changes

A1 is fixed and A2 can be adjusted to fast track the

movement dynamics. Thus, the final transition state matrix

A for all the joints is defined as

A ¼

A1 A2 0 0 0 0 0 0

0 A1 0 0 0 A2 0 0

0 0 A1 0 0 0 A2 0

0 0 A2 A1 0 0 0 0

0 0 0 0 A1 A2 0 0

0 0 0 0 0 A1 0 0

0 0 0 0 0 0 A1 0

0 0 0 0 0 0 A2 A1

2
66666666666664

3
77777777777775

48�48

(11)
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Note that the joints whose movement depends on

another joint are paired up through the relationship A1A2.

The movement of joints that are connected to each other is

dependent on each other, thus their velocity and accelera-

tion components are subtracted from each other. Matrix A

represents our observed model that is to be predicted.

Choosing the correct matrix A is important to correctly

predict joints.

The prediction of a posteriori joint x ¼ ½x01; . . . ; x0n� at

time t now depends on the structure embedded in A and

can be calculated with

xt ¼ Axt�1 (12)

We also calculate a posteriori error covariance Pt so

that

Pt ¼ APt�1AT þ Q (13)

where Q is the measurement noise, which is an identity

matrix in our case.

We also compute residual covariance S based on noise

covariance prediction R to calculate gain K in this way

S ¼ HPtH
T þ R

K ¼ PtH
T S�1

(14)

Once the outcome of measurement x is obtained, these

estimates are updated using gain K, but with more weight

being given to the estimates with greater certainty.

The final estimation of the coordinate joints by our

SQLE is given by

x̂ ¼ H � xt�1 (15)

Although SLQE can accurately predict the direction and

speed of movement for continuous movements, in these

cases, joint movement changes direction suddenly, so pre-

diction can fail.

To avoid this issue, we compare our prediction from SLQE

and the last successful prediction from the last frame

B ¼ maxiSit, where Si is the score function from 1 at frame t.

Thus, we can avoid making mistakes by SQLE or the

score function by choosing the solution x̂ or St�1 with the

least error minð"1; "2Þ
�1 ¼ k B� x̂k2

�2 ¼ k B� St�1k2

(16)

Given the algorithm’s recursive nature, this process can

run in real time using only the present input measurements

and the previously calculated state and its uncertainty

matrix. No additional past information is required.

3-D pose estimation

Once the coordinates of joints have been calculated in

planes X and Y , finding their coordinates in the Z plane

is as simple as converting the pixel values into the depth

images and back into Z coordinates.

Model simplification

The additional depth images included in our formulation

add a computational cost to our training and testing phases.

In this section, we explain a simplification technique that

uses inverse kinematic equations in order to infer shoulder

and knee joints. The original DPM calculates the full body

parts with 14 joints. By using IKs, we can lower that number

of points to 10. The joints modeled in our proposed 4D-

DPM method were reduced, as were the variables to be

predicted with KF.

Figure 4 shows the full model with 14 parts on the left

and the reduced model with 10 parts on the right, where the

joints from the elbow and knee have been deleted.

Figure 4. Left: full model with 14 parts (green points). Right: reduced model with 10 parts.

6 International Journal of Advanced Robotic Systems



Human body model. In order to track the human skeleton, we

model it as a group of kinematic chains, where each part

and joint in the human body corresponds to a link and joint

in a kinematic chain. Given the joint positions predicted by

the KF, IKs are used to obtain full joints using Denavit–

Hartemberg (D-H) model.24,25

State variables. The human body model is divided into four

kinematic chains (KCs), namely in essence, one KC for

each arm and one KC for each leg.

Figure 5 shows the coordinate system for each part used to

represent legs and arms. The reduced model uses only

shoulder and hand points to represent arms, and hip and feet

to represent legs. However, by using the IKs with the coordi-

nate systems described in Figure 5, we can obtain elbow and

knee points and obtain the full model with 14 points. All these

coordinate systems are represented in relation to the same

base coordinate system. Since the proposed 4D-DPM method

returns the relationships of the locations between all the parts,

each KC can be considered independent of the others.

D-H model. We use D-H to model each KC. Hence, we use

six joints for each KC for shoulders, hips, hands, and feet

(see Figure 5).

First, we establish the base coordinate system ðX0; Y0; Z0Þ
at the supporting base with the Z0-axis lying along the axis of

motion of joint 1. Then, we establish a joint axis and align

the Zi with the axis of motion of joint iþ 1.

