
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

Institute of Mathematics, Polish Academy of Sciences

Guirao Sánchez, AJ.; Montesinos Santalucia, V.; Zizler, V. (2018). Remarks on the set of
norm-attaining functionals and differentiability. Studia Mathematica. 241(1):71-86.
doi:10.4064/sm8768-6-2017

http://doi.org/10.4064/sm8768-6-2017

http://hdl.handle.net/10251/103204



REMARKS ON THE SET OF NORM-ATTAINING
FUNCTIONALS AND DIFFERENTIABILITY

ANTONIO J. GUIRAO, VICENTE MONTESINOS, AND VACLAV ZIZLER

To the memory of Bob Phelps

Abstract. We use the smooth variational principle and a standard
renorming to give a short direct proof to the classical Bishop–Phelps–
Bollobás theorem on the density of norm-attaining functionals for weakly
compactly generated Banach spaces. Then we show that a slight adjust-
ment of a known Preiss–Zaj́ıček differentiability argument provides for a
simple, useful characterization of individual norms on separable Banach
spaces admitting residual sets of norm-attaining functionals in terms of
Fréchet differentiability of their dual norms.

1. Introduction

The Bishop–Phelps theorem on the density of the norm-attaining func-

tionals, which holds in every real Banach space, is nowadays usually proved

by applying the Ekeland variational principle together with the Hahn–

Banach separation theorem (see, e.g., [FHHMZ11, page 353]). A refine-

ment of the theorem —approximating simultaneously functionals and “al-

most attaining points” by norm-attaining functionals and points of norm-

attainment, respectively— is known as the Bishop–Phelps–Bollobás theo-

rem (see, e.g., [Bo99, Theorem 8.11]).

In the first part of this note we show that the Bishop–Phelps–Bollobás

theorem can be proved in the setting of weakly compactly generated Banach

spaces by using a standard renorming theorem followed by a simple, direct

application of the smooth variational principle (see, e.g., [DGZ93, Theorem

2.3], [FHHMZ11, page 355], or [Ph93, Theorem 4.10]). A separable version

of a part of it appeared in [HHZ96].

Actually, the smooth variational principle provides, in spaces with a

Gâteaux differentiable norm, for an effective replacement of the Ekeland

variational principle. Indeed, for the application of the smooth variational
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principle one just needs a basic undergraduate technique (Fermat’s theo-

rem).

In the second part of this note, we use a well-known subtle Preiss–

Zaj́ıček differentiation argument for convex functions in [PrZa84] (see also

[FHHMZ11, page 414]) to characterize, in separable spaces, the norms that

have residual sets of norm-attaining functionals in terms of the Fréchet dif-

ferentiability of their dual norms at a dense set of points.

Since the smooth variational principle, as well as the Preiss–Zaj́ıček ar-

gument, are built on the Baire Category theorem, most of this note is an

application of this last theorem. In this connection, let us remark in passing

that it is shown in [DGZ93, page 11] how also the Ekeland variational prin-

ciple follows from a general variational principle proved by using the Baire

Category theorem.

2. The Bishop–Phelps–Bollobás theorem via differentiability

A Banach space X is said to be weakly compactly generated (WCG, in

short) if there is a weakly compact set K in X such that X is the closed

linear span of K. The family of WCG spaces is very large: It covers all

separable spaces, all reflexive spaces, c0(Γ) for all sets Γ, L1(µ) for finite

measure µ, C(K) spaces for K homeomorphic to a weakly compact set

in a Banach space, and more. All WCG spaces admit equivalent Gâteaux

differentiable norms (cf. e.g. [FHHMZ11, page 586]). For more information

on WCG spaces, see, e.g., [FHHMZ11, Chapter 13], [HMVZ08, Chapter 6],

[DGZ93], and [Fa97].

If (X, ‖ · ‖) is a Banach space, X∗ denotes, as usual, its dual space,

i.e., the space of all continuous linear functionals on X and we denote by

‖ · ‖∗ the dual norm on X∗. The closed unit ball and the unit sphere of

(X, ‖ ·‖) are denoted, as usual, B(X,‖·‖) and S(X,‖·‖), respectively (or BX and

SX , respectively, if the norm is understood). We say that f ∈ X∗ attains its

norm (or that f is norm-attaining) if there is x ∈ SX such that f(x) = ‖f‖∗.
The set of all norm-attaining functionals on X is denoted by NA(X) (we

shall write NA(X, ‖ · ‖) if we want to stress that the norm on X is ‖ · ‖ (the

set NA(X) is highly sensitive to renormings of X). The terms “a rotund

norm” and “a strictly convex norm” are equivalent. For other nondefined

concepts we refer, e.g., to [FHHMZ11].

We will first prove the Bishop–Phelps–Bollobás theorem for all spaces

whose norm is Gâteaux differentiable outside the origin by using the smooth

variational principle (Proposition 2.2). Observe that, in this case,
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(A) we may always define a Gâteaux differentiable bump function b on

X such that 0 ≤ b(x) ≤ 1 for all x ∈ X, supp b ⊂ BX , b(0) = 1, and

‖b ′‖∞ < 2.

(A bump function b defined on X is a real-valued function with a

nonempty bounded support supp b.)

