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Abstract. Consider a linear and continuous operator T between Banach function
spaces. We prove that under certain requirements an integral inequality for T is
equivalent to a factorization of T through a specific kernel operator: in other words,
the operator T has what we call a Maharam-type kernel representation. In the case
that the inequality provides a domination involving trigonometric functions, a special
factorization through the Fourier operator is given. We apply this result to study
the problem that motivates the paper: the approximation of functions in L2[0, 1]
by means of trigonometric series whose Fourier coefficients are given by weighted
trigonometric integrals.

1. Introduction

Consider the (normalized) trigonometric system T = {tk : k ∈ N} in L2[0, 1]. In this
paper we are interested in studying operators that are defined as the classical Fourier
operator F : L2[0, 1] → `2, but for which the associated Fourier-type coefficients βk are
given by

βk(f) =

∫
[0,1]

f(w) tk(w)hk(w)dµ, f ∈ L2[0, 1],

where hk are suitable bounded weights. Our motivation comes in part from the following
classical problem. Depending on the function f of L2[0, 1] that is considered, the calculus
of the integrals providing the genuine Fourier coefficients can have a big computational
cost and the convergence of the associated Fourier series can be slow. To add some
weights to the integrals appearing can of course solve the problem, but the orthogonality
properties of the system T disappear when this procedure is used. This fact forces to use
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a different non-geometric approach. An abstract understanding of this well-known basic
fact leads us to be interested in the functional analytic problem of describing the class
of operators given by this procedure.

Therefore, the aim of the paper is to characterize the class of kernel-type opera-
tors between Banach function spaces that satisfy certain integral inequalities involving
trigonometric series. Of course, the problem is not new. In fact, one of the classical topics
of the functional analysis is to find good characterizations of integral operators between
spaces of integrable functions by means of domination relations. Although there is a big
amount of classical relevant papers in the topic, we have chosen two concrete ideas to
provide an appropriate introduction for our results. The first one is given by the paper
[16] of D. Maharam, in which an order domination between what she called F -integrals
leads to write one of them as a kernel operator with respect to other: in her words, one
of them has a kernel representation in terms the other one (see the Introduction, Theo-
rem 7 and the previous Lemma in [16]; see also [15]). In these papers by Maharam the
reader can find a reference to a representation theorem appearing in the paper [10] by L.
Kantorovitch and B. Vulich. Previous works by S. Bochner, G. Birkhoff and N. Dunford
directly related to this topic are quoted in this paper.

The general framework in which these integral representation theorems were proved
is given by what we may identify as a vector measure approach nowadays. These ideas
were also used to find the maximal domain of the operators represented by these integrals
(see Section 5 in [16]). The reader can find recent similar developments in [19] and [4, S.3
and S.4]. In the last mentioned paper, a generalized Radon-Nikodým Theorem is used
in order to give conditions that allow to write an operator in terms of another given one
using scalar domination between vector measures. This argument will be used in this
paper.

The second idea we want to bring here is the well-known characterization of the
Carleman operators (integral operators) in L2-spaces. Theorem 17.2 in [9] states that an
operator A in L2 is a Carleman operator if and only if there is a measurable function h
providing a pointwise domination for A as∣∣A(x)

∣∣ ≤ ‖x‖L2 ·
∣∣h|, x ∈ L2.

Moreover, h belongs to L2 if and only if A is a Hilbert-Schmidt operator ([9, Cor.17.3]).
In the same chapter of this book the reader can find the following question: Is it possible
to characterize the classes of integral operators by means of such kind of domination
properties? ([9, Problem 17.4]).

In this direction, the aim of this paper is to provide a general procedure for char-
acterizing specific classes of integral operators having some fixed type of kernel, with
some integral domination inequalities among operators. Thus, we will show first some
results for operators acting in Banach function spaces in which some integral inequal-
ities involving two operators imply the factorization of the first one through a kernel
operator that is constructed using the second one. This will be done in Section 3, where
some rather technical procedures based on the Fremlin lattice tensor product of spaces
of multiplication operators are used. Besides of the classical paper [7] of D.H. Fremlin,
the main elements that are needed can be found in the paper [22] by A.R. Schep. The
factorization is then obtained by a new version of the fundamental Hahn-Banach sepa-
ration argument that is always used for proving such results, which is adapted for the
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tensor product setting from the one explained in [4]. After showing some applications
to the case of averaging operators, we will use our technique for providing in Section 4
the integral domination inequalities that characterize the class of weighted Fourier-type
operators mentioned above. Weighted norm inequalities for Fourier multipliers operators
is a classical and current interesting topic; our results would find applications using such
kind of domination, for the linear case and also for the multilinear case (see for example
[8] and the references therein).

Another example of domination between pairs of operators that has been recently
studied —in this case, pointwise domination—, can be found in [6] and related references.
In this case, the aim is to analyze which properties of the operator T are inherited by
the operator S if the relation |S| ≤ |T | holds. Our techniques are different, although our
abstract construction would also find applications in this setting.

