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Abstract	

Background:	

Linear	 empirical	 dynamic	 models	 have	 been	 widely	 used	 for	 glucose	 prediction.	 The	

extension	of	the	concept	of	seasonality,	characteristic	of	other	domains,	is	explored	here	

for	the	improvement	of	prediction	accuracy.	

Methods:	

Twenty	 time	 series	 of	 8-hour	 postprandial	 periods	 (PP)	 for	 a	 same	 60g-carbohydrate	

meal	 were	 collected	 from	 a	 closed-loop	 controller	 validation	 study.	 A	 single	

concatenated	 time	 series	was	 produced	 representing	 a	 collection	 of	 data	 from	 similar	

scenarios,	 resulting	 in	 seasonality.	 Variability	 in	 the	 resulting	 time	 series	 was	

representative	 of	worst-case	 intra-subject	 variability.	 Following	 a	 leave-one-out	 cross-

validation,	 seasonal	 and	 non-seasonal	 autoregressive-integrated-moving-average	

models	(SARIMA	and	ARIMA)	were	built	to	analyze	the	effect	of	seasonality	in	the	model	

prediction	 accuracy.	 Further	 improvement	 achieved	 from	 the	 inclusion	 of	 insulin	

infusion	rate	as	exogenous	variable	was	also	analyzed.	Prediction	horizons	 (PHs)	 from	

30	to	300	min	were	considered.	

Results:	

SARIMA	outperformed	ARIMA	revealing	a	 significant	 role	of	 seasonality.	For	 a	5-h	PH,	

average	MAPE	was	 reduced	 in	 26.62%.	 Considering	 individual	 runs,	 the	 improvement	

ranged	 from	6.3%	 to	54.52%.	 In	 the	 best-performing	 case	 this	 reduction	 amounted	 to	

29.45%.	The	benefit	of	seasonality	was	consistent	among	different	PHs,	although	lower	

PHs	benefited	more,	with	MAPE	reduction	over	50%	for	PHs	of	60	and	120	minutes,	and	

over	 40%	 for	 180	min.	 Consideration	 of	 insulin	 infusion	 rate	 into	 the	 seasonal	model	

further	 improved	 performance,	with	 a	 61.89%	 reduction	 in	MAPE	 for	 30-min	 PH	 and	

reductions	over	20%	for	PHs	over	180	min.		

Conclusions:	

Seasonality	improved	model	accuracy	allowing	for	the	extension	of	the	PH	significantly.		 	
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Introduction	

An	important	feature	of	any	artificial	pancreas1,2	 is	 its	ability	to	predict	glucose	along	a	

given	prediction	horizon	 (PH),	 either	 as	part	 of	 the	 control	 algorithm	 itself,	 such	 as	 in	

systems	 based	 on	 Model	 Predictive	 Control	 (MPC)	 techniques3-5,	 or	 as	 part	 of	 a	

monitoring	 subsystem	 to	 predict,	 for	 instance,	 hypoglycemic	 episodes6-8.	 Model	

requirements	and	 input	 information	will	depend	on	 the	specific	purpose.	For	 instance,	

future	 values	 of	 insulin	 infusion	 are	 available	 during	 the	 MPC	 optimization	 process	

where	 predictions	 are	 needed.	 However,	 this	 is	 not	 the	 case	 in	 the	 context	 of	 risk	

prediction	in	patient	monitoring	during	closed-loop	operation.	

	

Linear	 empirical	 dynamic	models	 rely	 on	 time	 series	 as	 an	 observation	 on	 a	 dynamic	

system9.	 These	 include	 autoregressive	 (AR),	 autoregressive-moving-average	 (ARMA),	

and	autoregressive	models	with	exogenous	 inputs	 (ARX),	 among	others.	These	models	

have	been	widely	used	in	the	context	of	glucose	prediction.	Gani	et	al.10	 identified	30th-

order	AR	models	from	continuous	glucose	monitoring	(CGM)	data	with	1-min	sampling	

time	from	nine	T1D	subjects.	An	average	root-mean-square	error	(RMSE)	of	12.6	mg/dL	

was	 reported	 for	 a	 60-min	 PH,	 after	 data	 smoothing	 and	 parameter	 regularization.	

Sparacino	and	colleagues11	 identified	a	1st-order	 time-varying	AR	model	based	on	data	

from	28	T1D	subjects	wearing	a	microdialysis	system	with	a	3-min	sampling	time.	They	

demonstrated	the	feasibility	of	predicting	hypoglycemic	events	20-25	min	ahead	in	time,	

considering	 a	 30-min	 PH.	 A	 median	 RMSE	 ranging	 from	 18.33	 to	 20.32	 mg/dL,	

depending	on	the	selection	of	a	forgetting	factor,	was	reported	for	that	PH.	Low-order	AR	

and	ARMA	models	were	considered	by	Eren-Oruklu	and	associates12	considering	PHs	up	

to	 30	 minutes	 in	 healthy	 and	 type	 2	 diabetes	 subjects.	 A	 sum	 of	 squares	 of	 glucose	

prediction	error	 ranging	between	10.32	and	12.55	mg/dL	was	reported,	depending	on	