For the reader’s convenience, we reproduce here the precise statement of

the smooth variational principle, as presented in [Ph93, Theorem 4.10], for

the Gâteaux differentiable case:

Theorem 2.1 (Deville–Godefroy–Zizler Smooth Variational Principle ). Let

(X, ‖ · ‖) be a Banach space. Assume that X has a Gâteaux differentiable

Lipschitz bump function b, and that Φ is a proper lower semicontinuous

bounded-below function on X. Then there exists a constant a > 0 (depending

only on (X, ‖ · ‖)) such that, for all 0 < ε < 1 and for any xε ∈ X such that

Φ(xε) < inf Φ+aε2, there exists a Gâteaux differentiable function ϕ : X → R
and x0 ∈ X such that

(i) Φ + ϕ has a minimum at x0.

(ii) ‖ϕ‖∞ < ε and ‖ϕ′‖∞ < ε.

(iii) ‖x0 − xε‖ ≤ ε.

We may always assume that b in Theorem 2.1 satisfies the conditions in

(A) above. Then, from the proof of [Ph93, Theorem 4.10], the constant a

can be taken to be 1/(4M), where M := max{‖b ′‖, 1}. If ‖ · ‖ is Gâteaux

differentiable, it is simple to produce a Gâteaux differentiable bump b on X

that satisfies all the conditions in (A) above and, moreover, M ≤ 2. Thus,

we may take a = 1/8 in Theorem 2.1.

The following is the promised proof of a particular version of the Bishop–

Phelps–Bollobás theorem.

Proposition 2.2 (Bishop–Phelps–Bollobás). Assume that the norm ‖ · ‖
of a Banach space X is Gâteaux differentiable. Let f ∈ X∗ with ‖f‖∗ ≥ 1,

0 < ε < 1/2, and xε ∈ BX be such that f(xε) > ‖f‖∗ − (ε2/8). Then we

can find a norm-attaining functional g on X and a point x0 ∈ X such that

‖f − g‖∗ < ε, ‖xε − x0‖ < ε and g(x0/‖x0‖) = ‖g‖∗.

Proof. First note that ‖f‖∗.‖xε‖ ≥ f(xε) ≥ ‖f‖∗ − ε2

8
. Thus

(2.1) ‖xε‖ ≥ 1− ε2

8‖f‖∗
≥ 1− ε2

8
.

Let h : R → R be a smooth symmetric function such that h(0) > 0,

h(t) ≥ t for all t ∈ R, h(t) = |t| for |t| ≥ 1, h′(0) = 0, and h′(t) > 0 for

t > 0 (see Figure 1).
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h
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Figure 1. The function h

Consider the function Φ defined for x ∈ X by

(2.2) Φ(x) = ‖f‖∗ · h(‖x‖)− f(x).

Then Φ is obviously continuous; it is also bounded below on X, due to

the fact that Φ(x) ≥ ‖f‖∗.‖x‖ − (‖f‖∗.‖x‖) = 0 for all x ∈ X. Moreover,

infx∈X Φ = 0. Indeed, if xn ∈ SX satisfy f(xn)→ ‖f‖∗, then Φ(xn) = ‖f‖∗−
f(xn) → 0. A direct calculation shows that Φ is Gâteaux differentiable on

X (use h′(0) = 0), and, if x ∈ X,

(2.3) Φ′(x) =

{
‖f‖∗ · h′(‖x‖).‖ · ‖′(x)− f if x 6= 0,
−f otherwise.

Moreover,

Φ(xε) = ‖f‖∗h(‖xε‖)− f(xε) ≤ ‖f‖∗h(1)− f(xε)

= ‖f‖∗ − f(xε) < ε2/8 = inf
x∈X

Φ + ε2/8.(2.4)

By Theorem 2.1 applied to Φ and xε (see (2.4)), where, as mentioned

above, we take a = 1/8, there is a Gâteaux differentiable function ϕ on X

with ‖ϕ‖∞ < ε and ‖ϕ′‖∞ < ε such that (Φ − ϕ) attains its minimum at

some point x0 ∈ X and

(2.5) ‖x0 − xε‖ ≤ ε

(so, in particular, x0 6= 0 since ‖x0| ≥ ‖xε‖− ε ≥ 1− ε2/8− ε > 0, see (2.1)

above). By a basic calculus, it follows that (Φ− ϕ)′(x0) = 0, hence

(2.6) ϕ′(x0) = Φ′(x0) = ‖f‖∗.h′(‖x0‖).‖ · ‖′(x0)− f,

and, since ‖ϕ′‖∞ < ε, we have

(2.7) ‖ϕ′(x0)‖ < ε.

The functional

(2.8) g := ‖f‖∗.h′(‖x0‖).‖ · ‖′(x0)

obviously attains its norm at x := x0/‖x0‖, as the derivative of the norm at a

point of the sphere is a supporting functional to the ball at this point. From

(2.6) and (2.7), we deduce that ‖f−g‖∗ < ε. This shows the statement. �
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Now we prove a renorming proposition needed. For the separable case

the result appeared in [DGS-R95] and in [HHZ96].

