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ABSTRACT 
 
This study presents a train simulation tool for the evaluation of train 
path and energy consumption. The simulation tool consists of a train 
dynamic model and an energy consumption model, specifically 
developed for a Diesel Multiple Unit. The models’ performance is 
tested against a set of measured data including fuel consumption and 
speed profiles from real operation services. Results yield adjustment 
errors below 9% in all simulations, including simplified route 
profiles. The consideration of wind speed and direction further 
contributes to improve speed adjustment by 1.5% in those stretches 
where such variables taken into account. Hence, it can be used to 
predict the travel time and the fuel consumption in any potential 
railway service even at an early stage design. 
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1. INTRODUCTION 
 
Over the last years, some strategies have been implemented with the aim to reduce energy 
consumption in railways. The main goals are to be more economically competitive as well 
as environmentally friendly. Among these strategies, the most relevant ones are the design 
of railway layouts with energy-efficient criteria, the improvement of rolling stock, the 
application of energy-saving strategies in railway operations and the smart linkage of energy 
supply networks 1,2. 
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In the field of driving strategies, it is essential to count with an appropriate energy 
consumption model. These models may substantially vary depending on the rail system they 
are applied to. In commuter or suburban trains, with high traffic density and usually 
electrified networks, train interaction3,4, traffic re-scheduling 5,6, and energy recovery 
systems 7 have been investigated. In other applications for electric trains in conventional or 
high speed lines, energy consumption models may be based on efficient speed profile 
generators8,9. In the case of hybrid diesel trains or locomotives, the most important issue is 
to account for the possibility of recovering the energy from braking events10,11. 
 
For freight trains, authors also focused on driving techniques and minimising energy 
consumption 1,12 for which specific train parameters were obtained. Other studies indicate 
that it is possible to save energy under rigorous restriction of schedule time by keeping train 
speed uniform 13, and demonstrate a formal method for optimising traction energy 
consumption during a single-train journey. In order to appropriately model the driver’s 
behaviour when manipulating the locomotive handles, fuzzy predictive control has been also 
used 14. Finally, data mining and driving experience has been applied so as to improve energy 
efficiency 15. 
 
The most usual option to model energy consumption is to use a suitable dynamic equation, 
in which all the coefficients have been adapted to the specific train or railway system. Indeed, 
there are different driving styles, different types of pre-set speed within Automatic Train 
Operation (ATO) systems, railway traffic regulations, and influential factors such as the 
speed profile of a line and the existence of temporary speed limitations. Nevertheless, energy 
consumption may be modelled by using neural networks as well16,17. In this last case, the 
neural network may implicitly take into account some of these factors. 
 
From the above literature review, one may see that most energy consumption models focus 
on electric trains. For diesel trains, available models mainly pay attention to conventional 
loco-hauled trains. Thus, the field of energy consumption of Diesel Multiple Units (DMUs) 
is not sufficiently covered. Moreover, the effect of the accuracy of the input data and the 
presence of wind on the results is neither conveniently analysed. 
 
Within this framework, this paper presents an energy consumption model simulator 
purposely developed for diesel-hydraulic trains, being used in commuter and regional 
services in non-electrified lines. The model has been validated by means of fuel and train 
path measurements in two different scenarios with satisfactory results. It further considers 
the effect of wind in air drag resistance, which is usually disregarded. Additionally, the 
quality of the data from the track layout is tested for robustness. In this study, the model is 
designed to be later applied to an off-line driving simulator so that the users may perform 
different driving strategies and find the most efficient way to drive a train without 
compromising punctuality. Additionally, the travel time and fuel consumption of any 
railway line where a DMU similar to the modelled one may run can be easily evaluated as 
well. 
 
In the text, the underlying equations on which the energy consumption model is based are 
firstly introduced. Secondly, the model is tested and validated with real fuel consumption 
measurements. Thirdly, the simulation tool is tested against robustness of the longitudinal 
profile, calculation step and wind presence. Finally, the most important remarks are 
highlighted. 
 



 

 

2. MODEL DESCRIPTION 
 
The train driving simulator is based on two models. On the one hand, the dynamic model, 
which yields the movement variables (i.e. position, speed and acceleration) depending on 
the forces acting on the train at every instant. On the other hand, the fuel consumption model 
which, depending on the demanded tractive effort, speed and other dynamic variables, yields 
the throttle position, the engine revolutions and the fuel flow. Both models are solved upon 
the Finite Differences Method (FDM). This method solves differential equations step by 
step, assuming constant forces between subsequent steps. All the parameters, tables and 
values presented have been calibrated and validated by means of a comprehensive 
monitoring campaign involving fuel measurements in real train services18. 
 