the	 study,	 for	 a	 30-min	 PH.	 Finan	 and	 colleagues13-15	 evaluated	 ARX	 models	 from	

simulated	 and	 clinical	 ambulatory	 data	 with	 5-min	 sampling	 time.	 The	 authors	

concluded	that	60	minutes	was	a	maximum	achievable	PH	in	terms	of	model	prediction	

accuracy.	An	average	RMSE	of	26,	34	and	40	mg/dL	was	reported	 for	30-,	45-	and	60-
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min	PH,	respectively15.	This	corresponds	to	an	improvement	of	9%	compared	to	a	zero-

order-hold	 predictor.	 A	 variety	 of	 linear	 and	 nonlinear	 time-series	 models	 were	

evaluated	 by	 Ståhl	 and	 Johansson16	 	 from	 clinical	 data	 from	 one	 subject,	 with	 non-

uniform	 and	 sparse	 sampling	 (fingerstick	measurements)	with	 spline	 interpolation,	 in	

order	to	produce	a	short-term	blood	glucose	predictors	for	up	to	two-hour-ahead	blood	

glucose	 prediction.	 However,	 many	 difficulties	 were	 met	 not	 achieving	 the	 required	

accuracy.		

	

Empirical	dynamic	models	are	also	widely	used	in	other	domains	such	as	business	and	

economic	time	series.	A	particular	characteristic	in	these	domains	is	seasonality,	that	is,	

the	existence	of	regular	patterns	of	changes	and	 fluctuations	 that	repeat	periodically17.	

This	 paper	 explores	 the	 extension	 of	 the	 concept	 of	 seasonality	 for	 glucose	 prediction	

with	 a	 proof-of-concept	 study.	 The	main	 rationale	 is	 that	 pre-processing	 of	 CGM	 time	

series	 (and	 available	 additional	 information)	may	 translate	 daily	 events	 into	 seasonal	

phenomena.	 For	 instance,	 glucose	 concentration	 tends	 to	 peak	 and	 then	 decline	 in	 a	

characteristic	way	after	a	meal	 intake	 in	a	particular	 scenario.	 In	 this	 case,	 a	new	pre-

processed	family	of	time	series	can	be	built	from	the	original	CGM	data	by	concatenating	

postprandial	 periods	 (PPs)	 of	 fixed	 length	 where	 similarity	 of	 behaviors	 is	 expected,	

according	to	some	metrics,	which	would	theoretically	produce	seasonal	time	series.	This	

allows	 for	 the	 application	 of	 seasonal	 models	 that	 exploit	 this	 similarity	 for	 more	

accurate	 predictions	 and	 longer	 PHs.	 Seasonal-autoregressive-integrated-moving-

average	(SARIMA)	models	are	considered	in	this	work	and	compared	to	its	non-seasonal	

counterpart	in	order	to	investigate	the	benefit	of	seasonality	into	glucose	prediction.	The	

use	of	insulin	infusion	rate	as	an	exogenous	variable	is	also	explored.		

	

Methods	

Data	overview	

CGM	 time	 series	 covering	 8-hour	 PPs	 for	 a	 same	meal	 were	 collected	 from	 the	 Clinic	

University	 Hospital	 of	 Valencia,	 Spain.	 Data	 belonged	 to	 a	 closed-loop	 controller	
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validation	study	where	10	T1D	subjects	underwent	an	 in-hospital	8-hour	standardized	

mixed	meal	 test	 (60g	carbohydrate)	on	 two	occasions	with	a	hybrid	artificial	pancreas	

with	 15-min	 sampling	 period.	 Patients	wore	 two	 pumps	with	 CGM	 devices	 (Paradigm	

Veo®	insulin	pump	with	Enlite-2	sensors®,	Medtronic	MiniMed,	Northridge,	CA),	which	

were	calibrated	15	minutes	before	the	meal	test	was	administered	(lunch	at	noon).	CGM	

glucose	 data	was	 available	 for	 eight	 hours	 after	 the	meal,	 from	12:00	p.m.	 until	 20:00	

p.m.	 Glucose	 concentration	 was	 also	 measured	 every	 15	 minutes	 with	 a	 reference	

method	 (YSI	 2300	 Stat	 Plus	 Glucose	 Analyzer,	 YSI	 Incorporated	 Life	 Sciences,	 Yellow	

Springs,	Ohio,	USA).		

	

Despite	meal	size	was	controlled	in	this	in-patient	study,	this	didn’t	prevent	the	presence	

of	high	intra-	and	inter-individual	variability.	These	were	measured	by	the	Coefficient	of	

Variance	of	 the	Area-Under-the-Curve	 for	 the	8-hour	duration	of	 the	study	(CV-AUC8h),	

which	was	 computed	with	 the	 trapezoidal	 rule.	 Euclidean	 distance	 among	 paired	 PPs	

was	also	computed	 to	determine	 time	series	 shape	similarity.	A	 sampling	period	of	15	

minutes	was	 considered	 to	match	 glucose	 reference	measurements	 and	 our	 controller	

configuration.	