Proposition 2.3. Let (X, ‖ · ‖) be a WCG Banach space. Then X admits

an equivalent Gâteaux differentiable norm |‖ · |‖ such that

NA(X, ‖ · ‖) = NA(X, |‖ · |‖).

Proof. By a result of D. Amir and J. Lindenstrauss (see, e.g., [FHHMZ11,

Theorem 13.20]), there exists a bounded linear w∗-to-w-continuous one-to-

one operator T from X∗ into some c0(Γ); this last space is considered under

the (strictly convex) Day’s norm ‖·‖D (see e.g. [FHHMZ11, Exercise 13.11]).

Let B1 denote the ‖ · ‖D-closed unit ball in c0(Γ) and B∗1 its corresponding

dual unit ball.

The adjoint T ∗ maps c0(Γ)∗ into X and the set C := T ∗(B∗1) is a weakly

compact convex symmetric set in X.

Put

(2.9) B := B(X,‖·‖) + C.

Then B is a closed convex symmetric set (use that C is weakly compact)

which is the closed unit ball of an equivalent norm |‖ · |‖ on X.

If f ∈ X∗ then

(2.10) |‖f |‖∗ = sup
B
f = sup

B(X,‖·‖)+C
f = sup

B(X,‖·‖)

f + sup
C
f.

Since C is weakly compact, it is easy to see that f attains its maximum on

B if and only if f attains its maximum on B(X,‖·‖).

To finish the proof we shall show that |‖ · |‖∗ is strictly convex. Then, by

the Šmulyan test (see, e.g., [FHHMZ11, page 344]), the norm |‖ · |‖ will be

Gâteaux differentiable.

To show the strict convexity of |‖ · |‖∗ calculate, for f ∈ X∗,

|‖f |‖∗ = sup
B(X,‖·‖)+C

f = sup
B(X,‖·‖)

f + sup
C
f

= ‖f‖∗ + sup
T ∗(B∗1 )

f = ‖f‖∗ + sup
B∗1

(Tf) = ‖f‖∗ + ‖Tf‖D.(2.11)

Since the norm ‖ · ‖D is strictly convex, it is standard to show that |‖ · |‖∗

is strictly convex, too (see, e.g., [FHHMZ11, page 335]). Indeed, assume

that |‖f + g|‖∗ = |‖f |‖∗ + |‖g|‖∗ and g 6= 0. Then a similar equality holds

for both of the summands. Thus, because of the convexity, ‖Tf + Tg‖D =

‖Tf‖D + ‖Tg‖D and Tg 6= 0. Due to the strict convexity of Day’s norm,

we have Tf = λTg for some λ > 0. Thus f = λg as T is one-to-one. This

shows that |‖ · |‖∗ is strictly convex. �
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From Propositions 2.2 and 2.3, we directly get the following Corollary

2.4 below (a special case of the general Bishop–Phelps–Bollobás theorem).

Corollary 2.4 (Bishop–Phelps–Bollobás, WCG case). Let (X, ‖ · ‖) be a

WCG Banach space. Then, given 0 < ε < 1/2, f ∈ SX∗ and xε ∈ SX such

that f(xε) > 1− ε2/128, there exists g ∈ X∗ and x ∈ SX with ‖f − g‖∗ < ε,

‖xε − x‖ < ε and g(x) = ‖g‖∗.

Proof. Fix 0 < ε < 1/2, f ∈ SX∗ and xε ∈ SX as in the statement. Fix

δ := δ(ε) > 0 (to be defined later). By letting ‖T‖ < δ in the proof of

Proposition 2.3 (where T : (X∗, ‖ · ‖∗) → (c0(Γ), ‖ · ‖D) is the continuous

linear mapping whose existence is guaranteed by the WCG character of X),

we may find a Gâteaux differentiable norm |‖ · |‖ such that

|‖x|‖ ≤ ‖x‖ ≤ (1 + δ)|‖x|‖, for all x ∈ X

(and so

‖h‖∗ ≤ |‖h|‖∗ ≤ (1 + δ)‖h‖∗ for all h ∈ X∗).

Observe that ‖y‖ < δ for every y ∈ C (:= T ∗(B∗1), where B∗1 is the closed

unit ball of (`1(Γ), ‖ · ‖∗D)). Let yε ∈ C be the point where f attains its

maximum on C, so that |‖f |‖∗ = ‖f‖∗ + f(yε) (see (2.11) above). Set zε =

xε + yε (so zε ∈ B|‖·|‖, see (2.9) above). Obviously f(zε) > |‖f |‖∗ − ε2/128.

Put r := ε/4, so f(zε) > |‖f |‖∗ − r2/8. It follows from Proposition 2.2 that

there exists g ∈ X∗ and z ∈ X such that |‖f − g|‖∗ < r, |‖zε − z|‖ < r and

g(z/|‖z|‖) = |‖g|‖∗. In particular,

‖f − g‖∗ ≤ |‖f − g|‖∗ < r (< ε).

Put z/|‖z|‖ = x + y, where ‖x‖ ≤ 1 and y ∈ C (see again (2.9) above).

Clearly, g attains its ‖ · ‖∗-norm at x, so ‖x‖ = 1.

