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Abstract    

Herein we report that silver nanoparticles supported on commercial diamond 

nanoparticles functionalized with hydroxyl groups (D3) is a cost-effective 

heterogeneous catalyst for the decolorization of different synthetic dyes (Methylene 

Blue, Orange II, Acid Red 1 or Rhodamine B) using H2O2 as oxidant under natural 

Sunlight irradiation. Importantly, the photocatalytic activity of Ag/D3 is higher than that 

of analogous catalysts based on Ag NPs supported on graphite or activated carbon and 

similar to that of costly Au/D3 catalyst or the benchmark Ag/TiO2 material. Ag/D3 

stability was established by performing consecutive reuses, without observing either 
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decrease of the catalytic activity or metal leaching, while particle size increase occurs in 

a low extent. Productivity tests allow determining a minimum TON for dyes and H2O2 

of about 500 and 6,000, respectively. 

 Keywords: Photocatalysis; synthetic dyes decolorization; plasmonic Ag nanoparticles; 

diamond nanoparticles; natural Sunlight irradiation. 
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1. Introduction 

Advanced oxidation processes (AOPs) are among the most useful technologies 

for the remediation of waste waters containing recalcitrant contaminants or resisting 

pathogens.[1-3] AOPs are based on the generation of reactive oxygen species such as 

highly aggressive hydroxyl radicals, superoxide or others, able to oxidize organic 

contaminants to less-toxic biodegradable intermediates or even to produce their partial 

or complete mineralization.[1] For example, AOPs have been extensively applied to the 

treatment of textile waste waters characterized by the production of large volumes of 

waste water containing colored, toxic and/or mutagenic dyes.[4, 5] It has been estimated 

that about of 15 % of the produced dyes are released in textile waste waters.[6] Color 

and chemical oxygen demand (COD) removal represents one major environmental 

concern in textile waste waters due the inefficacy of conventional biological 

treatments.[4, 7] 

The photo-Fenton reaction is one of the most popular AOPs due its easy 

implementation and effectiveness in the production of hydroxyl radicals.[8, 9] The 

reaction proceeds via a redox cycle according to equations 1 and 2 leading to the 

formation of HO· radicals. The main drawbacks the photo-Fenton reaction increasing 

the operation costs and, therefore, hampering its general application to waste water 

remediation, are: i) the need of acidic pH values to obtain the correct iron speciation 

(Eqs 1 and 2) and to avoid iron oxides precipitation; ii) the need of iron removal after 

the chemical treatment with the subsequent sludge formation; iii) the need of artificial 

UV irradiation source to promote the photolysis of the Fe(OH)2+ complex (Eq. 2) and 

the existence of undesirable side reactions decreasing the selectivity towards HO· 

formation. 
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Nowadays, there is an increasing interest on developing heterogeneous photo-

Fenton catalysts able to reduce the operating cost as well as to overcome some of the 

commented drawbacks of the homogeneous process. Currently, the solid-based catalysts 

employed as heterogeneous photo-Fenton materials include zeolites,[8, 10] clays,[10] 

pillared clay-based materials,[10, 11] metal oxides,[8] nanosized iron oxides,[12] 

supported metal[13, 14] or metal oxide nanoparticles[15] and graphenes.[16, 17] 

Nevertheless, there is still room for improvement basic aspects of the heterogeneous 

process including minimization of the H2O2 excess reducing undesirable decomposition, 

optimization of H2O2 and catalyst to substrate molar ratios, maximization the H2O2 to 

catalyst molar ratio by developing highly efficient (photo)catalysts, expanding the 

operation pH towards neutral or slightly basic values, use of natural Sunlight irradiation, 

among others.[8] In this context, we have reported that Au or Ag NPs supported on 

treated commercial diamond nanoparticles (D) modified by introducing surface 

hydroxyl groups is an efficient photocatalyst for degradation of phenol as well as its 

reaction intermediates (hydroquinone, catechol and p-benzoquinone) using less than 5.5 

equivalents of H2O2 under natural Sunlight irradiation[13, 18] Therefore, it is of interest 

to evaluate the scope of these Fenton catalysts by testing their efficiency in the 

degradation of other recalcitrant contaminants, particularly decolorization of synthetic 

dyes that are frequently employed in the textile industry.[10]  

In the present work we describe the use of Ag NPs supported on surface 

hydroxylated D as photocatalyst to effect the decolorization and COD removal of four 
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common synthetic dyes present in textile waste water effluents namely Methylene Blue 