	

SARIMA	model	

A	SARIMA	model	is	an	expanded	form	of	its	non-seasonal	counterpart	ARIMA	model	that	

includes	as	new	model	components	seasonal	autoregressive	(SAR)	and	seasonal	moving-

average	 (SMA)	 terms.	 In	 an	 empirical	 dynamic	 model,	 an	 observation	 at	 time	𝑡	is	

expressed	 as	 a	 linear	 combination	 of	 observations	 at	 times	 𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑝	

(previous	𝑝	measurements)	 by	 the	 AR	 component,	 and	 as	 a	 linear	 combination	 of	

stochastic	 errors,	 also	 called	 shocks,	 at	 times	𝑡, 𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑞 		 by	 the	 MA	

component.	In	a	SARIMA	model,	SAR	and	SMA	terms	are	added	so	that	an	observation	at	

time	𝑡	depends	 on	 previous	 observations	 and	 stochastic	 errors	 at	 times	with	 lags	 that	

are	 multiples	 of	 the	 seasonality	 period	𝑠.	 In	 the	 context	 of	 postprandial	 glucose	

prediction,	 this	 means	 that	 the	 glucose	 prediction	 will	 depend	 not	 only	 on	 previous	

measurements	for	that	PP,	but	also	on	previous	PPs	in	the	time	series.	
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Given	a	CGM	time	series	{𝐺 𝑡 	|	𝑡	 = 	1, 2, … , 𝑘},	a	SARIMA	model	is	expressed	as:	

															𝛻23	𝛻4𝐺 𝑡 = 𝑐 + 𝑤(𝑡),				 	 	 	 	 	 	 (1)	

															∅; 𝑧=> 𝛷@ 𝑧=2 𝑤(𝑡) = 𝜃B 𝑧=> 𝛩D 𝑧=2 𝜀 𝑡 ,							 	 	 	 (2)	

where	𝐺(𝑡)	is	 the	 glucose	 concentration	 at	 time	 t,	𝑐	is	 a	 constant	 term	 (intercept),	𝛻	is	

the	 backward	 difference	 operator,	 i.e.	𝛻𝐺 𝑡 ∶= 	𝐺(𝑡) − 	𝐺(𝑡 − 1),	𝑑	is	 the	 non-seasonal	

integration	order,	𝛻2	is	 the	seasonal	backward	difference	operator,	 i.e.	𝛻2𝐺 𝑡 ∶= 	𝐺(𝑡) −

	𝐺(𝑡 − 𝑠),	𝐷	is	 the	 seasonal	 integration	 order,	 the	 input	𝜀 𝑡 	is	 the	 stochastic	 error	

following	 a	 white	 noise	 process	 	𝜀 𝑡 	~	𝑊𝑁 0, 𝜎N 	and	∅; 𝑧=> ,	𝛷@ 𝑧=2 ,	𝜃B 𝑧=> 	and	

𝛩D 𝑧=2 	are	 polynomials	 in	 the	 lag	 (back-shift)	 operator	 	𝑧=>	of	 degree	𝑝,	𝑃,	𝑞	and	𝑄,	

respectively,	defined	as		

(AR)						∅; 𝑧=> ∶= 1 − ∅>𝑧=> − ∅N𝑧=N − ⋯− ∅;𝑧=;,	

(SAR)				𝛷@ 𝑧=2 ∶= 1 − 𝛷2𝑧=2 − 𝛷N2𝑧=N2 − ⋯− 𝛷@2𝑧=@2,	

(MA)						𝜃B 𝑧=> ∶= 1 + 𝜃>𝑧=> + 𝜃N𝑧=N + ⋯+ 𝜃B𝑧=B,	

(SMA)				𝛩D 𝑧=2 ∶= 1 + 𝛩2𝑧=2 + 𝛩N2𝑧=N2 + ⋯+ 𝛩D2𝑧=D2.	

Model	(1)-(2)	can	be	expressed	in	short	form	as	SARIMA 𝑝, 𝑑, 𝑞 𝑃, 𝐷, 𝑄 2.	

	

Exogenous	variables	

Exogenous	 variables	 in	 model	 (1)-(2)	 were	 also	 considered.	 There	 exist	 different	

approaches	 for	 incorporating	 exogenous	 variables	 into	 a	 model.	 Denoting	 as	𝑋(𝑡)	the	

exogenous	 variable,	 a	 term	𝜂U 𝑧=> 𝑋 𝑡 ,	 where	𝜂U 𝑧=> ≔ 𝜂W + 𝜂>𝑧=> + ⋯+ 𝜂U𝑧=U ,	 is	

commonly	 added	 to	 the	 right-hand-side	 of	 equation	 (2),	 yielding	 the	 so-called	 ARX,	

ARMAX,	ARIMAX	or	SARIMAX	models	depending	on	the	considered	structure.			In	many	

statistical	 packages	 such	 as	 R	 and	 Eviews,	 exogenous	 variables	 are	 considered	 as	

explanatory	variables	 into	a	 linear	regression	model	with	a	stochastic	error	process	of	

certain	structure.	In	this	case,	a	SARIMAX	model	is	expressed	as		

															𝛻23	𝛻4𝐺 𝑡 = 𝑐 + 𝜂U 𝑧=> 𝑋 𝑡 + 𝑤(𝑡)																																													 	 		(3)	