2. Basic concepts and notation

Let us present first some special notations and concepts that will be used in the paper.
If E is a Banach space, we write E∗ for its dual and BE for its unit ball. We give the
general reference [14] for concepts and results regarding Banach lattices and Banach
function spaces. If s is a sequence and j ∈ N, we write as usual sj for the j-th coordinate;
if J ⊆ N, we will write sJ for the sequence defined as sj for the j-th coordinate if j ∈ J ,
and 0 otherwise. Let (Ω,Σ, ν) be a σ-finite measure space. Let L0(µ) be the space of all
(µ-a.e. equal equivalence classes of) measurable real functions on Ω. L∞(µ) will denote
the space of functions in L0(µ) which are bounded µ-a.e. By a Banach function space we
mean a Banach lattice X(µ) ⊂ L0(µ) with norm ‖ · ‖X such that if f ∈ L0(µ), g ∈ X and
|f | ≤ |g| µ-a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X . Note that we omit the measure µ in the
notation of the space X(µ) if the measure is clear in the context. We will say that X is
order continuous if for every f, fn ∈ X such that 0 ≤ fn ↑ f µ-a.e., we have that fn → f
in the norm. The Köthe dual X(µ)′ of a Banach function space X(µ) is the subspace of
X(µ)∗ whose elements can be represented as integrals, that is ϕ ∈ X(µ)∗ such that there
is a function g ∈ L0(µ) satisfying that ϕ(f) =

∫
gf dµ for every f ∈ X(µ). It is always

an isometric subspace, and if X(µ) is σ-order continuous, then X(µ)∗ = X(µ)′.
Given two Banach function spaces X and Y , the space of multiplication operators

from X to Y is defined as the space of functions

XY =
{
h ∈ L0(µ) : hf ∈ Y for all f ∈ X

}
,

which always define multiplication operators Mh : X → Y . Its norm is given by ‖ · ‖XY
given by ‖h‖XY = supf∈BX ‖hf‖Y for all h ∈ XY ; in fact, it defines a natural seminorm

on XY which becomes a norm only in the case when XY is saturated, that is, if there is a
strictly positive function in the space. The reader can find some information about these
spaces in [1, 11, 17]. They are a fundamental tool for factorization both of operators (see
[2, 19, 21]) and of Banach function spaces (see [12, 23]).

In this paper, the so called lattice tensor product or Fremlin tensor product of
Banach lattices will be relevant. It is well-known that the projective tensor product
of Banach lattices is not in general a Banach lattice. However, there is a construction
that allows to assure that the corresponding completion of the tensor product has a



4 E. A. Sánchez Pérez

Banach lattice structure. We are interested in the case when the Banach lattices involved
are Banach function spaces. Consider two Banach function spaces X(µ) and Y (ν), and
define the norm |π| on the tensor product X(µ)⊗ Y (ν) by

|π|(z) := inf
{ n∑
i=1

‖xi‖‖yi‖ : |z| ≤
n∑
i=1

|xi||yi|
}
.

Here, the order on the tensor product in the one inherited by the identification (x, y) 7→
x(v) · y(w) ∈ L0(µ× ν), x ∈ X, y ∈ Y . The original construction can be found in [7], but
the reader can find all what is needed for the present paper in [22].

Under certain p-convexity requirements on the spaces X and Y , the norm |π| can
be computed in an easier way. Let us define

ρ(u) := inf
{
‖x1‖ · ‖x2‖ : |u| ≤ |x1||x2|

}
, u ∈ X1 ⊗X2,

and suppose that it is subadditive: in this case, it coincides with |π| (see Theorem 2.1 in
[22]). We write X1⊗̂|π|X2 for the completion of X1 ⊗|π| X2.

We summarize in the following result some (almost) known properties of the lattice
tensor product that will be needed in the paper.

Proposition 2.1. (Theorem 2.1 and Theorem 2.2 in [22]).

(i) If ρ defined above on X1⊗X2 is subadditive, then for each u ∈ X1⊗̂|π|X2, there are
x1 ∈ X1 and x2 ∈ X2 such that |u| ≤ |x1||x2|. Moreover, if |π|(u) ≤ 1 and ε > 0,
x1 and x2 can be chosen such that ‖x1‖‖x2‖ < 1 + ε.

(ii) If E is a Banach space, there is a one-to-one correspondence between positive bilinear
maps ϕ : X1 ×X2 → E and their positive linearizations T : X1⊗̂|π|X2 → E.

(iii) If 1 < p < ∞ and X1 is p-convex and X2 is p′-convex —with convexity constants
M(p)(X1) = 1 and M(p′)(X2) = 1—, then ρ is subadditive.

Proof. The main parts of the proofs of the different statements can be found in [22]. In (i),
the norm estimate is not explicitly written in the proof of [22, Th.2.2(ii)]. However, a look
to the argument shows that for a given ε > 0, it is possible to find a convenient sequence
(un) ∈ X1 ⊗|π| X2 approximating u satisfying that |π|(un) ≤ 1 and with |π|(un − un+1)
as small as we want. A standard bounding procedure gives the estimate.

(ii) is a direct consequence of [22, Th.2.2(iv)]. Finally, a look to the proof of [22,
Th.2] —that is written for Lp-spaces— shows that it works for spaces with the adequate
convexity requirements, giving (iii). �

3. Kernel representations of dominated operators

In this section we introduce and study what we call integral domination inequalities for
a pair of operators. This kind of inequalities consists of order relations among integrals
involving the evaluations of both operators of the pair. For example, p-concavity of an
operator T : Lp(µ)→ Lp(µ) is given by( n∑

i=1

∫
|T (xi)|p dµ

)1/p
≤ K

( ∫ n∑
i=1

|xi|p dµ
)1/p

,
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for all x1, ..., xn ∈ Lp(µ), that can be considered as an integral domination of T by the
identity map in Lp. Other classical example is given by some inequalities coming from
classical harmonic analysis. To give a concrete example, the classical weighted Hardy
inequalities ∫ ∞

0

(1

s

∫ s

0

x(t) dt
)p
w(s) ds ≤ c

∫ ∞
0

x(s)p v(s) ds

that hold for suitable Muckenhoupt weights w(s) and v(s) may be considered as an
integral domination of the averaging operator by the identity map, and the reverse in-
equalities are in fact integral dominations of the identity by the averaging operator (see
for example [18] and the references therein). We will come back to averaging type oper-
ators at the end of this section.