(MB), Orange II (OII), Acid Red 1 (AR1) and Rhodamine B using H2O2 as oxidant and 

natural Sunlight irradiation. The activity of this catalyst is compared with analogous Au 

NPs supported on the same hydroxylated D or Ag NPs supported on nanometric 

diamond NPs, graphite, activated carbon as well as on the benchmark TiO2 

photocatalyst under natural or simulated sunlight. The purpose is to establish how the 

pretreatment of the support influences the photocatalytic activity of AgNPs by 

controlling the average particle size and the surface functional groups. It would be 

shown that treating the supports under Fenton conditions followed by reduction with H2 

renders the most active supports due to the small particle size and the lower density of 

surface OH groups. The catalytic data presented compare favorably with those reported 

in the literature for iron based catalysts that undergo extensive metal leaching and 

typically operate with H2O2 excesses of one thousand equivalents or more. In the case 

of Ag, the absence of metal leaching and its high activity can make the use of this metal, 

in low loading, an attractive alternative compared to other metals.[19] 

2. Experimental section 

2.1 Materials. MB, OII, AR1, RhB, H2O2 solution in water (30%, w/w), HNO3 (65%), 

NaOH (>97 %) were supplied by Sigma-Aldrich. The other reagents or solvents were of 

analytical or HPLC grade. 

2.2 Catalyst preparation. The catalysts employed in the present work have been 

previously prepared and fully characterized.[18] The carbonaceous materials employed 

as support of gold and/or silver NPs include commercial diamond NPs, activated carbon 

and graphite. The commercial carbon supports were also functionalized by a 

homogeneous Fenton treatment followed or not by a hydrogen annealing at 500 ºC and 
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further employed to deposit gold or silver NPs. Ag NPs supported on commercial TiO2-

P25 was also employed as benchmark photocatalyst.[18] Fig S1 presents the full set of 

FTIR spectra for each of the samples used as support. 

2.3 Catalyst characterization. The five-time used Ag/D3 catalyst was characterized 

using a JEOL JEM2100F transmission electron microscope operating at 200 kW. The 

silver particle size distribution of Ag/D3 was estimated by counting more than 300 

particles working under dark-field scanning transmission electron microscopy (DF-

STEM) mode. The silver leaching was determined by ICP-AES of filtered reaction 

aliquots (0.2 µm Nylon) at the end of the reaction. The reader has referred to previous 

work for XRD, DRS textural data and further characterization of Ag/D3.[18]  

2.4 Photocatalytic experiments. The photocatalytic experiments were carried out at 

least in triplicate (March-July, 2015, Technical University of Valencia, Valencia, 

Spain). A round-bottom flask (250 mL) containing an aqueous dye solution (25 mL; 

0.071 mM) and the required amount of catalyst (typically 80 mg L-1 unless other 

quantity indicated) was added sonicated for at least 20 min. The large flask volume in 

comparison with the volume of the sample ensures as high degree of aeration of the dye 

solution and large surface exposure to sunlight. Then, the initial pH value of the 

aqueous suspension was adjusted to the required value using aqueous solutions of 

HNO3 (0.1 M) or NaOH (0.1 M). The samples were exposed for five minutes to natural 

Sunlight irradiation before adding H2O2 until the temperature was equilibrated. The 

reaction starts by adding the required amount of H2O2. In all cases, to minimize the 

metal leaching from the solid catalyst to the solution, the pH of the reaction was not 

allowed to become lower than 4, checking, and readjusting the pH if, necessary, every 

fifteen minutes with a pH meter CRISON 52 02 pH electrode, using aqueous solutions 
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of HNO3 (0.1 M) or NaOH (0.1 M). The natural Sunlight irradiation intensity was 

measured using a calibrated photodiode connected to a voltmeter. During the 

experiments performed in the present work the mean solar irradiation and temperature 

were 86 ±17 mW cm-2 and 26±.2.2 ºC, respectively. To diminish the influence of the 

unavoidable variation of solar light irradiance from different days, the experiments were 

carried out in sets of simultaneous photocatalytic tests carried out in parallel. These sets 

correspond to the influence of the support for AgNPs (Fig. 1), the influence of the 

nature of the metal (Ag or Au, Fig. 2), comparison of the catalytic activity of Ag on D3 

or TiO2 in the presence or absence of H2O2 (Fig. 3). The temporal evolution of the 

reaction was monitored by taking periodically aliquots (2 mL) that were diluted to a 

final volume of 10 mL. In one experiment (Figure S2) reaction aliquots of 0.5 mL were 

taken and diluted to a final volume of 5 mL These diluted samples were split into two to 

determine for each of them the dye concentration and the H2O2 consumption. 