															∅@ 𝑧=> 𝛷@ 𝑧=2 𝑤 𝑡 = 	 	𝜃B 𝑧=> 𝛩D 𝑧=2 𝜀 𝑡 																															 																		(4)	

when	current	and	past	values	of	 the	exogenous	variable	𝑋(𝑡)	are	used.	 In	this	case,	 the	

polynomial	𝜂U 𝑧=> 	represents	 a	 finite-impulse-response	 filter.	The	 rest	of	 components	
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are	 defined	 as	 in	 (1)-(2).	 Model	 (3)-(4)	 can	 be	 expressed	 in	 short	 form	 as	

SARIMAX 𝑝, 𝑑, 𝑞, 𝑟 𝑃, 𝐷, 𝑄 2.	 Granger	 causality	 test18	 can	 be	 used	 to	 determine	 the	

usefulness	 of	 including	 an	 exogenous	 input	 for	 improving	 forecasting.	 In	 this	 study,	

Eviews	software,	version	9.5,	was	used	and	exogenous	variables	were	treated	as	in	(3)-

(4).	

	 		

Identification	Procedure	

Box-Jenkins	methodology9,19	was	used	for	model	building	and	evaluation		(see	Figure	1).	

A	 leave-one-out	 cross-validation	 procedure	was	 considered	 dividing	 data	 into	 training	

and	validation	sets.	In	order	to	avoid	data	from	a	same	patient	to	appear	both	in	training	

and	validation,	data	from	the	validation	patient	was	excluded	from	the	training	set.	This	

resulted	in	18	PPs	for	training	and	1	for	validation,	since	two	CL	studies	per	patient	were	

available.	 	 PPs	 in	 the	 training	 set	 were	 randomly	 ordered	 at	 each	 run	 according	 to	 a	

random	sequence	generator	(www.random.org).	A	stationarity	analysis	was	first	carried	

out	with	 the	 unit-root	 test	 (Augmented	Dickey-Fuller	 test)20.	 The	 backward-difference	

operator	𝛻	was	applied	to	the	time	series	as	many	times	as	necessary	(integration	order	

𝑑)	 to	 remove	 non-stationarity,	 if	 present.	 Sample	 autocorrelation	 function	 (ACF)	 and	

partial	 autocorrelation	 function	 (PACF)	 were	 used	 to	 identify	 the	 orders	 of	 the	

autoregressive	and	moving	average	terms	(𝑝	and	𝑞,	respectively),	as	well	as	 identifying	

seasonality	 (seasonally	 differencing	 the	 time	 series	 with	 the	 operator	𝛻2	if	 necessary).	

Maximum	 likelihood	was	 used	 for	 parameter	 estimation.	 Akaike	 information	 criterion	

(AIC)	 was	 used	 for	 model	 selection,	 which	 is	 defined	 in	 Eviews	 software	 as	𝐴𝐼𝐶 ∶=

	>
\
(−2	𝐿	 + 	2𝐾),	 where	𝐿	is	 the	 value	 of	 the	 log-likelihood,	𝐾	is	 the	 number	 of	 free	

parameters	in	the	model	and	𝑛	is	the	number	of	observations.	Remark	the	scaling	by	1/

𝑛.	For	diagnostic	checking,	ACF	and	PACF	plots	 for	 the	residuals	were	analyzed	 to	 test	

the	existence	of	any	significant	spikes	in	the	confidence	interval,	Ljung-Box	Q	test21	was	

used	for	testing	randomness	at	each	distinct	lag	and	Jarque-Bera	test22	was	used	to	test	

the	normality	of	the	residuals.	Finally,	accuracy	of	the	model	forecasting	was	measured	

with	the	following	metrics:	
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	 Mean	absolute	error:	𝑀𝐴𝐸 ∶= 	 >
\

𝑒d\
de> ,	

	 Root	mean	squared	error:	𝑅𝑀𝑆𝐸 ∶= 	 >
\

𝑒dN\
de> ,	

	 Mean	absolute	percentage	error:	𝑀𝐴𝑃𝐸 ∶= 	100 >
\

hi
ji

\
de> 	

where	𝑛	is	 again	 the	 number	 of	 observations,	𝐺d 	is	 the	𝑖-th	 observation,	𝐺d 	is	 a	 forecast	

for	𝐺d 	and	𝑒d ≔ 𝐺d − 𝐺d 	is	the	forecasting	error.		

	

Results	

Figure	2	shows	the	dataset	resulting	from	the	concatenation	of	the	twenty	8-h	PPs.	The	

CGM	time	series	had	a	mean	of	136.1	mg/dL,	with	a	standard	deviation	of	48.48	mg/dL.	