Let us start this part by introducing some technical definitions and results that will
be necessary to provide the right theoretical context. Let 1 < p < ∞ and suppose that
the spaces XX2

1 and Y Y1
2 are p-convex and p′-convex, respectively. Consider the Fremlin

tensor product of these spaces, that is,

XX2
1 ⊗|π| Y Y1

2 .

We will say that a (closed) subspace A of
(
XX2

1 ⊗|π| Y Y1
2

)∗
is adequate if the weak

topology τA defined by the duality
〈
XX2

1 ⊗|π| Y Y1
2 , A

〉
separates points and satisfies that

the unit ball of this Fremlin tensor product is compact for τA. The canonical case that
will be used in this paper is when XX2

1 ⊗|π| Y Y1
2 is a dual space and A is its predual.

Consider two operators T : X1(µ) → Y1(ν) and S : X2(µ) → Y2(ν). Our first
technical result provides a characterization of when the first operator can be factored
through a kernel operator constructed from the second one in a particular way. The
main requirement is given by the integral domination inequalities that appear in (ii) of
the next lemma, which involve two operators.

Note first that, if x1, ..., xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′1 and S is as above, the expression

XX2
1 ⊗ Y Y1

2 3
m∑
j=1

fj ⊗ gj  
( n∑
i=1

S(·xi) · (· y′i)
)( m∑

j=1

fi ⊗ gi
)

:=
〈 n∑
i=1

S(·xi) · (· y′i),
m∑
j=1

fi ⊗ gi
〉

=

n∑
i=1

m∑
j=1

∫
S(fj xi) · (gj y′i) dµ ∈ R,

defines a linear functional
∑n
i=1 S(·xi) · (· y′i) in

(
XX2

1 ⊗ Y Y1
2

)∗
.

Lemma 3.1. Consider Banach function spaces X1(µ) and X2(µ) and Y1(ν) and Y2(ν),

where (Ω,Σ, µ) and (∆,Γ, ν) are σ-finite measure spaces. Suppose that both XX2
1 , Y Y1

2

are saturated Banach function spaces. Suppose also that

{S(·x) · (· y′) : y′ ∈ Y1′, x ∈ X1}
lies in an adequate subspace A of (XX2

1 ⊗|π| Y Y1
2 )∗.

The following facts are equivalent for the operators T : X1 → Y1 and S : X2 → Y2.

(i) The inequality
n∑
i=1

∫
T (xi)y

′
i dµ ≤ C sup

u∈B
X
X2
1 ⊗|π|Y

Y1
2

〈 n∑
i=1

S(·xi) · (· y′i), u
〉
.
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holds for every x1, ..., xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′1 .

(ii) There is an element u0 in the unit ball of XX2
1 ⊗|π| Y Y1

2 such that∫
T (x)y′ dµ = C

〈
S(·x) · (· y′), u0

〉
,

for all x ∈ X1 and y′ ∈ Y ′1 .

Proof. We use the duality of the subspace A with the lattice tensor product XX2
1 ⊗|π|Y

Y1
2

for applying a standard separation argument. Define the functions φ : B
X
X2
1 ⊗|π|Y

Y1
2
→ R

as

φ(u) :=

n∑
i=1

∫
T (xi)y

′
i dµ− C

n∑
i=1

〈
S(·xi) · (· y′i), u

〉
,

where x1, ..., xn and y′1, ...., y
′
n are elements of X1 and Y ∗1 , respectively. It is easy to check

that they form a concave class of convex functions that are continuous by hypothesis with
respect to the weak topology defined by A for XX2

1 ⊗|π| Y Y1
2 . The inequalities in (i) and

the Hahn-Banach Theorem gives a norm one element u in the completion of the tensor
product for each function φ such that φ(u) ≤ 1. Then, we have by Ky Fan’s Lemma that

there is an element u0 in the completion of XX2
1 ⊗|π| Y Y1

2 of norm one such that

n∑
i=1

∫
T (xi)y

′
i dµ ≤ C

n∑
i=1

〈
S(·xi) · (· y′i), u0

〉
.

The element u0 of the completion of the Fremlin tensor product satisfies that∫
T (x)y′ dµ ≤ C

〈
S(·x) · (· y′), u0

〉
,

for all x and y′ and so, by changing y′ by −y′ we obtain

−
∫
T (x)y′ dµ ≤ −C

〈
S(·x) · (· y′), u0

〉
,

that gives ∫
T (x)y′ dµ = C

〈
S(·x) · (· y′), u0

〉
,

for all x and y′. The converse is given by a direct computation.
�

Lemma 3.2. Let X(µ) and Y (µ) be Banach function spaces, and assume that Y (µ) is
σ-order continuous. If S : X(µ) → Y (ν) is a positive operator and u ∈ X⊗̂|π|Y ′, then
there are h ∈ X, g ∈ Y ′ and f ∈ BL∞(µ×ν) such that u = hfg and〈

u, S
〉

=

∫
S
(
f(v, w)h(v)

)
g(w) dν.

Moreover, if u ∈ X⊗|π|Y ′, then the operator is not needed to be positive for obtaining
the same formula.