Reuse experiments were performed following the general procedure and filtering 

the solid catalyst at the end of the reaction (0.2 µm nylon membrane). Then, the 

recovered catalyst was washed with a basic aqueous solution (pH 10) and then with 

Milli-Q water to remove possible adsorbed acid organic compounds. Then, a new 

photocatalytic reaction using the recovered catalyst was carried out. To avoid possible 

irradiation variations during the reuse experiments and productivity test they were not 

performed under natural Sunlight irradiations. Instead natural Sunlight, a solar simulator 

(Oriel Sol1A) was employed in this case as irradiation source working with a light 

intensity of 100 mW cm-2 (1 Sun) at 20 ºC. 
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Productivity tests were performed using a large amount of dye (0.71 mM) and 

H2O2 (7.1 or 10.6 mM) respect to the catalyst (80 mg L-1; 0.00149 mM of supported 

Ag) at pH 4. 

2.5 Analysis of dye concentration and H2O2. Dye concentration was determined by 

measuring the UV-Vis spectra of previously filtered reaction aliquots in a JASCO-650 

spectrophotometer. In order to maintain the linear relationship of the Lamber-Beer law 

the samples were diluted using Milli-Q water. Dye concentration was determined using 

a linear calibration plot previously obtained using standards with known concentration. 

Degradation of the dyes is presented by plotting dye concentration as a function of the 

illumination time.  

H2O2 concentration was also determined using the UV-Vis spectrophotometer 

following a colorimetric method.[18] Briefly, diluted samples were titrated using a 

solution of K2(TiO)(C2O4)2 in H2SO4/HNO3 and after 10 min the developed yellow 

color monitored at 400 nm. It should be noted that strong acidic conditions needed for 

determination of H2O2 concentration by colorimetric method result in a complete 

decolorization of the dyes, thus allowing selective monitoring of TiO- H2O2 adduct by 

determining absorbance at 400 nm without interference of any of the dyes under study.  

2.6 COD measurements. COD values were determined by a closed reflux method 

following the procedure described in detail in the Standard Method Nr. 5220D.[20]  

2.7 Toxicity tests. A Microtox® M500 toxicity analyzer was employed to measure the 

chemical toxicity against the bioluminescent photobacterium Vibrio Fisheri.[21] The 

toxicity units (T.U.) are defined as 100/EC50, where EC50 is the percentage of solution 
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that causes 50 % inactivation. This inactivation is measured as the reduction of the 50 % 

light emission by Vibrio Fischeri after 50 min contact time. 

3. Results and discussion 

3.1 Photocatalysts tested  

The present work includes the use of eleven photocatalyts based on Au or Ag 

NPs supported on different carbonaceous supports as well as on TiO2-P25 as benchmark 

photocatalyst (Table 1 and S1). In the case of Ag NPs supported on TiO2, the catalytic 

activity of Ag promoting generation of OH· from H2O2 would be combined with the 

well-known photocatalytic activity of semiconducting TiO2 generating ROS. In contrast 

to the activity of TiO2, the other solid supports do not exhibit any photocatalytic 

activity, either in the absence or presence of H2O2. This lack of photocatalytic activity 

for D and other supports ruled out the possible metal impurities that could be present in 

the ppm levels such as Fe could contribute in an extent to the photocatalytic activity of 

observed support Ag NPs. The carbonaceous supports include the commercial D NPs 

(D1), commercial graphite (G1) and commercial activated carbon (AC1). In addition, 

each commercial carbonaceous support was also submitted to a homogeneous Fenton 

treatment to remove amorphous carbon impurities and to increase the population of 

oxygenated functional groups on the carbon surface, mainly hydroxyl, carbonylic and 

carboxylic groups. The Fenton-treated carbonaceous materials were denoted as D2, G2 

and AC2 for D, graphite and active carbon, respectively. In a second step, the Fenton-

treated materials were submitted to H2 annealing at 500 ºC in order to homogenize the 

distribution of surface oxygenated functional groups carbonaceous surface with 

hydroxyl functional groups. The resulting supports were denoted as D3, G3 and AC3 

for D, graphite and active carbon, respectively. Fig. S1 in Supporting Information 
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presents the FTIR spectra corresponding to the three types of carbon support (D, G and 