Despite	 the	 same	meal	was	provided,	data	exhibited	high	variability	with	postprandial	

peaks	 ranging	 from	 304	 mg/dL	 (P91)	 to	 125	 mg/dL	 (P42)	 and	 the	 incidence	 of	

hypoglycemia	 in	 some	 patients	 (P11,	 P51,	 P52,	 P71,	 P101),	 two	 of	 them	 severe	 (P11,	

P101),	according	 to	CGM	values.	 	They	were	non-normally	distributed.	 Inter-individual	

variability	measured	by	CV-AUC8h	was	21.52%,	whereas	intra-individual	variability	was	

9.17%.	However,	the	latter	spanned	from	3.22%	(patient	6)	to	18.67%	(patient	9).	Since	

only	 two	 studies	 per	 patient	 were	 available,	 intra-patient	 variability	 might	 be	

underestimated.	 It	 is	 thus	 considered	 that	 worst-case	 intra-patient	 variability	 is	

represented	by	the	generated	time	series.	Euclidean	distance	between	each	pair	of	PPs	

was	also	computed	to	analyze	similarity	of	time	series	(see	Figure	3),	providing	similar	

conclusions.	Patient	9	is	the	most	dissimilar	among	studies	(green	box	in	P91-P92,	only	

exceeded	by	comparatively	few	yellow-red	boxes	outside	the	diagonal	(between-patient	

comparisons).	 P81,	 P82	 and	 P91	 were	 the	 most	 dissimilar	 with	 the	 rest	 of	 periods	

(higher	 incidence	 of	 yellow-red	 boxes).	 	 Total	 basal	 insulin	 infusion	 in	 the	 8-h	 period	

ranged	 from	 5.21U	 (P31)	 to	 16.40U	 (P71).	 An	 extended	 bolus	 computed	 from	 the	

patient’s	 insulin-to-carbohydrate	 ratio	 and	 open-loop	 basal	 infusion	 rate	 was	

additionally	administered	at	meal	time.	

	

Both	 SARIMA	 and	ARIMA	models	were	 identified	 for	 each	 run	 in	 the	 cross-validation.	

Figure	4(a)	shows	the	forecasting	accuracy	metrics	for	a	5-h	PH	for	both	cases.	A	high	PH	
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was	 initially	 chosen	 to	 challenge	 the	model.	 SARIMA	outperform	ARIMA	 in	 all	metrics	

(mean(SD):	MAE(mg/dL)	34.56(19.35)	vs.	47.72(24.43);	RMSE(mg/dL)	40.02(21.62)	vs.	

55.02(26.93);	 MAPE(%)	 22.02(9.41)	 vs.	 30.01(13.05);	 p<0.05	 in	 all	 cases).	 In	 the	

following,	the	analysis	will	be	restricted	to	MAPE	since	the	three	measures	provided	the	

same	 information.	 Figure	4(b)	 shows	 the	 obtained	MAPE	as	 the	PH	 increases	 from	30	

min	 to	 5	 hours,	 consistently	 outperforming	 SARIMA.	 The	 identified	 model	 structure	

differed	 slightly	 between	 runs,	 with	 AR	 and	 MA	 orders	 up	 to	 4.	 No	 time	 series	

differentiation	was	needed	for	both	ARIMA	and	SARIMA	models.	Seasonality	with	lag	33	

(the	size	of	the	PP)	was	obtained	in	all	cases,	as	expected.	SAR	and	SMA	orders	were	up	

to	2.	

	

The	best	performing	run	was	Run	4,	with	validation	data	P22.	In	this	case,	inspection	of	

the	ACF	revealed	data	were	stationary	(the	trend	had	a	non-significant	p-value	0.0877)	

and	seasonal	at	 lag	33	with	significant	p-value	0.0000.	Seasonally	differenced	data	was	

stationary	with	significant	p-value	0.0001,	so	it	was	not	necessary	to	take	any	difference.	

Model	SARIMA 4, 0, 4 1, 0, 1 mm	was	the	most	appropriate	model,	with	AIC	7.9566.	Table	

1	 shows	 the	 estimated	 model	 parameters	 using	 maximum	 likelihood	 estimation.	 All	

spikes	 in	 the	 residuals	 ACF	were	within	 the	 significance	 limits	 (white	 noise).	 Table	 2	

shows	 the	 Ljung-Box	 Q	 test	 for	 testing	 randomness	 at	 each	 distinct	 lag,	 also	

demonstrating	 that	 the	 residuals	 have	 no	 remaining	 autocorrelations.	 The	 tests	 for	

residual	 normality	 showed	 that	 the	 residuals	were	 approximately	normal.	 	 A	MAPE	of	

6.73%	was	 obtained	 for	 training	data.	 	 A	 similar	 fitting	was	 obtained	 for	ARIMA,	with	

MAPE	7.05%.		Figure	5	shows	the	prediction	performance	using	validation	data	for	a	5-h	

prediction	 horizon.	 A	MAPE	 of	 6.62%	 and	 a	 RMSE	 of	 10.28	mg/dL	were	 obtained	 for	

SARIMA.	For	ARIMA,	prediction	metrics	were	worse	with	MAPE	9.39%	and	RMSE	14.39	

mg/dL,	as	it	becomes	apparent	in	Fig.	5.		