Proof. Note first that since Y is σ-order continuous, we have that Y ∗ can be identified
with the Köthe dual Y ′. Take an element u ∈ X⊗̂|π|Y ′ and consider a sequence of tensors

(un) ∈ X⊗|π|Y ′ converging to u with respect to |π| and such that |π|(u − un) < 2−n.
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Take a representation of un as un =
∑mn
i=1 xi ⊗ y′i. It can be identified with the function

hnfngn of L0(µ× ν) defined by hn(v) =
∑mn
i=1 |xi(v)|, gn(w) =

∑mn
i=1 |y′i(w)| and

fn(v, w) =

mn∑
i=1

xi(v)y′i(w)/hn(v)gn(w).

Note that, fixing w, we have that hn(v)fn(v, w)gn(w) ∈ X(µ) and

S(hn(v)fn(v, w)gn(w)) = S(hn(v)fn(v, w)) · gn(w) =

m∑
i=1

S(xi(v)) · y′i(w).

Then 〈
un, S

〉
=

m∑
i=1

〈S(xi), y
′
i〉

=

m∑
i=1

∫
S(xi(v))(w)y′i(w) dν(w) =

∫
S
(
hn(v)fn(v, w)

)
gn(w) dν(w).

This gives the formula for the case of u ∈ X⊗|π|Y ′; no positivity of S has been
needed.

Let us see now the case when u is an element of the completion. Recall that u can be
identified with an element of L0(µ× ν), and that there are elements x0 ∈ X and y′0 ∈ Y ′
such that |u(v, w)| ≤ |x0(v)||y′0(w)| µ × ν-a.e. (Proposition 2.1(i)). For each fixed w0,
we get that u(v, w0) is µ-measurable and |u(v, w0)| ≤ |x0(v)||y′0(w0)|, and so u(v, w0) ∈
X(µ). As a consequence, the function w0 7→ S(u(v, w0)) ∈ Y ∗ = Y ′ is well-defined. We
can apply now Lebesgue’s Dominated Convergence Theorem. In order to do that, let us
consider the functions w 7→ S(un)(w) := S(un(v, w)) and w 7→ S(u)(w) := S(u(v, w)).
Recalling that the tensors uu have a simple representation, it is easy to compute explicitly
S(un) in order to see that the functions S(un) are ν-measurable.

1) By Proposition 2.1(i), for each n there are elements xn ∈ X and y′n ∈ Y ∗ such
that |S(un)(w) − S(u)(w)| ≤ |xn(v)||y′n(w)|, ‖xn‖ < 2−n/2 and ‖y′n‖ < 2−n/2. We
can assume without loss of generality that xn → 0 and y′n → 0 a.e., since every
converging sequence in a Banach function space has a subsequence that converges
a.e. Then, since S is positive, we have that for a fixed w0,

|S(un)(w0)− S(u)(w0)| = |S(un(v, w0))− S(u(v, w0))|

≤ S(|un(v, w0)− u(v, w0)|) ≤ S(|xn(v)||y′n(w0)|)

≤ S(
∑
n≥1

|xn(v)||y′n(w0)|) = S(
∑
n≥1

|xn(v)|)(w0) · |y′n(w0)|.

Observe that
∑
n≥1 |xn| ∈ X as a consequence of the fact that (xn)n converges

absolutely, and so S(
∑
n≥1 |xn|) is a well defined function of w belonging to Y . Since

y′n tends to 0 a.e., we obtain that S(un)→ S(u) a.e.
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2) For a fixed n, we have that

|S(un)(w)| ≤ |S(un)(w)− S(u)(w)|+ |S(u)(w)|

≤ S(
∑
n≥1

|xn|)(w) ·
(∑
n≥1

|y′n|(w)
)

+ S(x0)(w) · y′0(w) ∈ L1(ν).

Since the function dominating does not depend on n, we can apply the Dominated
Convergence Theorem to obtain that S(u)(w) ∈ L1(ν) and〈

u, S
〉

= lim
n

〈
un, S

〉
= lim

n

∫
S(un)(w) dν(w)

=

∫
S(u)(w) dµ2(w) =

∫
S
(
x0(v)f0(v, w)

)
y′0(w) dν(w),

where u = x0(v)f0(v, w)y′0(w) with

f0(v, w) :=
u(v, w)

x0(v)y′0(w)
∈ BL∞(µ1×µ2).

This gives the result.

�

Theorem 3.3. Suppose that XX2
1 and Y Y1

2 are saturated Banach function spaces over µ1

and µ2, respectively, and that ρ is subadditive on XX2
1 ⊗ Y Y1

2 . Assume that Y Y1
2 is the

dual of a σ-order continuous Banach function space and Y1 is σ- continuous. Suppose
also that

{S(·x) · (· y′) : y′ ∈ Y1′, x ∈ X1}

lies in an adequate subspace A of (XX2
1 ⊗|π| Y

Y1
2 )∗. The following facts are equivalent for

the positive operator T : X1 → Y1 and the operator S : X2 → Y2.

(i) The inequality

n∑
i=1

∫
T (xi)y

′
i dµ2 ≤ C sup

u∈B
X
X2
1 ⊗|π|Y

Y1
2

〈 n∑
i=1

S(·xi) · (· y′i), u
〉

holds for every x1, ..., xn ∈ X1 and y′1, ..., y
′
n ∈ Y ′1 .