AC) after the corresponding pretreatment. As it can be seen there, the population of 

hydroxyl groups clearly increases for each support after the Fenton treatment (D2, G2 

and AC2) and, then, is maintained (G3) or decreases somewhat (D3 and AC3) in the 

thermal hydrogen annealing. Finally, Au or Ag NPs were deposited in the different 

carbonaceous supports or TiO2-P25 by means of the polyol method that employs 

ethylene glycol as reducing agent of the corresponding metal salt precursors of Au or 

Ag NPs namely HAuCl4 or AgNO3. In previous work full characterization of the 

photocatalysts including both the support materials as well as the deposited metal NPs 

has been reported.[18, 22, 23] It is important to note that the smallest metallic NPs 

deposited on the different carbonaceous supports were observed when using the Fenton-

treated carbonaceous material followed by a H2 annealing at high temperature (Table 1 

and S1). For comparison, Ag/TiO2 as a benchmark photocatalyst was also included in 

the present work (Table 1, entry 6).[18] 
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 Table 1. List of the most active catalysts employed in the present work.a 

Entry Catalyst Surface area and 

average particle 

size of the support 

Average particle size (nm) 

and standard deviation of 

deposited metallic NPs  

Initial reaction 

rate of H2O2 

decomposition 

Ref. 

1 Au/D3 ~ 290 m2 g-1 

< 10 nm 

2.9 ± 3.6 0.33 mg·L-1·min-1 [18] 

2 Ag/D3 ~ 290 m2 g-1 

< 10 nm 

3.2 ± 2.7 0.27 mg·L-1·min-1 [18] 

3 Ag/D3 five-

times reused 

~ 290 m2 g-1 

< 10 nm 

3.6 ± 3.3 0.17 mg·L-1·min-1 This 

work 

4 Ag/G3 47 m2 g-1, 

200-500 nm 

8.5 ± 4.4 0.04 mg·L-1·min-1 [18] 

5 Ag/AC3 1,300 m2 g-1, 149 

µm 

8.9 ± 7.6 0.1 mg·L-1·min-1 [18] 

6 Ag/TiO2 ~ 50 m2 g-1,  ~ 25 

nm 

3.1 ± 1.6 0.53 mg·L-1·min-1 [18] 

 a Supplementary material collects a list of the rest of the catalysts employed in the present 
work including data on Ag NPs average particle size and standard deviation. 

 

3.2 Photocatalytic dye decolorization 

In the present work the photocatalytic activity of different Ag or Au materials 

supported on D-, G-, AC- or TiO2 based catalysts has been tested for the decolorization 

of MB, OII, AR1 and/or RhB at submillimolar concentrations, that is in the range in 

which  these dyes can be frequently present in wastewaters from the textile industry 

(Fig. 1). Four of the most common dyes present in textile waste waters have been 

selected (see chemical structures in  Scheme 1) including a thiazine dye such as MB, 

two azo dyes (OR II and AR1) and RhB as aminoxanthene dye.[10, 24] 
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Scheme 1. Chemical structures of the dyes employed in the present work. 

To better show the activity of the different photocatalyst under study, the use of 

natural sunlight as irradiation source was selected for most of the experiments shown in 

Fig. 1-3. Only for reuses and productivity test that cannot be run simultaneously in 

parallel were performed using simulated sunlight. When using natural sunlight, 

variations in light irradiance are unavoidable (see Experimental Section for sunlight 

intensity variation). To minimize this influence, the experiments were performed in sets 

simultaneously and the sets correspond to the experiments collected in the same figures. 

Firstly, the light-assisted catalytic activity of Ag NPs supported on commercial 

carbonaceous supports (D1, G1 and AC1), on Fenton-treated carbonaceous supports 

(D2, G2 and AC2) as well as on Fenton-treated and subsequent H2 annealed supports 

(D3, G3 and AC3) was compared for MB decolorization with H2O2 under natural 

Sunlight irradiation at pH 4 (Figs. S2 to S4). The highest photocatalytic activity was 

observed when using Ag NPs supported on the carbonaceous material (D3, G3 or AC3) 

modified with a homogeneous Fenton treatment followed by H2 annealing at high 

temperature (Fig. 1 and S2-S4). Note that in Figs. 1 and S4 the behavior of G3 and AC1 
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as support, respectively, corresponds really to adsorption since the decrease in MB 

concentration occurs exclusively after contacting MB and the photocatalyst in the first 

minutes and it is not accompanied by a concomitant decrease in the H2O2 concentration. 

This lack of photocatalytic activity of Ag/AC1 (Fig. S4) or low activity for Ag/G3 (Fig. 

1) allow to determine that the dye adsorption in these cases is very important and 

corresponds to about 80 (Ag/AC1) or 20% (Ag/G3) of the initial MB concentration. 