We also locate the origin of the i-th coordinate at the

intersection of the Zi and Zi�1 or at the intersection of a

common normal between the Zi and the Zi�1. Then, we

establish Xi ¼+ðZi�1 � ZiÞ=jjZi�1 � Zijj or along the

common normal between the Zi- and Zi�1-axes when they

are parallel. We also assign Yi to complete the right-handed

coordinate system. Finally, we find the link and joint

parameters: �i (angle of the joint compared to the new axis),

di (offset of the joint along the previous axis to the common

normal), ai (length of the common normal), and �i (angle

of the common normal compared to the new axis).

For each KC, we have six variable joints qi. Each qi is

placed on the zi-axis in Figure 5. Now, we can define the

table of the D-H parameters. A generic D-H parameter

table for the proposed KC is shown in Table 1. Given the

six variable joints ðq1; q2; q3; q4; q5; q6Þ, we obtain the

coordinates of end effector ðx; y; zÞ compared to the base

of KC. For IKs, given the coordinates of the end effector

and the orientation in Euler parameters ðx; y; z; �; �;  Þ, we

obtain the six variable joints ðq1; q2; q3; q4; q5; q6Þ.
Given the homogeneous transformation matrix that

establishes the relationship of a joint with an adjacent one

i�1AiðqiÞ ¼

c� �c� � s� s� � s� ai � c�
s� c� � c� �s� � c� ai � s�
0 s� c� di

0 0 0 1

2
6664

3
7775 (17)

Figure 5. State variables. Left: coordinate systems of the arms. Right: coordinate systems of the legs.

Table 1. D-H table.

� (deg) d (mm) � (deg) a (mm)

q1 �1 0 �1 0
q2 �2 0 �2 0
q3 �3 d3 �3 a3

q4 �4 0 �4 0
q5 �5 d5 �5 a5

q6 �6 0 �6 0

�i : rotation along axis Zi�1 to put axis Xi�1 on axis Xi ; �i : rotation along
axis Xi to put axis Zi�1 on axis Zi ; di : translation between coordinate
system Oi�1 and Oi along axis Zi�1; ai : translation between the coordinate
system Oi�1 and Oi along axis Xi .

Berti et al. 7



where s� ¼ sinð�iÞ, c� ¼ cosð�iÞ, s� ¼ sinð�iÞ, c� ¼
cosð�iÞ, and �; �; d; a are the DH parameters.26,27 The loca-

tion of the end effector in relation to the reference can be

obtained by the following relationship

0T6ðq1; q2; q3; q4; q5; q6Þ¼0A1�1A2�2A3�3A4�4A5�5A6

where Ai¼i�1AiðqiÞ. It is paramount to use geometric mod-

els for the first three joints. Thus, we obtain the coordinates

for final effector ðx; y; zÞ and, after applying geometric

models, we can obtain the first three joints

q1 ¼ arctan
y

x

� �
(18)

q3 ¼ arctan

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 x2þy2þz2�a2�a3

2�a2�a3

� �s

cos
x2þy2þz2�a2�a3

2�a2�a3

� �
0
BBBB@

1
CCCCA (19)

q2 ¼ arctan
z

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
 !

� ’ (20)

where

’ ¼ � arctan

a3 � sin
x2þy2þz2�a2�a3

2�a2�a3

� �

a2 þ a3 � cos
x2þy2þz2�a2�a3

2�a2�a3

� �
0
BB@

1
CCA

Now, we can use IKs to calculate the last three joints.

We define 0R6¼0R3�3R6 for the submatrix rotation of 0T6.

We know the value of 0R6 because it is the orientation of

the final effector and 0R3 because it is defined by
0R3¼0R1�1R2�2R3 using ðq1; q2; q3Þ. Then we calculate

3R6 ¼ rij

� �
¼ ð0R3Þ�1 0R6 (21)

By applying 3R6¼3R4�4R5�5R6 and using ðq4; q5; q6Þ,
we obtain the last three joints using equation (21)

q4 ¼ arctan
r23

r13

� �
(22)

q5 ¼ arccosð�r33Þ (23)

q6 ¼
p
2
� arctan

r32

r31

� �
(24)

We use IKs because we can obtain the base of our KC

(shoulders or hips), and where the final effector and orien-

tation (hands and feet) are, thus we obtain these parameters

ðx; y; z; �; �;  Þ. Using IKs, we obtain the six variable joints

ðq1; q2; q3; q4; q5; q6Þ and use them to know where the

elbow or knee is located.

Figure 6 shows at the top the solutions from the pro-

posed method using 10 parts. These parts correspond to the

10 parts shown in Figure 4 on the right. The bottom images

show the full model solutions after applying IKs.

Results

3-D camera calibration

Our method works with any RGBD sensor after correct

calibration. In our experiments, we use a Kinect device

and calibrate the intrinsic and extrinsic parameters of the

monocular and IR sensors. The calibration system is done

similarly to Berti et al.27 or Viala et al.28,29

Data sets

To train and test our method, we use a combination of

videos from our own data set and a subset of the publicly

available CAD60 data set.30

CAD60 data set

The original CAD60 data set.30 contains 60 RGB-D videos,

4 subjects (2 male, 2 female), 4 different environments

(office, bedroom, bathroom, and living room), and 12 dif-

ferent activities. This data set was originally created for the

activity recognition task.31,32,33 The size of the images is

320�240 pixels.