These types of FDM models usually operate through two different modes: time step or 
distance step. The most common way is time step, although in this case, the distance 
approach has been chosen because the number of calculation steps only depends on the route 
length and therefore the instant location of singular points, i.e. stations, signals, etc. does not 
vary with the travel time. Furthermore, layout properties such as maximum speed, gradient 
or radius are evaluated at the same points, avoiding interpolation. 
 
2.1 Dynamic model 
 
The dynamic model relates the tractive or braking effort with the rest of the forces acting on 
the train, upon Newton’s 2nd law in the movement direction. Therefore, at every distance 
step j∆x Eq. (1) must be fulfilled. 
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(1) 
Equation variables are shown in Table 1. In this equation, the total train mass has been split 
into a chain of punctual masses mk, k ranging from 1 to nx, so that nx is the result of dividing 
the total train length lt between the distance step ∆x: 

𝑛𝑛𝑛𝑛 = max�1,round �
𝑙𝑙𝑡𝑡
∆𝑥𝑥
�� 

(2) 
 
In this way, the train is not considered as a punctual mass, but rather as a set of punctual 
masses separated a distance ∆x which cover the total train length. This can be interesting for 
long trains since some parts may be in a downhill whereas some others may be in a flat 
stretch or in an uphill. Moreover, each mk may take different magnitudes, accounting for the 
respective weights of the different train parts (locomotive, empty wagons, etc.). 
 
In the same way, ik, Rk and αk refer to the gradient, curve radius and angle between the layout 
and the wind for each mk, respectively. 
 

mk value of each single mass (kg) 
nx Number of masses the train is split into 
lt Train length (m) 



 

 

∆x Distance step (m) 
ik Gradient relative to mk 
Rk Curve radius relative to mk (m) 
αk Angle between the wind direction and the track layout at mk position 
Fe Train tractive/braking effort (kN) 

Cmg Rotating mass coefficient 
𝑥̈𝑥 Longitudinal acceleration (m/s2) 
g Gravitational acceleration (m/s2) 
𝑥̇𝑥 Train speed (m/s) 
A Mechanical resistance (kN) 
B Air drag resistance, proportional to the speed (kN/(m/s)) 
C Air drag resistance, proportional to the square of the speed (kN/(m/s)2) 
Tf Tunnel factor 
vw Wind speed (m/s) 

Table 1 – Significance of variables for Eq. (1). 
 
Since the route is discretised at intervals of ∆x, the energy consumption at every distance 
step Ej can be obtained in the following way: 

𝐸𝐸𝑗𝑗 = 𝐹𝐹𝑒𝑒𝑒𝑒∆𝑥𝑥 
(3) 

 
The total energy consumption Et is obtained by adding-up only those intervals in which the 
energy consumption is positive, i.e. 
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(4) 
 
In addition, the time needed to cover each distance step j∆x is given by the equations of the 
uniformly accelerated movement: 

∆𝑡𝑡𝑗𝑗 =
𝑥̇𝑥𝑗𝑗 − 𝑥̇𝑥𝑗𝑗−1
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(5) 
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(6) 
 
Finally, the speed at the next instant is obtained again by means of the equations of the 
uniformly accelerated movement: 

𝑥̇𝑥𝑗𝑗+12 = 𝑥̇𝑥𝑗𝑗2 + 2𝑥̈𝑥𝑗𝑗∆𝑥𝑥 
(7) 

2.2 Consumption model 
 
For this case, a Diesel Multiple Unit (DMU) Series 592.200 has been modelled. This DMU 
consists of three cars, the extreme ones being motorised, with a total number of four diesel 
engines, two per car. Each engine moves its nearest bogie by means of a hydrodynamic 



 

 

transmission. In these DMUs, the throttle has 6 notches, plus the idle position. In addition, 
the hydrodynamic transmission has t wo gears, whose behaviour is featured in terms of 
engine revolutions, train speed and fuel consumption. Table 2 shows the relations between 
the throttle position, the engine revolutions and the fuel flow for the first gear. 

Throttle 
(position) 

Engine 
revolutions (rpm) Fuel flow (l/h) 

0 (idle) 750 1.33 
1 870 4.20 
2 1130 10.0 
3 1350 18.0 
4 1600 26.2 
5 1850 39.7 
6 1950 60.6 

Table 2 – Relation between throttle position, engine revolutions and fuel flow for the 
first gear 
 
When the train reaches the speed of 94 km/h, the transmission automatically switches to 
second gear, and therefore behaves as shown in Table 3. In this table, v stands up for the 
train speed in km/h. 