Then we have

xε − x = zε − yε − x

= zε − z + z

(
1− 1

|‖z|‖

)
− yε + y,

hence

(2.12) ‖xε − x‖ ≤ ‖zε − z‖+ ‖z‖.
∣∣∣∣1− 1

|‖z|‖

∣∣∣∣+ ‖yε‖+ ‖y‖.

From (2.12) it is not difficult to show that, by choosing 0 < δ small enough,

we have ‖xε−x‖ < ε. Let us provide the details for the sake of completeness.

For this, let us estimate the terms in (2.12): First we have

(2.13) ‖z − zε‖ ≤ (1 + δ)|‖z − zε|‖ < (1 + δ) r.
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We collect now some inequalities needed:

‖zε‖ ≤ ‖xε‖+ ‖yε‖ < 1 + δ,(2.14)

‖z‖ ≤ ‖zε‖+ ‖z − zε‖ < (1 + δ)(1 + r),(2.15)

|‖zε|‖ ≤ ‖zε‖ < 1 + δ,(2.16)

|‖z|‖ ≤ |‖z − zε|‖+ |‖zε|‖ < r + (1 + δ),(2.17)

1− δ < ‖xε‖ − ‖yε‖ ≤ ‖zε‖,(2.18)

1− δ
1 + δ

< |‖zε|‖,(2.19)

1− δ
1 + δ

− r < |‖zε|‖ − |‖z − zε|‖ ≤ |‖z|‖.(2.20)

Observe that (1−r)/(1+r) > 0. By choosing 0 < δ < (1−r)/(1+r) we can

guarantee that [(1 − δ)/(1 + δ)] − r > 0. Thus, by using (2.17) and (2.20)

above,

(2.21)
−2δ − r(1 + δ)

(1− δ)− r(1 + δ)
< 1− 1

|‖z|‖
<

r + δ

r + 1 + δ
.

It is simple to prove that

2δ + r(1 + δ)

(1− δ)− r(1 + δ)
>

r + δ

r + 1 + δ
,

so

(2.22)

∣∣∣∣1− 1

|‖z|‖

∣∣∣∣ < 2δ + r(1 + δ)

(1− δ)− r(1 + δ)
.

Note that 0 < r < ε < 1/2, so we may take δ > 0 small enough so that

δ + r + rδ < 1/2. Then, (1− δ)− r(1 + δ) > 1/2, and from (2.22) we get

(2.23)

∣∣∣∣1− 1

|‖z|‖

∣∣∣∣ < 2(2δ + r(1 + δ)).

Finally, we have, from (2.12), and by using (2.13), (2.15), and (2.23) in this

order,

‖xε − x‖ < (1 + δ)r + (1 + δ)(1 + r)2(2δ + r + rδ) + 2δ,

and it is easy to show that, for δ > 0 small enough (and satisfying the

conditions encountered above),

(1 + δ)r + (1 + δ)(1 + r)2(2δ + r + rδ) + 2δ < 4r (= ε),

since this is equivalent to

δ(9r + 6 + 4r2 + 4δ + 6rδ + 2r2δ) < r − 2r2

(note that r − 2r2 > 0). This finalizes the proof. �

Remark 2.5.
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(1) Observe that Corollary 2.4 is in fact a constructive version —for

the WCG case— of the Bishop–Phelps–Bollobás theorem, which is

usually proved by non-constructive techniques. Indeed, (2.8) in the

proof of Proposition 2.2 gives the formula of the functional that

attains the norm in the Gâteaux case, and (2.10) in the proof of

Proposition 2.3 gives the formula for the equivalent strictly convex

dual norm —and so for the sought equivalent Gâteaux norm on the

space—. It gives no information about the point x though.

(2) The reader would have no difficulty to simplify the method of proof

of Proposition 2.3 for separable spaces, where injections into `2 can

be used.

(3) In proving just the Bishop–Phelps theorem, the situation is easier,

and for the reader’s convenience we include here the needed adjust-

ment in detail.

Theorem (Bishop–Phelps, Gâteaux differentiability case)

Assume that the norm ‖ · ‖ of a Banach space X is Gâteaux differ-

entiable. Then NA(X, ‖ · ‖) is norm-dense in X∗.

Proof. Given f ∈ X∗ (without loss of generality we may assume that

‖f‖∗ = 1), and 1 > ε > 0, we need to show that there is g ∈ X∗

that attains its norm and ‖f − g‖∗ < ε. To this end, consider the

function Φ defined for x ∈ X by

Φ(x) = ‖x‖2 − f(x).

Then Φ is continuous and bounded below on X. Indeed,

Φ(x) ≥ ‖x‖2 − ‖f‖∗.‖x‖ ≥ −(‖f‖∗)2

4
for all x ∈ X.

Moreover, Φ is Gâteaux differentiable, and

Φ′(x) =

{
2‖x‖.‖ · ‖′(x)− f, if x ∈ X, x 6= 0,
−f otherwise.

Thus, by the smooth variational principle, there is a Lipschitz and

Gâteaux differentiable function ϕ on X with ‖ϕ‖∞ < ε and ‖ϕ′‖∞ <

ε such that (Φ − ϕ) attains its minimum at some point x0 ∈ X.

Therefore, (Φ− ϕ)′(x0) = 0.