(ii) There are a function h(w1) ∈ B
X
X2
1

, a function g(w2) ∈ B
Y
Y1
2

and a bounded

function f(w1, w2) ∈ L∞(µ1 × µ2) such that gfh ∈ XX2
1 ⊗̂|π|Y

Y1
2 and

T (x) = gŜ(hx)

for all x ∈ X1, where Ŝ : X2(µ1) → Y2(µ2) is a kernel-type operator associated to
the function f(v, w) by

Ŝ(z)(w) = S(z(v)f(v, w)), z ∈ X2(µ1).



Maharam-type kernel representation for operators 9

That is, if (i) or (ii) hold, then T factors through the kernel operator Ŝ defined
above as

X1(µ1)
T //

Mh

��

Y1(µ2)

X2(µ2)
Ŝ // Y2(µ2).

Mg

OO
(3.1)

Moreover, if XX2
1 ⊗|π|Y

Y1
2 is already complete, the positivity of S is not needed.

Proof. Let as see that (i) implies (ii). The proof is a consequence of Theorem 3.1. By as-
sumption, the norm for an element u of the Fremlin tensor product X1⊗|π|X2 (considered

as a subspace of L0(µ1 × µ2)) can be computed by

‖u‖|π| = inf{‖x1‖ ‖x2‖ : |u| ≤ |x1| |x2|},

and by Proposition 2.1(i) each element of XX2
1 ⊗̂|π|Y

Y1
2 can be dominated by a single

product of elements of XX2
1 and Y Y1

2 with convenient norms. This implies that for the
norm one element u0 provided in the equality (ii) of Theorem 3.1 and ε > 0, there are

functions h and g such that ‖h‖ < 1 + ε and ‖g‖ = 1 such that u0 ∈ XX2
1 ⊗|π| Y Y1

2 and

|u0(v, w)| ≤ |h(v)||g(v)|

as elements of L0(µ1 × µ2). This gives that u0 can be written as

u0(v, w) =
u0(v, w)

|h(v)||g(w)|
|h(v)||g(w)|,

and so it is written as a product of the function f0 := u0

|h||g| in BL∞(µ1×µ2) and two

functions h and g belonging to (1 + ε)B
X
X2
1

and B
Y
Y1
2

, respectively. Recall also that Y1

is assumed to be σ-order continuous, and so Y ∗1 = Y ′1 .

Thus, we have that for x ∈ X1 and y′ ∈ Y ∗1 = Y ′1 ,∫
T (x)y′ dµ2 =

〈
S(·x) · (·y′), u0

〉
=
〈
S(·x) · (·y′), h(v)f(v, w)g(w)

〉
=
〈
S, h(v)x(v)f(v, w)g(w)y′(w)

〉
.

By Lemma 3.2, and taking into account that Y Y1
2 is assumed to be the dual of a σ-order

continuous lattice, we obtain∫
T (x)y′ dµ2 =

∫
S
(
h(v)x(v)f(v, w)

)
g(w)y′(w) dµ2.

This clearly gives the desired factorization.

For (ii) ⇒ (i), just note that by assumption the elements h ∈ XX2
1 , f ∈ L∞(µ1, µ2)

and g ∈ Y Y1
2 defines a function gfh that is an element of the closure of XX2

1 ⊗|π| Y Y1
2 .

�
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3.1. An example: A, kA-averaging operators

Let us finish this section by showing a concrete application of Theorem 3.3 to the case of
the averaging operators (conditional expectation operators) on Banach function spaces
associated to a given partition of a measure space. This class of operators constitutes
a basic tool in functional analysis, and has been used both for applications and for
theoretical purposes. Starting with the classic paper [20] by G.C. Rota (see also the
references in it), the reader can find some information on this topic in the setting of the
Riesz spaces and the Banach function spaces in [13, 5].

Take a finite measure space (Ω,Σ, µ) and a finite partition A := {Ak : k = 1, ..., s}
of Ω defined by sets of positive measure. Let 1 < p <∞. Consider a kernel function kA :
Ω× Ω→ R defining an operator KA : Lp(µ)→ Lp(µ) by KA(x) =

∫
kA(v, w)z(v)dµ(v),

z ∈ Lp(µ).

Let us define the A, kA-averaging kernel operator EA,kA : Lp(µ)→ Lp(µ) given by

EA,kA(z)(w) :=

n∑
k=1

(∫
Ak

kA(v, w)z(v) dµ(v)
) χAk(w)

µ(Ak)
,

z ∈ Lp(µ), and assume that it is well-defined and continuous. For example, for the
kernel given by the constant 1 function, it gives the classical example of a is well-defined
and continuous operator (see for example [20, S.2]). We will write simply EA for this
operator, that is EA := EA,1. Take Banach function spaces X(µ) and Y (µ) such that

X(µ) ⊆ Lp(µ) and Lp(µ) ⊆ Y (µ). Note that by Lemma 5.1 in [1], XLp is p-convex and

(Lp)Y = (Y ′)L
p′

is p′-convex with constants equal to 1. By Proposition 2.1(iii), we have
that ρ is subadditive.

In this case we have that for xi ∈ X, hj ∈ XLp , y′i ∈ Y ′ and gj ∈ (Lp)Y ,

〈 n∑
i=1

EA(·xi) · (· y′i),
m∑
j=1

hj ⊗ gj
〉

=

n∑
i=1

m∑
j=1

∫
EA(hjxi) · (gjy′i) dµ =

n∑
i=1

m∑
j=1

s∑
k=1

(∫
Ak

hjxi, dµ
)(∫ χAk

µ(Ak)
gjy
′
idµ
)

=

n∑
i=1

m∑
j=1

s∑
k=1

( ∫
Ak
hjxi, dµ

)( ∫
Ak
gjy
′
idµ
)

µ(Ak)
.