However for Ag/AC2, the importance of adsorption is reduced about 60% and for 

Ag/AC3 adsorption corresponds to 40% of the initial dye concentration. This superior 

catalytic activity of Fenton-treated support can be quantitatively assessed by the initial 

reaction rate of H2O2 decomposition that would correspond to the maximum amount of 

generated active species over the different photocatalysts. Table 1 lists these initial 

reaction rates for the most active photocatalysts. The order of catalyst activity can be 

rationalized as derived from the smaller particle size distribution of Ag NPs supported 

on D3, AC3 or G3 solids respect to the use of commercial (D, AC or G) or Fenton-

treated samples (D2, AC2 or G2) supports (Table 1 and S1) and also to the surface 

modification of the support. Fenton treatment should remove from the surface those 

surface groups that could later react with hydroxyl radicals during the light assisted 

Fenton decolorization of the dyes. Previous characterization has shown that in the case 

of D, the pretreatments used in the preparation of D3 removes oxygenated functional 

groups, particularly carboxylic acids and carbonyls from the surface. Fig. 1 also shows 

that Ag/D3 exhibits remarkable higher photocatalytic activity respect to the use of 

Ag/AC3 or Ag/G3 again attributed to the smallest Ag NPs supported in the former 

catalyst and the inertness of diamond surface respect to other supports. It should be 

noted that this behavior, i.e. higher catalytic activity for the smallest supported metal 
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NPs, has been frequently observed when using MNPs deposited on heterogeneous 

supports.[22, 23, 25]  

a)                                                   b)

 

Fig. 1.  

Importantly, Ag NPs supported on D3 behave similarly than an analogous 

Au/D3 catalyst for MB decolorization with H2O2 under natural Sunlight irradiation. 

This observation is a clear example of the possibility to replace expensive noble metals 

such as Au by others more cost-effective ones, such as Ag, while maintaining the 

catalytic activity (Fig. 2). Furthermore, the beneficial influence of irradiation of Ag NPs 

by natural Sunlight can be observed respect twin experiments carried out in the dark. 

The effect of light can be attributed to the photoejection of electrons from excited Ag 

NPs generated by irradiation with wavelengths coincident with the surface plasmon 

band absorption (SPB) of Ag NPs.[18, 26] A blank control experiment where MB with 

H2O2 was exposed to natural Sunlight irradiation in the absence of catalyst shows also 

some MB decolorization, but requiring much longer reaction times. This fact is not 

unexpected since dyes such as MB are well-known photosensitizers that can promote 

the formation of reactive oxygen species such as singlet oxygen able to cause 

self-degradation of the dye.[27] Nevertheless, as it will be commented later in the 
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productivity tests, the use of higher dye concentrations (> 250 mg L-1) clearly shows the 

beneficial use of Ag/D3 with H2O2 under natural Sunlight irradiation not only in the 

case of MB, but also in when using OII, AR or RhB.  

a)                                                     b)

 

Fig. 2.  

 The photocatalytic activity of Ag/D3 with H2O2 was also compared to that of the 

benchmark photocatalyst Ag/TiO2 for the degradation of different dyes such as MB, 

AR1, OII and RhB under natural Sunlight irradiation (Figs. 3 and S5). A well 

established fact is that TiO2 lacks photocatalytic activity upon visible light irradiation 

due to its large band gap and also that the presence of metal nanoparticles is required to 

increase the photocatalytic activity of TiO2. In general, the results indicate that Ag/D3 

compares favorably in terms of fast dye decolorization to the use of Ag/TiO2 without 

H2O2 (compare Ag/TiO2 with (○) and without H2O2 (▲)). It seems that Ag/TiO2 either 

in the presence or absence of H2O2 under aerated conditions in water generate hydroxyl 

radicals, the difference according to Fig. 3a (compare Ag/TiO2 with (○) and without 

H2O2 (▲)). Then the flux of hydroxyl radicals that is much higher when H2O2 is present 

in the aqueous phase  and similar or better respect to the use of Ag/TiO2 with H2O2. 

Related to these results a previous work has shown that Ag/D3 is more effective than 

Ag/TiO2 for the degradation of phenol and its reaction intermediates due to the higher 
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efficiency of the former to decompose H2O2 to HO· radicals.[18] All together makes 

Ag/D3 a reasonable alternative photocatalyst for the degradation of pollutants in water 

using H2O2 as oxidant under natural Sunlight irradiation. 

a)                                                b)

 

Fig. 3.  