	

The	 effect	 of	 considering	 insulin	 infusion	 as	 exogenous	 variable	 for	 performance	

improvement	 was	 investigated.	 Besides,	 insulin	 infusion	 information	 is	 needed	 in	

applications	 such	 as	 MPC.	 This	 analysis	 was	 carried	 out	 only	 for	 Run	 4	 as	 the	 best	
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performing	 case,	 challenging	 further	 improvement.	 Insulin	 infusion	 signal	 contained	

bolus	and	basal	infusion	and	was	expressed	in	U	per	sampling	period.	Granger	causality	

test	was	applied	 to	 test	 the	null	hypothesis	 that	CGM	does	not	 “Granger	cause”	 insulin	

infusion	 and	 vice	 versa.	 The	null	 hypothesis	was	 rejected	with	 a	 significant	 p-value	 of	

0.0146.	 Therefore,	 inclusion	 of	 insulin	 infusion	 into	 the	 model	 might	 improve	

performance.	 The	 order	 of	 the	 exogenous	 polynomial	 was	 computed	 from	 the	 cross-

correlation	 plot	 and	 AIC,	 resulting	 in	 the	model	 SARIMAX 4, 0, 4, 2 1, 0, 1 mm	with	 AIC	

7.9544.	 Table	 3	 shows	 the	 estimated	 parameters	 for	 this	model.	 The	 same	 procedure	

was	 used	 to	 derive	 its	 non-seasonal	 counterpart	 resulting	 in	 the	 model	

ARIMAX 4, 0, 4, 2 	with	AIC	7.9952.	 	 In	 the	 forecasting	period,	 a	MAPE	of	 5.12%	and	 a	

RMSE	of	8.47	mg/dL	were	obtained	for	the	SARIMAX	model	 for	a	5-h	PH,	compared	to	

6.62%	 and	 10.28	 mg/dL	 for	 SARIMA,	 and	 10.51%	 and	 16.17	 mg/dL	 for	 ARIMAX.	

Differences	among	the	behavior	of	the	different	models	can	be	observed	in	Figure	5.		

	

Finally,	 forecasting	 performance	 as	 measured	 by	 MAPE	 and	 RMSE	 at	 different	 PHs	 is	

presented	in	Table	4.	Prediction	horizons	of	30,	60,	120,	180,	240	and	300	minutes	were	

considered.		

	

Discussion	

	

Training	data	consisted	in	a	collection	of	PPs	from	different	patients	covering	both	early	

and	late	postprandial	phases	(8	hours).	Time	between	meals	during	the	day	is	generally	

shorter.	Nocturnal	period	was	not	represented	by	our	data.	However,	PP	has	shown	to	

be	much	more	 challenging	 than	nocturnal	 period	 for	 an	 artificial	 pancreas23.	 Both	 CV-

AUC8h	 and	 Euclidean	 distance	 (Fig.	 3)	 showed	 large	 inter-individual	 variability	 and	 a	

large	 range	 in	 intra-individual	 variability,	 with	 its	 worst-case	 represented	 by	 inter-

individual	variability.	Thus,	the	concatenated	time	series	defines	a	challenging	scenario	

with	a	worst-case	highly	variable	patient.	Data	variability	might	be	attenuated	with	the	

use	 of	 classification	 techniques,	 collecting	 similar	 enough	 postprandial	 responses	 into	

different	datasets,	with	their	corresponding	prediction	model.		
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A	first-order	seasonal	AR	and	MA	component	was	identified	with	seasonality	lag	33	in	all	

SARIMA	 runs	 due	 to	 the	 concatenated	 nature	 of	 the	 time	 series.	 In	 all	 runs,	 SARIMA	

outperformed	ARIMA	revealing	a	significant	role	of	seasonality.	 	5-h	PH	average	MAPE	

was	 reduced	 in	 26.62%.	 Considering	 individual	 runs,	 the	 improvement	 ranged	 from	

6.3%	(Run	7;	validation	data	P41)	 to	54.52%	(Run	3;	validation	data	P21).	 In	 the	best	

performing	 case,	 according	 to	 MAPE	 (Run	 4),	 this	 reduction	 amounted	 to	 29.45%.	

Prediction	improvement	by	introducing	seasonality	also	becomes	apparent	from	Figure	

5.	 The	 benefit	 of	 seasonality	 was	 consistent	 among	 different	 prediction	 horizons,	 as	

illustrated	 in	 Figure	 4(b)	 and	 Table	 4	 for	 Run	 4.	 Lower	 prediction	 horizons	 benefited	

more,	with	a	MAPE	reduction	over	50%	for	PHs	of	60	and	120	minutes,	and	over	40%	

for	180	min.	In	these	case,	MAPE	was	close	to	6%	and	RMSE	below	10	mg/dL,	doubling	

these	values	when	seasonality	was	not	considered.		In	greater	PHs	benefit	of	seasonality	

is	still	observed,	although	decreasing	due	to	variability	in	the	time	series.		