Therefore, the requirement appearing in Theorem 3.3(i) for an operator T : X(µ)→
Y (µ) is that the inequality

n∑
i=1

∫
T (xi)y

′
i dµ

≤ C sup∑m
j=1 hj⊗gj∈BXLp⊗|π|(Lp)Y

{ n∑
i=1

m∑
j=1

∫
EA(hjxi) · (gjy′i) dµ

}
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holds for every x1, ..., xn ∈ X and y′1, ..., y
′
n ∈ Y ′. This is equivalent to the inequality

n∑
i=1

∫
T (xi)y

′
i dµ

≤ C sup∑m
j=1 hj⊗gj∈BXLp⊗|π|(Lp)Y

{ s∑
k=1

n∑
i=1

m∑
j=1

( ∫
Ak
hjxi, dµ

)( ∫
Ak
gjy
′
idµ
)

µ(Ak)

}
. (3.2)

Assume that (Lp)Y is the dual of a σ-order continuous Banach function space and Y
is σ-order continuous. Thus, if the inequality above holds for T , Theorem 3.3 (for ν = µ)
gives that there are functions hA ∈ BXLp , gA ∈ B(Lp)Y and fA ∈ L∞(µ× µ) such that

T (x) = gAÊA(hx)

for all x ∈ X, where ÊA : Lp(µ)→ Lp(µ) is exactly the averaging kernel operator given
by

ÊA(z)(w) = EA(z(v)fA(v, w))

=

n∑
k=1

(∫
Ak

z(v)fA(v, w) dµ(v)
) χAk(w)

µ(Ak)
= EA,fA(z), z ∈ Lp(µ).

That is,

T (x) = g(w)
[ n∑
k=1

χAk(w)

µ(Ak)

(∫
Ak

x(v)h(v)fA(v, w) dµ(v)
)]

for all x ∈ X(µ). The converse is obvious: if g, f and h are as above and gfh ∈
XLp⊗̂|π|(Lp)Y , then the operator

T (x)(w) := g(w)EA
(
fA(v, w)h(v)x(v)

)
, x ∈ X(µ),

that allows an expression as the one above, satisfies the inequality (3.2). This gives
the following generalized version of the approximation of the identity map by means of
integral averages for order continuous Banach function spaces. Let (Ω,Σ, µ) be a finite
measure space and consider the ordered directed set A of all µ-a.e. equal finite measurable
partitions of Ω, where the order is given by: A1 ≤ A2 if and only if A2 is finer than A1

µ-a.e.

Corollary 3.4. Let X(µ) and Y (µ) be Banach function spaces such that (Lp(µ))Y is the
dual of a σ-order continuous Banach function space and Y is σ-order continuous. Suppose
that the operator T : X(µ) → Y (µ) is the pointwise limit of a net {TA : A ∈ A}, each
one satisfying a domination as

n∑
i=1

∫
TA(xi)y

′
i dµ ≤ sup

h∈B
XL

p , g∈B(Lp)Y

{ s∑
k=1

n∑
i=1

( ∫
Ak
hxi dµ

)( ∫
Ak
gy′idµ

)
µ(Ak)

}
for every x1, ..., xn ∈ X1 and y′1, ..., y

′
n ∈ Y ′1 . Then for each x ∈ X,

T (x)(w) = lim
A

(
gA(w) · EA,fA(hA(v)x(v))(w)

)
where hA ∈ BXLp , gA ∈ B(Lp)Y and fA ∈ BL∞(µ×µ) for each finite partition A.
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The canonical examples of Banach function spaces satisfying al the requirements
on X(µ) and Y (µ) are X = Lr[0, 1] and Y = Ls[0, 1] for 1 ≤ s < p ≤ r < ∞, being
µ Lebesgue measure on [0, 1], or Lorentz spaces Lr,t[0, 1] and Ls,q[0, 1] satisfying the
inclusion requirements with respect to Lp[0, 1].

4. Trigonometric domination of operators

We will apply the results of the previous sections for the case of trigonometric dominations
by considering the following vector norm inequality for an operator T between Hilbert
spaces. Recall that we write T = {tk : k ∈ N} in L2[0, 1] for the normalized trigonometric
system. We will say that an operator T : L2(µ)→ `2 satisfies a trigonometric domination
if for each finite subset J ⊆ N we have that

n∑
i=1

∑
j∈J

T (xi)j ai,j ≤ CJ sup
(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J

( ∫
hjxitjdµ

)
ai,j

)
holds for every x1, ..., xn ∈ L2[0, 1] and real matrices (ai,j)i=1,...,n, j∈J .

Our technique would work also for example for the case when 2 ≤ p <∞ and T is
an operator T : Lp[0, 1] → `p, since Lp[0, 1] ⊆ L2[0, 1] and `2 ⊆ `p. However, we center
our attention in the simplest case p = 2, for which an easy characterization of our class
of operators is provided.

Let us represent first in a concise way the elements that appear in this type
of domination. Since the operators have finite dimensional range, we can write the
lattice tensor product that appears in this case as follows, taking into account that

(L2[0, 1])L
2[0,1] = L∞[0, 1] and (`2m)`

2
m = `∞m . Indeed, we have

XX2
1 ⊗|π| Y Y2

1 = L∞[0, 1]⊗|π| `∞m .

Note that both spaces defining the tensor product are 2-convex with constants equal to
1, and so by Proposition 2.1(iii) the norm can be defined by the function ρ, since it is
subadditive.

