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THE CESÀRO OPERATOR ON POWER SERIES SPACES

ANGELA A. ALBANESE, JOSÉ BONET, AND WERNER J. RICKER

Dedicated to the memory of our friend Paweł Domański

Abstract. The discrete Cesàro operator C is investigated in the class of
power series spaces Λ0(α) of finite type. Of main interest is its spectrum,
which is distinctly different when the underlying Fréchet space Λ0(α) is
nuclear as for the case when it is not. Actually, the nuclearity of Λ0(α) is
characterized via certain properties of the spectrum of C. Moreover, C is
always power bounded, uniformly mean ergodic and, whenever Λ0(α) is
nuclear, also has the property that the range (I − C)m(Λ0(α)) is closed
in Λ0(α), for each m ∈ N.

1. Introduction

The Cesàro operator C, and some of its generalizations, have been in-
vestigated in many Banach sequence spaces and Banach spaces of analytic
functions. Some of these generalizations and certain unifying approaches to
them can be found in [11, 16, 28] and the references therein. The situation
when C acts in a Fréchet (locally convex) space is also of interest. The set-
ting of this paper is the discrete Cesàro operator C defined on the linear
space CN (consisting of all scalar sequences) by

Cx :=

(
x1,

x1 + x2

2
, . . . ,

x1 + . . .+ xn

n
, . . .

)
, x = (xn)n∈N ∈ CN.

The linear operator C is said to act in a vector subspace X ⊆ CN if it maps
X into itself. Two fundamental questions are: Is C : X → X continuous and,
if so, what is its spectrum? Amongst the classical Banach spaces X ⊆ CN

where precise answers are known we mention ℓp (1 < p < ∞), [12], [22], and
c0, [22], [27], both c, ℓ∞, [1], [22], as well as cesp, p ∈ {0} ∪ (1,∞), [13], the
Bachelis spaces Np, 2 ≤ p < ∞, [14], the spaces of bounded variation bv0,
[26], and bounded p-variation bvp, 1 ≤ p < ∞, [2], and the weighted Banach
spaces ℓp(w), 1 < p < ∞, [8], and c0(w), [9]. The behaviour of C (and other
Hausdorff operators) in the Fréchet space CN, and of its dual operator C′,
are known since the work of Hausdorff [20]; see also [18, 19, 28]. The discrete
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Cesàro operator C has also been studied in the Fréchet spaces ℓp+ := ∩q>pℓq,
[10]. There is no claim that this list of spaces (and references) is complete.

The aim of this paper is to investigate the behaviour of C in the class of
Fréchet sequence spaces consisting of the power series spaces of finite type
Λ0(α) ⊆ CN, where α = (αn)n is any positive sequence satisfying αn ↑ ∞
(see Section 2 for the definition). Such spaces play an important role in the
structure theory of Fréchet spaces, [24], [30], [31]. First, C : Λ0(α) → Λ0(α)

is always continuous (see Proposition 2.4), which is not necessarily the case
for power series spaces of infinite order. In Section 2 a detailed investigation
is made of the spectrum σ(C; Λ0(α)) and the point spectrum σpt(C; Λ0(α)) of
C : Λ0(α) → Λ0(α). A remarkable feature arises in this regard. It is known
that Λ0(α) is always a Fréchet Schwartz space but that it is nuclear if
and only if limn→∞

logn
αn

= 0. These facts are totally independent of the
Cesàro operator C. Nevertheless, certain spectral properties of C turn out
to characterize the nuclearity of Λ0(α). Indeed, with the notation Σ :=

{ 1
m
: m ∈ N} and Σ0 := {0} ∪Σ, the equivalence of the following assertions

is established (see Propositions 2.8 and 2.9 and Corollary 2.13), where we
recall that C : CN → CN always possesses an inverse operator (denoted by
C−1).