Throttle 
(position) 

Engine 
revolutions (rpm) Fuel flow (l/h) 

0 (idle) 750 1.33 
1 

11.7 v + 378 

10 
2 18 
3 29 
4 35 
5 46 
6 0.3358 v + 17.339 

Table 3 – Relation between throttle position, engine revolutions and fuel flow for the 
second gear 
 
Subsequently, total fuel consumption V is obtained by summation of all the time increments 
obtained in Eq. (5) and (6) multiplied times the respective fuel flow Qj, i.e. 

𝑉𝑉 = �𝑄𝑄𝑗𝑗∆𝑡𝑡𝑗𝑗
𝑗𝑗

 

(8) 
The relation between the tractive force from Eq. (1) and the correspondent throttle notch is 
shown in Fig. 1. In this figure, the traction-speed curves are drawn for each throttle position. 
The resistance to the movement with null gradient, according to Davis’ coefficients A, B and 
C, is shown as well.  



 

 

 
Fig. 1. Traction-speed curves for each throttle position of DMU series 592.200. 
 
The numerical values of the modelled DMU necessary for the simulation are shown in Table 
4. 

Parameter Value 
M (total mass) 131 t 
lt 75 m 
Cmg 0.055 
A 2.452 kN 
B 0.1164 kN/(m/s) 
C 0.002938 kN/(m/s)2 

Table 4. Numerical values of the modelled DMU for the simulation 
 

3. MODEL TESTING 
 
The model has been tested in two different routes under different circumstances, both located 
in the nearby area of Valencia (Spain). The first route is a direct service between Valencia 
and Xàtiva, which are 55.7 km away. The second route is a commuter service between 
Valencia and Utiel, with 11 intermediate stops and a total length of 85.3 km. Tests compare 
the model results in terms of speed profile and fuel flow by means of the relative Mean 
Squared Error (rMSE). The formula for the MSE is given by 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑛𝑛

𝑁𝑁
 

(9) 
where 𝑦𝑦�𝑛𝑛 is the nth term of the vector of N predictions and 𝑦𝑦𝑛𝑛 is the nth term of the vector 
of N measurements. From this, the rMSE is obtained from dividing the MSE by the variance 
of the vector of N measurements Y, i.e. 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀𝑀𝑀𝑀𝑀

var(Y) 

(10)  
Similarly to 19, 0% < rMSE < 100% measures the proportion of the variance not explained 
by the model. Hence, the lower the rMSE, the better, the model properly represents the real 
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phenomenon. In global terms, relative errors for the total travel time and fuel consumption 
are given as well. For all simulations, excluding 3.4, a distance step of ∆x = 0.1 km has been 
chosen. 
 
 
3.1. Route Valencia – Xàtiva 
 
For this simulation, the throttle positions at every interval have been adopted so that the 
modelled speed profile approaches the registered speed profile as much as possible. 
Afterwards the fuel consumption is obtained for this set of throttle positions. Under these 
conditions, Fig. 2 shows the measured and modelled speed profiles. In this figure, a good 
agreement between both speed profiles is observed. Only in the stretch between mileposts 
20 and 30 there are slight differences. It is worth noting that the longitudinal profile of this 
stretch is mostly flat. Only the last 16 kilometres have a mild ramp of 5 mm/m.  
 

 
Fig. 2. Speed and longitudinal profiles for the route between Valencia and Xàtiva 
 
Fig. 3 shows both the modelled and the measured instantaneous fuel consumption. Again, 
both curves show a good agreement, despite a dip in the modelled fuel consumption in 
milepost 13 km. In this place, a punctual difference between the modelled and the actual 
resistance causes the tractive power to be lower than in reality. The results of the simulation 
are shown in Table 5. 
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Fig. 3. Modelled and registered fuel flows for the route between Valencia and Xàtiva 
 
The rMSE for both the speed and the fuel flow remains below the threshold of 20%, which 
indicates a good adjustment. In the case of the speed, it is near zero since the modelled speed 
profile has been forced to follow the measured one. Small variations are due to the fixed 
throttle notch positions, which can only apply discretised tractive effort; and the distance 
step, which introduces some inaccuracy. For the fuel consumption, slight differences 
between the predicted and the actual notch positions cause some deviations in fuel flow 
which yield an error of 4.1% in the overall fuel consumption. 
 