 One important point of the photo-Fenton process is the optimization of the H2O2 

amount and, therefore, reducing the operational cost of the process.[28-30] In fact, it is 

well-established that an excess of H2O2 can be detrimental in the process due to the 

spurious H2O2 decomposition to O2 caused by H2O2 quenching of the HO· radicals.[29] 

For this reason is important to test the efficiency of novel heterogeneous (photo)Fenton 

catalysts in terms of consumed H2O2 versus substrate degradation. To address this point 

we have considered the theoretical H2O2 stoichiometry for complete dye mineralization 

a reference value (Eqs. 3-6). Nevertheless, it should be considered that the amount of 

H2O2 should be minimized as much as possible and complete mineralization of the 

pollutant using an excess of H2O2 is far from being a realistic target due to its low 

economic viability. A more realistic aim of AOP is to achieve decolorization, reducing 

the toxicity of the waste water and maximizing COD removal.  
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Eq.3
 
for MB

C16H18N3SCl
 + 

51H2O2
                 

16CO2
 + 

57H2O
 + 

H2SO4
 + 

3HNO3
 + 

HCl

Eq. 4
 
for AR1

C18H13N3Na2O8S2
 + 

50H2O2
            

18CO2
 + 

55H2O
 + 

2Na2SO4
 + 

3HNO3

Eq. 5
 
for OII

C16H11N2NaO4S
 + 

42H2O2
           

16CO2
 +46H2O

 + 
2HNO3

 +NaHSO4
 

Eq. 6
 
for RhB

C28H31ClN2O3
 + 

73H2O2
              

28CO2
 + 

87H2O
 + 

2HNO3
 + 

HCl   

In our study, Figs. 4 and S6 show that MB decolorization can be achieved using 

just 10 equivalents of H2O2 respect to the dye. Decolorization of the dye (band centered 

at 650 nm) occurs by cleavage of conjugated double bonds, accompanied by 

dearomatization (band centered at 280 nm), due to the fact that color is mainly due to 

the existence of conjugated C=C or N=N bonds present in the aromatic dye 

structure.[31] Similar conclusions can be drawn for AR, OII or RhB for which a 

minimum H2O2 to dye molar ratio of 10, 10 and 15, respectively, is needed for the 

decolorization/dearomatization process (Figs. S7-S11).  To put the present results into 

context it should be mentioned that related precedents employ a much higher H2O2 to 

dye molar ratio to achieve similar decolorization as in the present study. For example, 

using heterogeneous photo-Fenton catalysts such as magnetic porous carbon 

microspheres a H2O2 to MB molar ratio of 32 was used.[32] In the case of vanadium-

doped iron oxides a H2O2 to MB molar ratio as high as 3,000 was employed.[33] In the 

present work the low H2O2 to dye molar ratio needed for the decolorization and 

dearomatization of the different dyes tested (MB, OII, AR and RhB) reveals the 

efficiency of Ag/D3 for H2O2 decomposition into reactive oxygen species (ROS) such 

as HO· radicals.[18] 
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a)                                                    b)

c)                                                    d)
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Fig. 4. 

As commented before, an important parameter to be considered when optimizing 

the H2O2 to dye molar ratio needed in the AOP is the toxicity of the resulting treated 

water. There are in the literature some studies showing that regardless the efficiency of 

some AOPs such as O3/H2O2, UV/H2O2 for the degradation of organic contaminants 

present in waste waters, the treated water becomes even more toxic that the untreated 

one.[13, 34, 35] This fact is mainly due to the formation of small aromatic compounds 

with recognized toxic character such as phenols or aromatic amines.[13, 36] One of the 

most widely used methods to evaluate the toxicity of aquatic systems is that based on 

the Vibrio Fisheri toxicity test.[37] This test consists in the measurement of the 

bioluminescence inhibition due to the presence of toxic contaminants in water. With 

these precedents in mind we tested the toxicity to the Vibrio Fisheri bacteria of the MB 
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solution at pH 4 before and after the heterogeneous (photo)Fenton treatment using 

Ag/D3 as catalyst with the optimized 10 equivalents of H2O2 respect to the dye under 

natural Sunlight irradiation. Importantly, the initial toxicity of the MB solution (67 

T.U.) is completely removed after the treatment (< 3 T.U.) where H2O2 has been 

consumed with the subsequent dye removal (absence of significant absorption at 650 

nm) as well as dearomatization of the system (based on the absorption of the 280 and 

240 nm peaks). In addition to the toxicity removal, the optimized H2O2 dose allowed the 