	

Consideration	 of	 insulin	 infusion	 rate	 into	 the	 seasonal	 model	 further	 improved	

performance	 for	 Run	 4.	 Although	 analysis	 was	 limited	 to	 this	 case	 to	 reduce	

computational	 burden,	 remark	 it	 corresponds	 to	 the	 most	 challenging	 situation	 for	

model	improvement	since	SARIMA	model	for	Run	4	has	the	best	prediction	accuracy	in	

the	 cross-validation	 study.	 SARIMAX	 improved	 performance	 as	 compared	 to	 SARIMA	

with	 a	 61.89%	 reduction	 in	 MAPE	 (2.90%	 vs.	 7.61%)	 for	 30-min	 PH	 to	 a	 7.33%	

reduction	at	2-h	PH	(5.86%	vs.	5.46%)	and	reductions	over	20%	for	PHs	over	180	min,	

as	shown	in	Table	4.	A	RMSE	below	10	mg/dL	was	obtained	for	all	PHs.	This	means	that	

SARIMAX	 models	 might	 allow	 the	 increment	 of	 prediction	 horizons	 in	 MPC-based	

artificial	pancreas	systems.	Table	4	also	shows	that	SARIMAX	outperformed	in	all	cases	

its	non-seasonal	counterpart	ARIMAX.		

	

This	 is	 a	 proof-of-concept	 study	 and	 as	 such	 it	 has	 limitations.	 It	 is	 assumed	 that	

mealtime	is	known,	allowing	for	the	construction	of	concatenated	time	series	with	fixed-

length	PPs.	However,	 to	date,	meal	announcement	 is	a	common	component	of	artificial	
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pancreas	 systems	 and,	 otherwise,	 meal	 detection	 algorithms	 are	 incorporated24-26.	

Remark	that	although	focus	was	put	on	PPs,	this	approach	can	be	applied	to	other	fixed-

length	time	series	data	subsets	representing	characteristic	scenarios	where	similarity	is	

expected	or	 learned	from	classification	techniques.	Another	 limitation	 is	 the	data	used,	

which	 did	 not	 correspond	 to	 a	 single	 patient,	 although	 inter-patient	 variability	 in	 the	

data	 was	 representative	 of	 worst-case	 intra-patient	 variability	 defining	 a	 challenging	

scenario.	 A	 collection	 of	 18	 PPs	were	 used	 for	model	 training	 at	 each	 cross-validation	

run.	 Seasonal	 components	 of	 the	 identified	models	 were	 first	 or	 second	 order,	 which	

means	that	current	meal	depends,	at	most,	on	the	two	previous	similar	meals.	Thus,	the	

length	 of	 the	 data	 used	 is	 considered	 appropriate	 for	 this	 proof-of-concept	 study.		

However,	 further	 investigation	 is	 needed	with	 longer	 single-patient	 CGM	data	 and	 the	

combination	of	seasonal	modelling	with	classifiers.	

	

Conclusion	

Despite	the	limitations	of	this	study,	seasonality	has	shown	to	be	an	important	factor	to	

improve	 model	 predictive	 power	 allowing	 for	 the	 significant	 extension	 of	 prediction	

horizons.	Further	work	 is	now	needed	 for	 the	classification	of	periods	under	scenarios	

yielding	 “similar	 enough”	 glycemic	 responses	 to	 fully	 exploit	 the	 expected	 benefit	 of	

seasonal	models.		
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Table	1.		

Model	parameters	for	model	SARIMA	(4,	0,	4)(1,	0,	1)33	in	best-performing	Run	

4,	following	notation	in	(1)-(2).	𝝈𝟐	is	the	estimate	of	the	error	variance	from	the	

maximum	likelihood	estimation. 

p-value t-Statistic Std.	Error Value Parameter 

0.0000 9.117968 14.70842 134.1109 𝒄 

0.0000 349.7433 0.008934 3.124690 ∅> 

0.0000 -242.5068 0.015602 -3.783549 ∅N 
0.0000	134.7894	0.015166	2.044158	∅m	
0.0000	-48.98071	0.008156	-0.399508	∅q	
0.0000 16.03866 0.056899 0.912586 𝛷mm 
0.0000 -5.943459 0.307422 -1.827147 𝜃> 
0.0013	3.237018	0.347364	1.124422	𝜃N	
0.0431	-2.026818	0.087565	-0.177478	𝜃m	
0.1236	1.541905	0.056154	0.086584	𝜃q	
0.0000 -10.56878 0.078243 -0.826937 𝛩mm 

0.0037 2.916503 53.98418 157.4450 𝜎N 
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Table	2. 

Ljung-Box	test	for	the	training	residuals	of	Run	4	model.	 

48 36 24 12 Lag 

30.513 21.358 10.575 2.8661 Q-Stat 

0.801 0.723 0.719 0.239 P-Value 
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Table	3.	

Model	parameters	for	model	SARIMAX	(4,	0,	4,	2)(1,	0,	1)33	in	best-performing	

Run	4,	following	notation	in	(3)-(4).		𝝈𝟐	is	the	estimate	of	the	error	variance	from	

the	maximum	likelihood	estimation. 