3.2. Route Valencia – Utiel 
 
The train service between Valencia and Utiel is a commuter service of 85.3 km long and 11 
intermediate stops. In this case, the throttle positions have been obtained taking as an input 
the measured fuel flow, for which a specific algorithm was developed. In this case, during 
data monitoring, there was an eastward wind about 30 km/h blowing in the opposite direction 
of the train route between mileposts 5 and 30 km. The test measurements for this route yield 
a travel time of 1 hour, 39 minutes and 12 seconds and a total fuel consumption of 190.5 
litres. Fig. 4 shows the measured and the actual speed profiles, together with the longitudinal 
profile for this route. Again, a good concordance between both speed profiles is observed. 
 
Only small discrepancies are found at mileposts 60, 63 and in the 80-85 km interval. In this 
case, the route is mostly uphill until milepost 55 km. After this, a succession of mild up and 
down grades follows. 
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Fig. 4. Speed and longitudinal profiles for the route between Valencia and Utiel 
 
Fig. 5 shows the predicted and actual fuel flow series for this route. Although the overall 
concordance is good, there are some dips in the predicted fuel flow at mileposts 18, 30 and 
60 km, which do not appear in the measurements. The difference at milepost 18 km is caused 
by the switch of gear in the hydrodynamic transmission. In all these cases, the speed is 
around the value of 94 km/h in which the train switches from first to second gear and vice-
versa. Due to small differences, the exact point of gear switching may differ, leading to 
punctual differences in the fuel estimation. The mismatches at milepost 30 and 60 km are 
caused by the fact of suddenly cutting traction power and the discretisation of the registered 
flow time series. 
 

 
Fig. 5. Modelled and registered fuel flows for the route between Valencia and Utiel 
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The performance indicators are shown in Table 5. Again, both rMSE are far below 20%, so 
the model appropriately simulates the train journey. In this case, since the throttle notch 
positions have been obtained from the fuel flow measurements, the rMSE for the fuel 
consumption has improved whereas the rMSE for the speed has slightly worsened respect to 
the Valencia-Xàtiva journey. In overall terms, the relative error has also increased slightly, 
being in this case 0.92%. Nevertheless, the relative error for total fuel consumption has 
considerably been reduced down to 0.34%. 
 
In spite of the accuracy of fuel flow predictions, there are two evidences the model does not 
take into account. The first one is some flow fluctuations that appear between mileposts 40 
and 65. In this interval, the measured flow is perceptibly lower than the predicted one. These 
variations are mainly due to train intern efficiency variations, which depend on the working 
temperature, cooling capability, etc. and are difficult to implement in the model. The second 
one is a reflux produced in the engines when the driver cuts off traction power which yields 
negative flows (i.e. fuel return to the tank). This can be observed around mileposts 3, 57, 71 
and 83 km. Since a direct cause has not been found, the model considers this fuel detriment 
in the average fuel consumption during idling. 
 
 
3.3. Effect of the quality of the longitudinal profile data 
 
For simulations shown in previous sections, route vertical profile data has been obtained by 
means of a high accuracy GPS. This data has been further processed with the aid of 3D 
modelled land representations so as to achieve realistic gradient information at every 
evaluated point of the route. Nevertheless, it is often very difficult to have access to reliable 
data from the track layout, especially for new lines which are at an early design stage. In 
order to take into account this situation, the proposed model is tested for robustness, for 
which the vertical alignment is replaced by a more simple vertical profile. This vertical 
profile only considers the altitude of some relevant points, such as stations or significant 
gradient changes (from positive to negative and vice-versa). Gradient between two adjacent 
points is thus considered constant. This is likely the type of information the railway 
administrator provides to private operators so as to allow them to have a basic knowledge of 
the route they are operating. 
 
Under these conditions, Fig. 6 shows the simplified vertical profile for the Valencia-Utiel 
route, together with modelled, measured and maximum speed. Its respective numerical 
results are shown in Table 5. In this case, there are bigger discrepancies between modelled 
and measured speed profiles, particularly after milepost 55 km as the sinusoidal part of the 
layout begins. As a matter of fact, the rMSE for the speed increases from 3.7% to 7.4%. In 
this case, the relative error for total travel time diminishes, but this cannot be considered as 
a significant result since the cause is that some parts where the modelled speed is lower than 
the measured are cancelled with some others where the former is higher than the latter. 
Variations in fuel consumption are very small since the throttle positions from previous 
simulation are kept the same. These are produced by different instants the transmission 
switches gears. 
 