COD reduction for each dye from around 1,470 mg L-1 to less than 100 mg L-1 O2 

(Table S2). The resulting COD values being below the limit (125 mg L-1 O2) established 

by European regulations for treated waste waters.[38] 

One of the most limiting factors to apply the homogeneous (photo)Fenton 

reaction is the need to work under acidic conditions (pH 3).[39] This requirement 

needed to maximize the presence of the photoactive Fe(OH)2+ that under UV-Vis 

irradiation generates HO· radicals and, also, to avoid iron precipitation and minimize the 

presence of HOO- peroxide anion. In this regard developing heterogeneous 

(photo)Fenton catalysts able to work at quasi neutral or slightly basic pH values is an 

important goal.[28-30] In this work, we evaluate the photocatalytic dye decoloration 

using Ag/D3 as catalyst under natural Sunlight irradiation as a function of the initial pH 

value of unbuffered aqueous solution (Figs. S13-S16). In general, the photocatalytic 

activity of AgD3 increases as the pH decreases, but still efficient photo-Fenton 

decolorization can be achieved at pH 5. This pH value, although still acidic, is 

significantly higher than the one required for homogeneous photo-Fenton promoted by 

Fe3+ that requires a pH value of three. As commented before, in the absence of catalyst 



- 20 - 

 

there is also dye decolorization attributed to the occurrence of light absorption by the 

dyes promoting their self-degradation in the presence of H2O2 as a function of the pH. 

To gain some insight about the effect of the pH in the decolorization process in 

the presence of catalyst under natural Sunlight irradiation, selective radical quenching 

experiments were performed. In particular, we studied the effect of the presence of 

DMSO, a very well-known hydroxyl radical scavenger,[13, 18] in the MB 

decolorization with H2O2 under natural Sunlight irradiation as a function of the initial 

pH value. Fig. S17 shows that the inhibition of MB decolorization in the presence of 

DMSO in the reaction mixture decreases as the pH increases. This fact is interpreted 

considering that HO· radicals are the main radicals species responsible of MB 

decoloration at pH values around 4, while as the pH increases other ROS presumably 

HOO· or superoxides are involved in the decolorization process.[40] In a previous study 

on Fenton degradation of phenol by an analogous D supported Ag catalyst, generation 

of HO· radicals was unambiguously confirmed by trapping with PBN and EPR 

detection of the corresponding adduct.  In contrast, similar study but in the absence of 

catalyst reveal that the main ROS may be others than HO· radicals such as HOO· 

radicals or singlet oxygen (Fig. S18). 

Based on the well known influence of the pH on the photo-Fenton generation of 

the HO· radicals and the well known use of DMSO as HO· radicals quencher, the results 

shown in Figures S17 and S18 provide experimental support to the occurrence of a 

photo-Fenton process at pH values of 4 and 5 while peroxidation privates at pH 7.5. In 

the absence of photocatalyst (Fig. S18), no photo-Fenton occurs. Equations 7 to 9 

summarize the photo-Fenton reaction taking place in the presence of AgNP 

photocatalyst at acid pH values. According to this mechanism the support have to play 
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at least two main roles, controlling the average AgNP particle size to ensure the 

operation of the electron confinement responsible for Plasmon band that should absorb 

photons and eject electrons and also to be sufficiently inert to allow HO· radicals to 

migrate freely to the aqueous phase as free radicals without becoming attached to the 

surface. As it can be seen in Table 1 Ag/D3 combines a small average Ag particle size 

(3.6 nm) together with an inert support since D3 have been already submitted to Fenton 

treatment. 

Ag NP      (Ag NP)+ + e-  Eq. 7 

(Ag NP)+     Ag NP   Eq. 8 

e- + H2O2     HO· + OH-   Eq. 9 

Finally, the stability of the Ag/D3 was assessed by performing reuse and 

productivity experiments. Fig. 5 shows that Ag/D3 catalyst can be employed for at least 

five consecutive times without observing decrease of the photocatalytic activity and 

without observing significant silver leaching from the solid catalyst to the solution (<0.5 

wt % of the initial supported silver) as revealed by ICP-OES measurements. 

Furthermore, TEM analysis of the five-times used Ag/D3 sample shows that the silver 

particle size has been maintained (Fig. S19). Thus, the absence of silver leaching and 

the absence of Ag NPs aggregation are the main factors responsible of the good 

catalytic activity of Ag/D3 upon reuse for MB decolorization using H2O2 as oxidant 

under simulated Sunlight irradiation. The relatively minor decay in catalytic activity 

observed could be attributed to partial Ag NP oxidation and corresponding passivation 

of the external surface of the metal NPs. 
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a)                                                            b)

 

Fig. 5. 