(i) Λ0(α) is nuclear.
(ii) C−1 : Λ0(α) → Λ0(α) is continuous, i.e., 0 ̸∈ σ(C; Λ0(α)).
(iii) σpt(C; Λ0(α)) = Σ.
(iv) σpt(C; Λ0(α)) \ {1} ̸= ∅.
(v) σ(C; Λ0(α)) = Σ.
(vi) σpt(C; Λ0(α)) = σ(C; Λ0(α)).

Remark 2.19 shows that always Σ ⊆ σ(C; Λ0(α)) ⊆
{
λ ∈ C :

∣∣λ− 1
2

∣∣ ≤ 1
2

}
.

On the other hand, if there exists a real number s ≥ 1 satisfying
∑∞

n=1
eαn

ns <

∞, then Λ0(α) fails to be nuclear and the inclusions

{1} ∪
{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ < 1

2

}
⊆ σ(C; Λ0(α)) ⊆

{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
hold; see Proposition 2.18. For αn := n, for n ∈ N, the space Λ0(α) is
isomorphic to the nuclear Fréchet space H(D) of all analytic functions on
the open unit disc D (with the topology of uniform convergence on compact
subsets of D). Our results imply, via different methods, the known fact that
σ(C;H(D)) = σpt(C;H(D)) = Σ; see [15, pp.65-68] and also [11].

Section 3 is devoted to mean ergodic properties of C : Λ0(α) → Λ0(α). In
Proposition 3.1 it is shown that C is always power bounded and uniformly
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mean ergodic. If Λ0(α) is nuclear, then the range (I −C)m(Λ0(α)) is always
closed in Λ0(α) for every m ∈ N (see Proposition 3.4).

2. Continuity and spectrum of C on Λ0(α)

Let X be a locally convex Hausdorff space (briefly, lcHs) and ΓX a sys-
tem of continuous seminorms determining the topology of X. The identity
operator on X is denoted by I and L(X) denotes the space of all con-
tinuous linear operators from X into itself. Let Ls(X) denote L(X) en-
dowed with the strong operator topology τs which is determined by the
seminorms T → qx(T ) := q(Tx), for each x ∈ X and q ∈ ΓX . More-
over, Lb(X) denotes L(X) equipped with the topology τb of uniform con-
vergence on bounded subsets of X which is determined by the seminorms
T → qB(T ) := supx∈B q(Tx), for each B ⊆ X bounded and q ∈ ΓX .

A sequence A = (ak)k of functions ak : N → [0,∞) is called a Köthe
matrix on N if 0 ≤ ak(n) ≤ ak+1(n) for all n ∈ N and k ∈ N, and if for each
n ∈ N there is k ∈ N with ak(n) > 0. The Köthe echelon space of order 0

associated to A is

λ0(A) := {x ∈ CN : lim
n

ak(n)xn = 0, ∀k ∈ N},

which is a Fréchet space relative to the increasing sequence of canonical
seminorms

q
(∞)
k (x) := sup

n∈N
ak(n)|xn|, x ∈ λ0(A), k ∈ N.

Then λ0(A) = ∩k∈Nc0(ak), with c0(ak) the usual weighted Banach space. The
space λ0(A) is given the projective limit topology, i.e., λ0(A) = projk∈Nc0(ak).
For the theory of the Köthe echelon spaces λp(A), 1 ≤ p ≤ ∞ or p = 0, see
[24].

Fix a sequence {rk}k∈N ⊆ (0, 1) satisfying limk→∞ rk = 1 with rk < rk+1

for all k ∈ N. Moreover, let α := {αn}n∈N ⊆ (1,∞) satisfy limn→∞ αn = ∞
with αn < αn+1 for all n ∈ N; we simply write αn ↑ ∞. For each k ∈ N define
wk : N → (0,∞) by wk(n) := (rk)

αn , for n ∈ N, in which case A = (wk)k

is a Köthe matrix. The power series space of finite type associated to α is
defined by

Λ0(α) :=
{
x ∈ CN : lim

n→∞
wk(n)|xn| = 0, ∀k ∈ N

}
,

and coincides with λ0(A) in the above notation. Then Λ0(α) = ∩k∈Nc0(wk)

and its Fréchet space lc-topology is generated by the increasing sequence of
norms

(2.1) pk(x) := sup
n∈N

wk(n)|xn|, x ∈ Λ0(α), k ∈ N.
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Remark 2.1. (i) The space Λ0(α) and its topology are independent of the
increasing sequence {rk}k∈N tending to 1. We always choose rk = e−1/k so
that wk(n) = e−αn/k, for all k, n ∈ N. Then wk ≤ wl on N whenever k ≤ l.