If x0 = 0, we get ϕ′(0) = Φ′(0) = −f , a contradiction with the

fact that ‖f‖∗ = 1 and ‖ϕ′(0)‖ < ε < 1. We have then x0 6= 0.

Therefore

ϕ′(x0) = Φ′(x0) = 2‖x0‖.‖ · ‖′(x0)− f ;
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moreover, ‖ϕ′(x0)‖ < ε. The functional 2‖x0‖.‖ · ‖′(x0) obviously

attains its norm, and we can thus put

�(2.24) g := 2‖x0‖.‖ · ‖′(x0).

(4) Note that Proposition 2.3 does not hold in general if “Gâteaux dif-

ferentiability” there is replaced by “Fréchet differentiability”, even

in spaces whose duals are separable. Indeed, M. D. Acosta and M.

Ruiz Galán proved in [AcR-G98] that every Banach space can be

renormed so that the new set NA(X) has an interior point. On the

other hand they proved in the same paper that NA(X) has empty

interior whenever the norm of a nonreflexive separable space X is

Fréchet differentiable.

3. The residuality of the set of norm-attaining functionals

and differentiability

A norm is said to be dentable if its unit ball is dentable, i.e. contains

arbitrarily small-diameter cuts by open halfspaces, cuts called slices. This

is equivalent to say that given ε > 0 there exists x0 ∈ BX such that x0 6∈
co(BX \ {x ∈ X : ‖x− x0‖ < ε}).

It is well known (see, e.g., Theorem 3.4 below) that if X is a Banach

space then all equivalent norms on X are dentable if and only if for every

equivalent norm the set NA(X) is residual, and this happens if, and only if,

X has the Radon–Nikodým property. In contrast, for the Day norm ‖ · ‖D
on c0 the set NA(c0, ‖·‖D) is even dense Gδ (see Remark 3.3.2 below), while

the set NA(c0, ‖ · ‖∞) consists exactly of the finitely supported vectors (see

e.g. [FHHMZ11, page 142]), so it is of first category (cf., e.g., [FHHMZ11,

page 173]). So the following proposition comes handy in general separable

spaces. It is of good practical use since, usually, it is much easier to decide

if the dual norm is Fréchet differentiable at a dense set of points of the

dual space than to decide on the residuality of the set of norm-attaining

functionals. The proof is a slight adjustment of a simple, clever argument of

D. Preiss and L. Zaj́ıček in [PrZa84] (see also [FHHMZ11, page 414]) which

is a delightful combination of convexity and Baire category arguments.

Proposition 3.1 (D. Preiss and L. Zaj́ıček, norm-attaining version). Let

(X, ‖ · ‖) be a separable Banach space. Then the set NA(X, ‖ · ‖) is residual

in (X∗, ‖·‖∗) if and only if ‖·‖∗ is Fréchet differentiable at points of a dense

subset of (X∗, ‖ · ‖∗).
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Proof. 1) To prove the necessity, assume that NA(X, ‖ · ‖) is residual. We

adjust the Preiss–Zaj́ıček argument in [PrZa84] to show that ‖·‖∗ is Fréchet

differentiable at a dense set of points in the dual, which is automatically Gδ

(see [FHHMZ11, page 357]). Let P be a Gδ dense set in (X∗, ‖ ·‖∗) included

in NA(X, ‖ · ‖) (see, e.g., [MZZ15, Theorem 646]). The space (P, ‖ · ‖∗) is a

Baire space (see, e.g., the proof of [MZZ15, Theorem 589]).

Let A be the set of all points in P where ‖·‖∗ is not Fréchet differentiable.

We shall show that A is of first category in P . This will finish the proof of

this implication.

For every f ∈ A we find xf ∈ SX where f attains its norm. Then

‖f + h‖∗ − ‖f‖∗ ≥ h(xf ) for every h ∈ X∗. Since ‖ · ‖∗ is not Fréchet

differentiable at points of A, we may find, by the Šmulyan’s test, mf ∈ N
such that

(3.1) lim sup
h→0

‖f + h‖∗ − ‖f‖∗ − h(xf )

‖h‖∗
>

1

mf

.

For m ∈ N put Am := {f ∈ A : mf = m} and consider a cover of

BX by open balls in X of radius 1/(12m). Since X is separable, by the

Lindelöf property we can find a countable subfamily {Bm
k }k of these balls

that covers BX . For k ∈ N define Am,k = {f ∈ Am : xf ∈ Bm
k }. Observe

that, for f, g ∈ Amk, we have ‖xf −xg‖ < 1/(6m). From the Šmulyan’s test

we have A =
⋃
m,k Am,k. Hence it is enough to show that Am,k is nowhere

dense in P for each m, k.

The rest of the argument refers to the topological space (P, ‖ · ‖∗). As-

sume, on the contrary, that there exists a nonempty open subset O of Am,k.

Find f ∈ O ∩ Am,k and r > 0 such that B(f, r) ⊂ O. Due to the fact that

f ∈ Am we may find h ∈ X∗ such that ‖h‖∗ < r/2 and

(3.2) ‖f + h‖∗ − ‖f‖∗ > ‖h‖
∗

m
+ h(xf ).