 

 

 
Fig. 6. Speed profile equivalent for Fig. 4 with a simplified longitudinal profile. 
 
 
3.4. Effect of distance step 
 
All the previous simulations have been performed using a distance step of 100 m, since it 
yields a good compromise between results accuracy and number of calculation steps so as 
to cover a certain distance. In order to test this, the same simulation carried out in section 
3.2 is now performed using a distance step of 20 m. The model performance parameters of 
Table 5 show that the rMSE for the speed has slightly decreased from 3.7% to 3.5%, whereas 
the rMSE for the fuel flow has moved from 4.0% to 3.3%. In overall terms, the relative error 
for total travel time is 0.07% and for total fuel consumption 0.37%. Although all the 
variables have improved, particularly the total travel time and fuel consumption, this 
improvement is not considered worthy if compared to the increment of calculus steps, which 
have risen from 850 to 4250. 
 
 ∆x = 100 m ∆x = 20 m 
Indicator Valencia-

Xàtiva 
Valencia-
Utiel 

Valencia-
Utiel 
simplified 
profile 

Valencia-
Utiel 

rMSE speed 0.90% 3.7% 7.4% 3.5% 
rMSE fuel 8.5% 4.0% 6.6% 3.3% 
relative error for travel time 0.43% 0.92% 0.66% 0.07% 
relative error for fuel consumption 4.1% 0.34% 0.50% 0.37% 

Table 5. Model performance parameters for the all the analysed routes and their 
variations. 
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3.5. Effect of the wind 
 
As commented before, whereas in the simulation for the Valencia-Xàtiva route no wind was 
considered, for the route between Valencia and Utiel, a wind of 30 km/h blowing in the 
opposite direction of the train’s movement between mileposts 5 and 30 km was detected. In 
order to further analyse the effect of wind in the total resistance and hence the speed profile, 
a stretch from the Valencia-Utiel route, between mileposts 5.5 and 26.1 km, has been 
selected, coinciding with two intermediate stops. This stretch corresponds to a relatively flat 
zone near Valencia where winds blowing up to 60 km/h eastwards and up to 30 km/h 
westwards are likely to occur. 
 
Fig. 7 shows the variation of speed profiles with the wind, assuming in all cases the same set 
of throttle positions (i.e. engine output power) at every point of the stretch. Differences about 
20 km/h arise between the most favourable and the most adverse scenarios. Furthermore, a 
wind speed of only 30 km/h may produce variations of 5 km/h in the train speed profile. This 
means that sometimes, a fine tuning of the simulator variables is worthless unless a good 
knowledge about the wind map of the zone is provided. This is of relevance when applying 
partial tractive effort, as it can be perceived from milepost 22 km onwards. If compared to 
the measured train speed, considering a wind speed of 30 km/h contributes to lower the speed 
rMSE from 2.3% to 0.8% with respect to not taking it into account for this analysed stretch. 
 

 
Fig. 7. Effect of wind in the speed profile. 
 
 

4. CONCLUSIONS 
 
A train simulation tool for hydrodynamic DMUs has been presented in this study. This tool 
is based on a dynamic model and a fuel consumption model. Both of them were previously 
calibrated and validated by means of an extensive fuel monitoring campaign on real train 
services. The dynamic model considers the train as a set of punctual masses, the different 
acting forces being applied over each of them. The model considers specific curvature 
resistance at every point of the layout, as well as wind speed and direction. 
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Simulations have been performed in two different routes, and the effect of varying the 
longitudinal profile and the distance step for calculations has been analysed. All simulations 
have yielded error adjustments under 9%, below the 20% threshold that stablishes a good 
adjustment between predicted and measured data. This includes the scenario of simplified 
longitudinal profile data, which only considers the altitudes at significant points such as 
stations and gradient changes and assumes constant gradients between those points. In 
addition, the consideration of wind contributes to improve the speed profile adjustment 
lowering the rMSE from 2.3% to 0.8%. The wind analysis further shows that a wind of 30 
km/h blowing in the opposite direction of the train’s movement may produce variations 
about +/- 5 km/h in the speed profile. 
 
Once the model has been validated, the results can be applied to any railway route to evaluate 
both the travel time and the fuel consumption produced by a DMU similar to the modelled 
one. This may be of interest for improving energy-saving driving styles and for the 
estimation of operational costs in new lines or new offered services. 
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