Lemma 4.1. The lattice L∞[0, 1]⊗|π| `∞m is isomorphic topologically and in the order to
the m-fold Cartesian product

L∞[0, 1]× · · ·︸︷︷︸
m

×L∞[0, 1]

with its natural order and the norm ‖(h1, ..., hm)‖ = maxk=1,...,m ‖hk‖L∞[0,1]. Moreover,

‖(h1, ..., hm)‖ ≤ |π|(
m∑
k=1

hk ⊗ ek) ≤ m · ‖(h1, ..., hm)‖

for each (h1, ..., hm) ∈ L∞[0, 1]× · · · × L∞[0, 1].

In what follows sometimes we will write L∞[0, 1]×L∞[0, 1] for the m-fold Cartesian
product and L∞ instead of L∞[0, 1] for the aim of clarity.



Maharam-type kernel representation for operators 13

Proof. Each element in L∞[0, 1]×· · ·×L∞[0, 1] have a unique representation (µ-a.e in the
left part of the tensors) as z =

∑m
k=1 hk ⊗ ek, where ek are the elements of the standard

basis of `∞m . We identify z with the function (h1, ..., hm) ∈ L∞[0, 1]× · · · × L∞[0, 1].
Suppose that |π|(z) = 1. Then for ε > 0 we have a pair of elements fz ∈ L∞[0, 1]

and λz = (λk)mk=1 ∈ `∞m such that∣∣ m∑
k=1

hk · ek
∣∣ ≤ |fz||(λk)|

and ‖fz‖ · ‖λz‖ < 1 + ε. We can assume w.l.o.g that ‖λz‖ = 1. Then∥∥(h1, ..., hm)
∥∥
L∞[0,1]×···×L∞[0,1]

= max
k=1,...,m

‖fk‖L∞[0,1] ≤ ‖fz‖ · ‖λz‖ < 1 + ε.

For the converse inequality, just note that∣∣ m∑
k=1

hk · ek
∣∣ ≤ ( m∑

k=1

|hk|
)
· |

m∑
k=1

ek
∣∣,

that gives

|π|(
m∑
k=1

hk · ek) ≤ ‖
m∑
k=1

|hk|‖L∞ · ‖
m∑
k=1

ek‖`∞m ≤
m∑
k=1

‖hk‖L∞ ≤ m · max
k=1,...,m

‖fk‖L∞ .

�

Consider now the Fourier operator F : L2[0, 1] → `2. Write c for the counting
measure on N. We will develop an approximation procedure, so we consider the finite
rank operators TJ := PJ ◦ T defined by the finite dimensional projection PJ : `2 → `2

given by a finite subset J ⊆ N of subindexes referred to the corresponding elements of
the trigonometric basis T of L2[0, 1]. The dominating operator is given by

FJ(x) :=
∑
j∈J
〈x, tj〉ej , x ∈ L2[0, 1].

Then, and taking into account the particular descriptions of the elements involved,
the domination inequality that must be considered in this case is given by the following
expression, where x1, ..., xn ∈ L2[0, 1] and y1, ..., yn ∈ `∞, with yi = (yij)

m
j=1.

n∑
i=1

∫
PJ ◦ T (xi)y

i dc

≤ CJ sup∑
k∈J hk⊗ek∈BL∞⊗|π|`∞

( n∑
i=1

∑
j∈J

∑
k∈J

〈hkxi, tj〉〈ej , ek · yi〉
)

≤ CJ sup
(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J
〈hjxi, tj〉yij

)
,

for certain constants CJ . We can get directly the equivalent expression
n∑
i=1

∑
j∈J

T (xi)jy
i
j ≤ CJ sup

(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J

αj(hjxi)y
i
j

)
,

where αj(hjxi) =
∫
hjxitjdµ, j ∈ J , is the j-th Fourier coefficient of the function hjxi.
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Theorem 4.2. Let J ⊆ N be a finite subset. The following statements are equivalent for
an operator T : L2[0, 1]→ `2.

(i) T satisfies a trigonometric domination, that is, for every finite subset J ⊂ N, there
is a constant CJ such that the inequality

n∑
i=1

∑
j∈J

T (xi)j ai,j ≤ CJ sup
(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J

( ∫
hjxitjdµ

)
ai,j

)
holds for every x1, ..., xn ∈ L2[0, 1] and matrices (ai,j)i=1,...,n, j∈J .

(ii) There are functions hJj ∈ L∞[0, 1] with ‖hJj ‖ ≤ CJ , j ∈ J , such that

PJ ◦ T (x) =
(
αj(h

J
j x)
)
j∈J =

( ∫
hJj xtjdµ

)
j∈J .

(iii) For each finite subset J ⊂ N, PJ ◦T factors through a perturbation F̂J of the Fourier
transform as

L2[0, 1]
T //

id

��

`2m

L2[0, 1]
F̂J // `2.

PJ

OO
(4.1)

where F̂J(x) =
∑
j∈J

( ∫
hJj xtjdµ

)
ej and hJj ∈ L∞[0, 1] with ‖hJj ‖ ≤ CJ , j ∈ J .