 Productivity tests using concentrated dye solutions (250-300 mg L-1, 0.71 mM) 

with a minimum catalyst concentration (80 mg L-1, 0.00149 mM as Ag) indicate the 

ability of the catalyst to perform a large number of catalytic cycles (TONdye 476 and 

TONH2O2 about 6,000) without significant loss of catalytic activity (Fig. 6). Blank 

control experiments were carried out in the absence of catalyst or in the absence of 

natural Sunlight (Fig. S20) and show low catalytic activity compared to those 

experiments in which catalyst was present and the suspension was irradiated with 

natural Sunlight. These experiments show again the beneficial effects of SPB irradiation 

of Ag/D3 under natural Sunlight irradiation as photocatalyst for dye degradation by 

H2O2. 
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a)                                                 b)

 

Fig. 6. 

 

Conclusions 

 In the present work we have demonstrated that Ag NPs supported on 

commercial D NPs previously functionalized by a homogeneous Fenton treatment 

followed by H2 annealing at high temperature is an efficient photo-Fenton catalyst to 

promote the decolorization of different dyes including MB, OII, AR and RhB under 

natural Sunlight irradiation with minimal H2O2 consumption and achieving remarkable 

detoxification levels. Ag/D3 as photocatalyst can be reused without undergoing metal 

leaching and with minimal Ag NPs aggregation. Maximum TON values for dyes and 

H2O2 of about 476 and 6,000 respectively were obtained. Overall this activity data 

compare favorably those reported in the literature for iron based catalyst that undergo 

extensive metal leaching and require a large excess of H2O2. 
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Figure captions 
 
Fig. 1: MB decolorization (a) and H2O2 decomposition using Ag NPs supported on 

D3(●), G3(∆) and AC3(□) as photocatalysts under natural Sunlight irradiation. 

Reaction conditions: Catalyst (80 mg L-1, 0.0037 mM of supported Ag), dye (23 

mg L-1, 0.071 mM), H2O2 (24 mg L-1, 0.71 mM), pH 4. 

Fig. 2: MB decolorization (a) and H2O2 decomposition (b) using Au (■) or Ag (○) NPs 

supported on D3 under natural Sunlight irradiation. Blank control under same 

reaction conditions but in the dark using Ag/D3 (∆) or in the absence of catalyst 

(◊). Reaction conditions: Catalyst (0.00149 mM of supported Ag or Au), dye (23 

mg L-1, 0.071 mM), H2O2 (24 mg L-1, 0.71 mM), pH 4. 

Fig. 3: MB decolorization (a) and H2O2 decompositon (b) using Ag/D3 (■) or Ag/TiO2 

with (○) and without H2O2 (▲). Reaction conditions: Catalyst (80 mg L-1, 

0.00149 mM of supported Ag), dye (23 mg L-1, 0.071 mM), H2O2 (24 mg L-1, 

0.71 mM), pH 4. 

Fig. 4: Variation of the UV-Vis absorption spectrum of MB as a function of the amount 

of H2O2 on MB decolorization using Ag/D3 as catalyst. Legend: H2O2 to MB 

molar ratio 20 (a), 10 (b), 5 (c) and 2.5 (d). Reaction conditions: Catalyst (80 mg 

L-1, 0.00149 mM of supported Ag), dye (23 mg L-1, 0.071 mM), H2O2 (as 

indicated in the legend), pH 4, reaction time 2 h. 

Fig. 5: Reusability experiments for MB decolorization (a) and H2O2 decomposition (b) 

using Ag/D3 catalyst under simulated Sunlight irradiation. Legend: 1st use (○), 

2nd use (■), 3th use (□), 4th use (●). Reaction conditions: Catalyst (80 mg L-1, 
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0.00149 mM), dye (23 mg L-1, 0.071 mM), H2O2 (24 mg L-1, 0.71 mM), pH 4 

and simulated Sunlight irradiation (1 Sun). 

Fig. 6: Productivity tests for decolorization of each of the four dyes (a) and the 

corresponding H2O2 decomposition (b) using AgD3 as catalyst under natural 

Sunlight irradiation. Legend: MB (■), OII (∆), AR (●) and RhB (○). Reaction 

conditions: Catalyst (80 mg L-1, 0.00149 mM of supported Ag), dye (0.71 mM), 

pH 4, H2O2 (7.1 mM for MB, OII and AR1; 10.6 Mm for RhB).  
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