Since P is ‖ · ‖∗-dense in X∗, we may assume, without loss of generality,

that f + h ∈ P .

We claim that B(f+h, ‖h‖
∗

3m
)∩Am,k = ∅. Since B(f+h, ‖h‖

∗

3m
) ⊂ B(f, r) ⊂

O ⊂ Am,k, we shall get a contradiction.

In order to prove the claim, assume, on the contrary, that there is g ∈
B(f + h, ‖h‖

∗

3m
) ∩ Am,k. In particular

(3.3) ‖f + h− g‖∗ < ‖h‖
∗

3m
,

and so

(3.4) ‖f − g‖∗ < ‖h‖
∗

3m
+ ‖h‖∗ < 2‖h‖∗,
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(3.5) ‖f + h‖∗ − ‖g‖∗ ≤ ‖f + h− g‖∗ < ‖h‖
∗

3m
,

and, by the fact that f, g ∈ Am,k,

(3.6) ‖xf − xg‖ <
1

6m
.

Due to the definition of xg we have

(3.7) ‖f‖∗ − ‖g‖∗ = ‖g + (f − g)‖∗ − ‖g‖∗ ≥ (f − g)(xg).

By using successively (3.2), (3.7), (3.3), (3.4), and (3.6), in this order, we

get

‖f + h‖∗ − ‖g‖∗ = ‖f + h‖∗ − ‖f‖∗ + ‖f‖∗ − ‖g‖∗

>
‖h‖∗

m
+ h(xf ) + (f − g)(xg)

=
‖h‖∗

m
+ (f + h− g)(xf )− f(xf ) + g(xf ) + (f − g)(xg)

=
‖h‖∗

m
+ (f + h− g)(xf ) + (f − g)(xg − xf )

>
‖h‖∗

m
− ‖h‖

∗

3m
− ‖h‖

∗

3m
=
‖h‖∗

3m
,

and this is in contradiction with (3.5). This proves the claim, and so ends

the proof of the necessity implication.

2) To prove the sufficiency, assume now that the dual norm is differen-

tiable at a dense set of points in (X∗, ‖ · ‖∗). Note that the set of Fréchet

differentiability is always Gδ (see, e.g., [FHHMZ11, page 357]), and that if

the norm is Fréchet differentiable at the point f , then the Šmulyan’s test

(cf., e.g., [FHHMZ11, page 343]) implies that f attains its norm. So, the set

of norm-attaining functionals contains a dense Gδ set, hence it is residual

in X∗. �

Recall that x ∈ SX is a strongly exposed point of BX if there is f ∈ SX∗
such that f(x) = 1 and ‖xn − x‖ → 0 whenever xn ∈ BX are such that

f(xn)→ 1. We say then that f strongly exposes x, or that x is strongly ex-

posed by f . From the Šmulyan test it follows that there is a duality between

strongly exposed points of BX and points of Fréchet differentiability of the

dual norm. Namely, if x ∈ SX and f ∈ SX∗ are such that f(x) = 1 and

f is a point of Fréchet differentiability of the dual norm then x is strongly

exposed by f .

From this duality and from Proposition 3.1 we get the following corollary

by a standard separation argument.
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Corollary 3.2. Let (X, ‖·‖) be a separable Banach space. If NA(X, ‖·‖) is

residual in X∗, then B(X,‖·‖) is the closed convex hull of its strongly exposed

points.

Remark 3.3.

(1) Proposition 3.1 and Corollary 3.2 above should be compared with

the following J. Bourgain–Ch. Stegall result, see [Bour83, Theorem

3.5.5]: If (X, ‖ · ‖) is a separable Banach space and NA(X, ‖ · ‖) is

of second category in (X∗, ‖ · ‖∗), then BX is dentable.

Note that in Corollary 3.2 we assume more than in the Bourgain–

Stegall result and get more, precisely that BX is the closed convex

hull of its strongly exposed points.

At the end of this note we shall review some known results con-

cerning these properties.

(2) Unlike the Gâteaux smoothness in WCG spaces, the rotundity of the

norm contributes to the quality of NA(X) for this norm. The most

transparent situation is the case of the LUR norms (the norm ‖·‖ on

a Banach space is said to be locally uniformly rotund (LUR, in short)

if ‖xn − x‖ → 0 whenever xn, x ∈ SX are such that ‖xn + x‖ → 2):

If ‖ · ‖ on X is LUR, a functional attains its norm if and only

if it is a point of Fréchet differentiability of ‖ · ‖∗. Indeed, if it is a

point of Fréchet differentiability of ‖ · ‖∗, then it attains its norm by

the Šmulyan test, as we mentioned in the proof of Proposition 3.1,

sufficiency part. If in turn the functional attains its norm, then, due

to the LUR property of ‖ · ‖, it is a point of Fréchet differentiability

of ‖ · ‖∗, again by the Šmulyan test.

Thus the set of functionals that attain their norm coincides in

this case with the set of points of Fréchet differentiability of ‖ · ‖∗,
so this is a dense set in (X∗, ‖ · ‖∗) by the Bishop–Phelps theorem,

as well as it is automatically Gδ (cf., e.g., [FHHMZ11, page 357]).