Our data set

It consists of seven videos with only one person on the

scene moving his arms and legs. We had almost 1000

frames of people to obtain specific movements, for exam-

ple crossing arms over one’s body, to complement the

CAD60 data set. Images were taken indoors in different

scenarios. The subject inside the images is male who wears

different clothes. The size of the images is 320�240

pixels.

The ground truth of the joints in this data set was obtained

by recording predictions from Kinect. Thus, in order to make

a fair comparison of the predictions from the methods being

tested, we provide the videos to our human annotators to

manually record the ground truth of the joint positions in

the CAD60 data set. Thus, our annotators recorded over

15,000 frames of videos that correspond to 16 videos from

the CAD60 data set with different activities and environ-

ments. For training and testing purposes, we use two differ-

ent splits of such annotations. We chose to manually

annotate the CAD60 data set because, to our knowledge,

there is no RGBD data set with ground truth of human pose

joints. We will also publicly release our annotated videos for

the benefit of the research community.

Metrics

The metrics we use in our different experiments are prob-

ability of a correct keypoint (PCK), Average Precision Key-

point (APK), and error distance.
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PCK

The PCK was introduced by Yang and Ramanan.1 Given the

bounding box, a pose estimation algorithm must report back

the keypoint locations for body joints. The overlap between

the keypoint bounding boxes was measured, which can suf-

fer from quantization artifacts for small bounding boxes. A

keypoint is considered correct if it lies within � � maxðh;wÞ
of the ground truth bounding box, where h corresponds to the

Table 2. Experimental comparisons with the state-of-the-art methods and different components of our methods on CAD60 data set.a

Model Metric Head Shoulder Wrist Hip Ankle Average

Yang (Yang and Ramanan1) APK 47:30 66:70 22.40 45:50 47:10 46:50
PCK 62:50 70:40 39.00 60:50 57:9 58:06
Error 15:53 12:23 22.34 16:29 18:50 16:97

Kinect (Shotton et al.35) APK 68:30 90:70 76.40 9:50 77:10 64:40
PCK 79:50 94:40 85.00 23:50 85:9 73:66
Error 13:17 6:85 9.64 18:42 11:28 15:87

P. Method APK 72.30 91.10 81.20 83.70 82.00 82.06
PCK 83.60 95.00 88.70 87.30 89.20 88.76
Error 9.95 6.81 8.73 8.58 8.40 8.49

PCK: probability of a correct keypoint.
aAPK and PCK metrics are expressed in percent. Error is expressed in pixels. Italics represent higher values.

Figure 6. Results of our method. First row shows joints of the reduced model on a sequence which does not belong to CAD60 data
set. Second row shows the full model inferred where elbows and knees are estimated by IKmodel. IKs: inverse kinematics.

Berti et al. 9



Figure 7. Qualitative comparison of four different methods for pose estimation on four sequences which belong to CAD60 data set.
Fourth row shows joints of the reduced model.
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height and w to the width of the corresponding bounding box

and � is a parameter that controls the relative threshold to

consider the correctness of the keypoint.

APK

In a real system, however, one has no access to annotated

bounding boxes at the test time, and one must also address

the detection problem. One can cleanly combine the two

problems by thinking of body parts (or rather joints) as

objects to be detected and evaluate object detection accu-

racy with a precision–recall curve. The average precision

keypoint is another metrics introduced by Yang and Rama-

nan,1 where, unlike PCK, it penalizes false-positives. Cor-

rect keypoints are also determined through the

� � maxðh;wÞ relationship.

Error distance

This metrics calculates the distance between the results and

the correct labeled point. To do this, we calculate the dis-

tance error between the predicted result and the ground

truth location. For each joint, we obtain an error score that

is the mean value calculated from all the frames.

Quantitative results

Table 2 shows the results of comparing our proposed method

(P. Method) with other methods, such as Shotton et al.’s

method,6 which is used with the Kinect device. Some of the

issues we encountered with the Kinect algorithm is that the

detections which vary from frame to frame are not consistent.

Moreover, Kinect usually mis-predicts hip joints compared to

our ground truth, which was generated by our human anno-

tators. We can also see in Figure 7 that Kinect has issues with

correctly positioning head, ankle, and wrist joints.

Although a fairer comparison with Shotton et al.6 would

be to use the exact training set for both algorithms, such a

comparison of the training step is difficult to make because

there is no open source of the Kinect algorithm available to

produce this type of experiments.