Prob. t-	Statistic	Std.Error Coefficient Variable 

0.0000 7.492023 17.53808 131.3957 𝒄 

0.0006 3.448056 0.307175 1.059158 𝜂W 
0.0135 2.478004 0.376779 0.933659 𝜂> 
0.4979	0.678182	0.323739	0.223623	𝜂N	
0.0000 528.1297 0.006145 3.245163 ∅> 
0.0000 -515.5566 0.007966 -4.107178 ∅N 
0.0000	206.9404	0.011389	2.356905	∅m	
0.0000	-61.48038	0.008237	-0.50644	∅q	
0.0000 22.15150 0.042357 0.938280 𝛷mm 

0.0000	-6.947493	0.288557	-2.004745	𝜃> 
0.0002	3.722324	0.376337	1.400848	𝜃N	
0.0149	-2.442438	0.112957	-0.275892	𝜃m	
0.3844	0.870522	0.049410	0.043012	𝜃q	
0.0000	-12.57943	0.066691	-0.838930	𝛩mm	
0.0064	2.734440	56.49393 154.4792	𝜎N 
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Table	4.	 
Prediction	accuracy	measured	by	MAPE	(%)	and	RMSE	(mg/dL),	in	parenthesis,	of	seasonal	versus	non-seasonal	

counterparts	for	different	prediction	horizons.		

300	240 180 120 60 30 
																																		PH	(min)	
				Model	

No	exogenous	inputs	

6.62	
(10.2870) 

6.95	
(10.7894) 

6.07	
(8.9592) 

5.46	
(8.1011) 

5.97	
(8.5567) 

7.61	
(9.8955) 

SARIMA(4,0,4)(1,0,1)33 

9.39	
(14.3960) 

9.79	
(14.8312) 

10.51	
(15.3702) 

12.47	
(17.3091) 

13.19	
(18.2491) 

9.00	
(9.8259) 

ARIMA(4,0,4) 

	29,50	
(28.5427)	

	29.01	
(27.2520)	

42.25	
	(41.7106)	

56.21	
	(53.1975)	

54.74	
	(53.1117)	

15.44	
	(0.7083)	

Difference*	(%)	

Continuous	subcutaneous	insulin	infusion	(CSII)	as	exogenous	input	

5.12	
(8.4743) 

4.82	
(8.2186) 

4.49	
(7.7283) 

5.86	
(9.1595) 

3.20	
(4.6225) 

2.90	
(3.6264) 

SARIMAX(4,0,4,2)(1,0,1)33 

10.51	
(16.1783) 

10.58	
(16.2076) 

11.10	
(16.5420) 

12.95	
(18.4822) 

12.99	
(18.8784) 

7.97	
(9.1372) ARIMAX(4,0,4,2) 

51.28	
	(47.6193)	

54.44	
	(49,2917)	

59.55	
	(53.2807)	

54.75	
	(50.4415)	

	75.37	
(75.5143)	

63.61	
	(60.3117)	

Difference**	(%)	

*	100( 𝑆𝐴𝑅𝐼𝑀𝐴	– 	𝐴𝑅𝐼𝑀𝐴 )/𝐴𝑅𝐼𝑀𝐴;	**	100( 𝑆𝐴𝑅𝐼𝑀𝐴𝑋	– 	𝐴𝑅𝐼𝑀𝐴𝑋 )/𝐴𝑅𝐼𝑀𝐴𝑋 
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Fig.	1.	Steps	for	building	a	good	model	through	Box-Jenkins	methodology.	
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Fig.	 2.	 CGM	 time	 series	 resulting	 from	 the	 concatenation	 of	 twenty	 8-h	 postprandial	

periods	 for	 a	 same	 60g	 carbohydrate	 meal.	 The	 notation	 Pij	 is	 used	 to	 name	 the	

different	 periods,	 where	 i	 is	 the	 number	 of	 the	 patient,	𝑖 ∈ 1, … ,10 ,	 and	 j	 is	 the	

number	of	 the	study	per	patient,	𝑗 ∈ 1,2 .	Sampling	period	 is	15	minutes,	yielding	33	

samples	per	postprandial	period.		
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Fig.	 3.	 Similarity	 among	postprandial	periods	 in	 the	CGM	 time	 series	 as	measured	by	

the	Euclidean	distance	between	paired	periods.	Data	 is	 shown	according	 to	 the	 color	

scale	in	the	right.	White	boxes	in	the	diagonal	indicate	periods	corresponding	to	a	same	

patient.	
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(a)	 	

	

	

	

	

	

(b)	
	

Fig.	 4.	 Forecasting	 performance:	 (a)	 Mean	 and	 standard	 deviation	 of	 forecasting	

measures	for	the	20-fold	cross-validation	and	a	5-h	PH:	MAE(mg/dL)	is	Mean	Absolute	

Error;	 RMSE(md/dL)	 is	 Root	 Mean	 Square	 Error;	 MAPE(%)	 is	 Mean	 Absolute	

Percentage	Error;	(b)	Mean	and	standard	deviation	of	MAPE(%)	for	 increasing	values	

of	the	prediction	horizon.	*	p<0.05.	
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Fig.	5.	Forecasting	of	models	ARIMA(4,	0,	4),	SARIMA(4,	0,	4)(1,	0,	1)33,	ARIMAX(4,	0,	4,	

2)	and	SARIMAX(4,	0,	4,	2)(1,	0,	1)33		for	Run	4	considering	a	5-h	prediction	horizon.	
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