Summarizing, if the norm ‖ · ‖ on a Banach space X is LUR, then

NA(X, ‖ · ‖) is a dense Gδ subset of (X∗, ‖ · ‖∗).
Since S. Troyanski proved that every WCG space admits an equiv-

alent LUR norm (see, e.g., [FHHMZ11, page 587]), we have that

every WCG space (X, ‖ · ‖) has an equivalent norm |‖ · |‖ so that

NA(X, |‖ · |‖) is dense Gδ —so residual— in X∗.

These facts should be compared with Proposition 3.1 and Corol-

lary 3.2.
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(3) In the paragraph before Proposition 3.1 we mentioned thatNA(c0, ‖·
‖∞) is of first category. It cannot be Gδ by that proposition (it is

always ‖ · ‖∗∞-dense), as the dual norm on `1 is nowhere Fréchet

differentiable.

(4) Note that NA(X, ‖ · ‖) can be of first category for a norm ‖ · ‖ with

dentable ball (R. Bourgin [Bour83, Example 3.5.8]).

(5) IfX is separable and non-reflexive, thenNA(X) is notGδ in (X∗, w∗)

([DGS-R95]).

(6) R. Kaufman proved in [Ka91] that for separable Banach spaces X,

NA(X) is an analytic set in (X∗, w∗).

Also, R. Kaufman showed in [Ka91] that every separable nonre-

flexive Banach space X can be renormed so that NA(X) is not Borel

in (X∗, ‖ · ‖∗). He proved in [Ka00] that a nonreflexive space with

separable dual can be renormed by a Fréchet differentiable norm so

that NA(X) is not Borel (see also [Ku11]). On the other hand, M. D.

Acosta and the second named author of this note proved that every

separable non-reflexive Banach space X can be renormed so that the

set of norm-attaining functionals has empty interior in (X∗, ‖ · ‖∗)
([AcMo07]).

Thus it follows that the behaviour of NA(X) is highly sensitive to

renormings: For example, we mentioned in Remark 3.3.3 above that

NA(c0, ‖ · ‖∞) is of first category (and dense not Gδ), while if |‖ · |‖
is a Fréchet differentiable LUR norm on c0 (see, e.g., [FHHMZ11,

page 387]), NA(c0, |‖ · |‖) is dense Gδ in (X∗, ‖ · ‖∗), and it has no

interior point (see Remark 2.5.4).

(7) R. Kaufman showed in [Ka91] that NA(X) is Borel (even in the w∗-

topology) for separable rotund norms. Later on, O. Kurka showed

in [Ku11] that every separable nonreflexive space can be renormed

so that the Borel class of NA(X) is arbitrarily high.

(8) Overall, the best behavior of the sets of norm-attaining functionals

for all equivalent norms on the space are met in the class of Banach

spaces having the Radon–Nikodým property (RNP, in short: A Ba-

nach space X has the RNP property if and only if any bounded set

in it is dentable).

Below, we indicate the sources of proofs to the following theorem,

which is a result of the work of many mathematicians. For simplicity,

we restrict ourselves here to separable spaces.
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Theorem 3.4. Let X be a separable Banach space. Then the fol-

lowing are equivalent.

(a) X has the RNP property.

(b) The ball of every equivalent norm on X is dentable.

(c) The ball of every equivalent Gâteaux differentiable norm on X

is dentable.

(d) The dual norm of every equivalent norm on X is Fréchet dif-

ferentiable at a dense set of points in X∗.

(e) For every equivalent norm on X, the set NA(X) is residual

in X∗.

(f) For every equivalent norm on X, the set NA(X) is of second

category in X∗.

Sources of possible proofs. (a)⇔ (b) [Di75, page 219].

(b)⇒ (c) is trivial.

(c)⇒ (b): Arguing by contradiction, assume that ‖ · ‖1 is a norm

on X such that its closed unit ball B1 is not dentable. Since X is

separable, there exists an equivalent norm ‖ · ‖2 on X, with closed

unit ball B2, whose dual norm is strictly convex (see the proof of

Proposition 2.3 above). As we saw there, ‖ · ‖∗1 + ‖ · ‖∗2 is strictly

convex, so its predual norm ‖ · ‖ is Gâteaux differentiable. Its closed

unit ball B is the closure of the set B1 + B2. To show that B is

not a dentable set, it is enough to show that the set B1 + B2 is not

dentable. Since B1 is not dentable, let ε > 0 be such that every

slice of B1 has diameter greater than or equal to ε. Let b1 ∈ B1 and

b2 ∈ B2 and an open halfspace H be such that b1 +b2 ∈ H. Consider

the halfspace H − b2. Then b1 ∈ H − b2 and thus there are points b
′
1

and b
′′
1 in (H − b2) ∩ B1 whose distance from each other is greater

than or equal to ε. Then b
′
1 + b2 and b

′′
1 + b2 are at distance greater

than or equal to ε, and both are in (B1 +B2) ∩H.

(a)⇔ (d) [Co76].

(e)⇔ (d) Proposition 3.1.

(f) ⇒ (b) follows from the Bourgain–Stegall result mentioned in

Remark 3.3.1 above.