Unlike Shotton et al.’s method,6 in our experiments we

observe that our algorithm can produce competitive

results, even with only a few hundred frames in the

CAD60 training set.

We also compare our results with Yang and Ramanan’s1

original method trained on the image parse data set34 in

Table 2 and also retrain it (Yang*) with the same images

that we used to train our proposed method (P. Method*;

Table 3). Note that although we retrain Yang and Ramanan’s

model, our model is still significantly better than their

method. Observing the results obtained in Table 3, and by

comparing our proposed method with the original DPM,

both trained with the same range of images and tested with

the same range of images, but a different one of trained

images, we have improved the results with the proposed

method by adding depth information, a KF, and using IKs

to cut the number of points modeled in the DPM. Observing

the results in Tables 2 and 3 and independently of the data set

used to test or train parts, our proposed method obtains better

solutions. This means that the results can be repeatable with

different data sets.

In addition, in Table 3, our proposed method accuracy is

compared both with and without a KF and obtained around

3:5% more accuracy using KF compared to not using KF.

The reason for this is that when our proposed method fails

in one frame, the wrong solutions obtained in the DPM are

not corrected, while wrong solutions are corrected using the

past information by KF when KF is employed.

Our results also show significant improvements over

Kinect. However, this comparison is not completely fair

since our method, having been trained on a smaller data

set, is somewhat bias toward this data set. Thus, our results

resemble a bias of our method toward the data set being

trained on. Hence, if our method were to be tested on other

data sets that have not been seen before, it would fail,

whereas Kinect might not. This is possibly because Kinect

has been trained on a much larger data set and its method

can generalize better.

Table 3. Experimental comparisons with the state-of-the-art methods on our proposed data set.a

Model Metric Head Shoulder Wrist Hip Ankle Average

Yang (Yang and Ramanan1) APK 92.20 92.30 82.70 86.60 83.50 87.26
PCK 91.50 89.00 85.80 89.90 83.80 88.00
ERROR 8.17 8.81 10.87 9.37 11.59 9.76

P. Method (without KF) APK 94.20 95.10 88.30 89.70 90.30 91.52
PCK 93.80 92.50 88.90 90.30 91.00 91.30
ERROR 6.48 6.02 8.73 8.01 7.66 7.38

P. Method* (with KF) APK 97.50 98.30 92.20 94.70 94.00 95.34
PCK 96.40 95.20 93.70 96.50 94.20 95.20
ERROR 5.82 5.71 7.43 6.37 6.61 6.38

PCK: probability of a correct keypoint.
aAPK and PCK metrics are expressed in percent. Error is expressed in pixels.
*Signifies difference between two equals methods trained differently. Italics represent higher values.
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Qualitative results

In this section, we analyze the qualitative results of our

proposed method. Figure 7 shows the visual comparisons

of our algorithm with the algorithms of Shotton et al.35

(Kinect), Yang and Ramanan,1 and Wang and Li.2 The

results of Wang do not seem better than those of Yang and

Ramanan. The results of Yang and Ramanan and Kinect

fail dismally when limbs fall outside the boundaries of the

image or pose is more difficult. The Kinect algorithm also

tends to fail when limbs fall outside boundaries and at times

finds it difficult to identify the hip points that differ from

person to person.

Our proposed method fails when two different joints are

closer to each other, which could confuse our model with

similar deformation and appearance costa for both joints

(see Figure 7). Our proposed model could also fail when the

pose configuration in question is not seen during training.

Time complexity analysis

For our experiments, we use a system based on windows 7

with 64 bits and 4 GB RAM. The processor that we use is

Inter Core Quad 2.33 GHz. For each frame, we calculate

the average time taken by the proposed algorithm to pro-

cess the frame. The used images have 320�240 pixels.

On training parts, our method takes about 8:12 min per

frame, whereas Yang and Ramanan’s method1 takes about

8:54 min per frame, which is approximately a 5% gain in

training time.

On testing part, our method takes about 7:26 s per frame

using KF, whereas Yang and Ramanan’s method1 takes

about 9:21 s per frame, which is approximately a 20% gain

in pose estimation accuracy from Yang and Ramanan.1

Although the time performance of our method is much

slower than Kinect, which is a real-time method, we show

in our article that our method can be trained with fewer

frames compared to Kinect, which requires hundreds of

thousands of frames.

Conclusions

In this article, we present a novel approach that combines

monocular and depth information with a multichannel mix-

ture of parts model, a novel structured LQE, and an IKs

model to estimate joints for human pose estimation in

RGBD data.

Our results demonstrate a significant improvement over

state-of-the-art methods with CAD60 and our own data set.

Our method can also be trained in less time and with a

smaller fraction of training samples compared to the

state-of-the-art.
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