Proof. Let as see (i) implies (ii). The proof is a consequence of the computations above
and Theorem 3.3. Note first that L∞[0, 1] and `∞ are 2-convex with constants 1, and
then by Lemma 2.1(iii), ρ is subadditive. By Lemma 4.1 the Fremlin tensor product is
(isomorphic to) the dual of the m-fold Cartesian product L1[0, 1] × · · · × L1[0, 1] with
the `1-sum, which provides the admisibility requirement that is needed for the dual pair.
Then we are in position of applying Theorem 3.3, since `2 is σ-order continuous and

(`2)`
2

= `∞, that is the dual of the σ-order continuous space `1. It gives a factorization
of PJ ◦ T as

PJ ◦ T (x) = g(w)F(f(v, w)h(v)x(v)),

where g is a sequence in `∞m , h ∈ L∞[0, 1] and f ∈ L∞(µ × c|J), for all x ∈ L2. In
this case, we can identify f(v, w)h(v) with the finite sequence (hJj (v))j∈J of functions
of L∞[0, 1], in such a way that maxj∈J ‖hj‖ ≤ CJ , and g with the constant sequence
(1)j∈J . Therefore,

PJ ◦ T (x) = (

∫
hJj xtj dµ)j∈J , x ∈ L2[0, 1].

This gives (ii). The converse is given by a direct computation, and clearly (ii) and (iii)
are equivalent. This finishes the proof.

�

Let us finish by showing our explicit characterization of weighted Fourier operators
in L2[0, 1]. In fact, we implicitly show that the domination inequality can be simplified in
Theorem 4.2(i) and rewritten in terms of the Fourier coefficients of the functions involved.
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We say that an operator T : L2[0, 1] → L2[0, 1] is finitely dominated by F if for each
finite subset J ⊂ N there is a constant CJ such that

n∑
i=1

∑
j∈J

( ∫
T (xi)tj dµ

)
ai,j ≤ CJ sup

(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J

( ∫
hjxitjdµ

)
ai,j

)
holds for every x1, ..., xn ∈ L2[0, 1] and matrices (ai,j)i=1,...,n, j∈J .

The same inequality can be written as a domination of Fourier coefficients associated
to T (x) by Fourier coefficients associated to hx, where h is a function of L∞[0, 1]. Indeed,
this is equivalent to the fact that for each finite subset J ⊂ N there is a constant CJ such
that

n∑
i=1

∑
j∈J

αj(T (xi)) ai,j ≤ CJ sup
(hj)j∈J⊂BL∞

( n∑
i=1

∑
j∈J

αj(hjxi) ai,j

)
holds for every x1, ..., xn ∈ L2[0, 1] and matrices (ai,j)i=1,...,n, j∈J .

Corollary 4.3. The following statements are equivalent for an operator T : L2[0, 1] →
L2[0, 1].

(i) T is finitely dominated by F .
(ii) For each j ∈ N there is a constant Cj such that

n∑
i=1

αj(T (xi)) ≤ Cj · sup
h∈BL∞

( n∑
i=1

αj(hxi)
)

holds for every finite set x1, ..., xn ∈ L2[0, 1], n ∈ N.
(iii) For each j ∈ N there is a constant Cj such that

αj(T (x)) ≤ Cj
∫
|tj ||x| dµ

for all x ∈ L2[0, 1].
(iv) There is a sequence (hj)j≥1 ⊆ L∞[0, 1] such that

T (x)(w) =

∞∑
j=1

(

∫
hjxtj dµ)tj(w)

for each x ∈ L2[0, 1], that is, T is a weighted Fourier operator.

Proof. Obviously, (i) implies (ii), and (ii) implies (iii). For showing that (iii) implies (ii),
take a sequence x1, ..., xn ∈ L2[0, 1]. Then the linearity of all the involved expressions in
(iii) gives (ii), since

n∑
i=1

αj(T (xi)) ≤ Cj
∫
|tj ||

n∑
i=1

xi|dµ

= Cj sup
h∈BL∞

( ∫ n∑
i=1

htjxi
)

= sup
h∈BL∞

( n∑
i=1

αj(hxi)
)
.

To see that (ii) ⇒ (iv), fix j ∈ N. If J is a finite set of size m, write SJ for the
subspace generated by {tk : k ∈ J} and QJ for the corresponding projection map. For
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every finite set J of size m containing j, we have by Theorem 4.2 and considering the
canonical isometry between SJ and `2m that

〈QJ ◦ T (x), tj〉 =

∫
hJj xtj , dµ, x ∈ L2[0, 1].

Therefore, taking into account that tk 6= 0 µ-a.e. for every k, we obtain that hJj = hJ
′

j

for each pair of finite sets J and J ′ containing j.

So, write now hj for the functions h
{j}
j . Fix a function x ∈ L2[0, 1] and write JN

for the sets JN = {1, ..., N}. We have that

T (x)(w) = lim
N
QJN ◦ T (x) = lim

N

N∑
j=1

(

∫
hjxtj dµ)tj(w) =

∞∑
j=1

(

∫
hjxtj dµ)tj(w).

This gives (iv) and finishes the proof, since a direct computation gives that (iv)⇒ (i). �

Note that the corollary provides pointwise convergence of the sum, that is, for each
fixed x ∈ L2[0, 1]. Since for each x the corresponding trigonometric series is convergent,
we have that the sequence of coefficients (

∫
hjxtj dµ)∞j=1 belongs to `2, then by Carleson’s

Theorem the convergence is also µ-a.e.
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spaces through spaces of multiplication operators, J. Math. Anal. Appl. 364, (2010) 88-103.
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[21] E. A. Sánchez Pérez, Factorization theorems for multiplication operators on Banach function
spaces, Integr. Equ. Oper. Theory 80,1 (2014) 117-135.

[22] A.R. Schep, Factorization of positive multilinear maps, Illinois J. Math. 28,4 (1984) 579-591.

[23] A.R. Schep, Products and factors of Banach function spaces, Positivity. 14,2 (2010) 301-319.

E. A. Sánchez Pérez
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