(e)⇒ (f) is obvious. �

(9) M. Edelstein constructed in [Ede73] an equivalent dentable norm

on c0 that has no extreme point in the unit sphere. In the same

paper, he also constructed an equivalent strictly convex norm |‖ · |‖
on c0 whose unit ball is not dentable. By the Bourgain–Stegall result
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mentioned in Remark 3.3.1 above, NA(c0, |‖ · |‖) is of first category.

This should be compared with the results of R. Kaufman mentioned

in Remarks 3.3.6 and 3.3.7 above.

Actually there are many norms like this. First a definition: A

Banach space X is said to have the CPCP property if every closed

bounded convex set in X contains a point where the norm topology

and the weak topologies coincide. From Theorem 3.4 and Proposition

3.5 below, every separable Banach space with the RNP property

has the CPCP property. The predual of the James tree space is an

example of a space with the CPCP property that does not have the

RNP property (see, e.g. [DGHZ87]). For more on spaces with the

CPCP property we refer, e.g., to [DGHZ87], [DGZ93], [EdWh84],

and references therein.

Proposition 3.5. Let X be a separable Banach space. Then the

following are equivalent:

(a) X has the CPCP property.

(b) Every equivalent strictly convex norm on X is dentable.

(c) For every equivalent strictly convex norm on X, NA(X) is

residual.

(d) For every equivalent strictly convex norm on X, NA(X) is of

second category.

Proof. (a)⇔(b) is in [DGHZ87, Corollary 6].

It is proved in [DGHZ87, Theorem 1] that a separable Banach

space has the CPCP property if and only if the dual of every equiv-

alent strictly convex norm is Fréchet differentiable at a dense set of

points, which by Proposition 3.1 gives (a)⇔ (c).

Obviously, if (c) holds, then (d) holds.

If (d) holds, then by the Bourgain–Stegall result mentioned in

Remark 3.3.1 above, the unit ball of every equivalent strictly convex

norm is dentable. This is (b). �

(10) If X∗ is separable we can say more (Proposition 3.6 below). For the

proof of it we need to recall a definition: A norm ‖ · ‖ of a Banach

space X is said to be weakly uniformly rotund (WUR, in short) if

xn − yn → 0 in the weak topology of X whenever xn, yn ∈ SX are

such that ‖xn+yn‖ → 2. If X is a dual space and the weak topology

is replaced with the weak∗ topology, we call the dual norm weak∗

uniformly rotund (W∗UR, in short). Each of the concepts WUR and
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W∗UR obviously imply strict convexity. We need to know that a

norm on a Banach space is uniformly Gâteaux differentiable if, and

only if, the dual norm is W∗UR, and that the norm is WUR if, and

only if, the dual norm is uniformly Gâteaux differentiable (see, e.g.,

[DGZ93, Theorem 6.7]).

Proposition 3.6. Let X be a Banach space such that X∗ is sepa-

rable. Then the following are equivalent:

(a) X has the CPCP property.

(b) Every equivalent WUR norm on X is dentable.

(c) Every equivalent norm on X that is both WUR and uniformly

Gâteaux differentiable, is dentable.

(d) For every equivalent norm on X that is both WUR and uni-

formly Gâteaux differentiable, the set NA(X) is residual.

(e) For every equivalent norm on X that is both WUR and uni-

formly Gâteaux differentiable, the set NA(X) is of second category.

Proof. From a result in [DGHZ87] (see also [HMZ11, Theorem 40])

we see that (a)⇔(b). So, if X does not have the CPCP property,

then there is a WUR norm ‖·‖1 on X that is not dentable. Since X∗

is separable, there is a norm ‖ · ‖2 that is WUR and its dual norm is

W∗UR (see, e.g., [DGZ93, Theorem 6.7 (ii)] and [DGZ93, Theorem

7.1 (ii)]). The sum of the dual norms ‖ · ‖∗3 := ‖ · ‖∗1 + ‖ · ‖∗2 is W∗UR

because ‖ · ‖∗2 is. Moreover ‖ · ‖∗3 is uniformly Gâteaux differentiable

as both norms are uniformly Gâteaux differentiable. So its predual

norm ‖ · ‖3 is WUR and uniformly Gâteaux differentiable. As in the

proof of Theorem 3.4, we see that ‖·‖3 is not dentable. Thus non (a)

implies non (c). So, (c) implies (a). Obviously, (b)⇒ (c). Thus (a),

(b) and (c) are equivalent. The implication (a)⇒(b) in Proposition

3.5 above shows that (a)⇒(d) here. Obviously, (d)⇒(e). From the

Bourgain–Stegall result in Remark 3.3.1, (e)⇒(c). �

Observe that (c), (d), and (e) in Proposition 3.6 can be formulated

for equivalent WUR and Gâteaux differentiable norms instead. This

gives extra information if starting from the CPCP property, while

the version with WUR and uniformly Gâteaux differentiable norms

demands less requirements for getting the CPCP property.

Problem 3.7. Is Proposition 3.1 true if we assume instead of the separa-

bility of X that X admits an equivalent LUR norm?
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[HHZ96] P. Hájek, P. Habala, and V. Zizler, Introduction to Banach spaces

I, II, Matfyzpress (Charles University text), Prague 1996.
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