(ii) For each k ∈ N, the condition rk
rk+1

< 1 implies that
(

wk(n)
wk+1(n)

)
n
∈ c0

and so, for every α, the space Λ0(α) is Fréchet Schwartz, [24, Theorem 27.9,
Proposition 27.10], and hence, also Fréchet Montel.

(iii) Since Λ0(α) coincides with λ0(A) in the above notation, for the
matrix A = (wk)k, Proposition 28.16 in [24] yields that Λ0(α) is nuclear if
and only if Λ0(α) = λ2(A) = ∩k∈Nℓ2(wk), [24, Definition, p.326]. According
to [24, Proposition 29.6] we can conclude that Λ0(α) is a nuclear Fréchet
space if and only if limn→∞

logn
αn

= 0. Observe that power series spaces are
defined in Chapter 29 of [24] using ℓ2-norms. Examples of sequences αn ↑ ∞
such that Λ0(α) is not nuclear include αn := β log n, for n ∈ N and any fixed
β > 0, and αn := log(log n) for n > ee.

The nuclearity criterion limn→∞
logn
αn

= 0 will play a significant role later.
Recall that x = (xn)n ∈ CN belongs to the space s of rapidly decreasing
sequences if and only if (nkxn)n is a bounded sequence for each k ∈ N.

Lemma 2.2. Let 0 < r < 1 and let the sequence α satisfy αn ↑ ∞. The
strictly decreasing sequence w = (w(n))n, with w(n) := rαn, for n ∈ N,
satisfies w ∈ c0 and belongs to s if and only if limn→∞

logn
αn

= 0.

Proof. Set a := (1/r) > 1. Suppose limn→∞
logn
αn

= 0. For fixed k ∈ N we
have

nkrαn = exp

(
αn

(
k
log n

αn

− log a

))
, n ∈ N,

which tends to 0 for n → ∞ since log(a) > 0 with logn
αn

→ 0 and αn ↑ ∞. In
particular, (nkrαn)n ∈ c0 ⊆ ℓ∞. Since k ∈ N is arbitrary, w ∈ s.

Assume that w ∈ s. For each k ∈ N, it follows from the definition
of w that limn→∞(αn(log a) − k log n) = ∞. So, there is n(k) ∈ N such
that (αn(log a) − k log n) > k for n ≥ n(k). Given M > 0, select k ∈ N
with k > M(log a). Then, for n ≥ n(k), we have αn/ log n > M . Thus,
limn→∞

logn
αn

= 0. �

Remark 2.3. Let α be any sequence satisfying αn ↑ ∞. Define

(2.2) v(α) := inf{αn+1 − αn : n ∈ N}.

If v(α) > 0, then (2.2) implies limn→∞
logn
αn

= 0 by the Stolz-Cesàro criterion,
[25, Ch.3, Theorem 1.22].

(a) Whenever limn→∞(αn+1−αn) exists in (0,∞], then necessarily v(α) >

0.
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(b) For the sequence α given by α1 = 2 and, for each k ∈ N, by α2k = 3k

and α2k+1 = 2 + α2k, we have αn ↑ ∞ with (αn+1 − αn) ∈ {1, 2}, for all
n ∈ N. Note that the sequence (αn+1−αn)n is not convergent. On the other
hand, v(α) = 1.

(c) Set αn :=
√
n, for n ∈ N. Then αn ↑ ∞ with (αn+1 − αn) =

1√
n+1+

√
n
→ 0 for n → ∞, i.e., v(α) = 0. Nevertheless, it is still the case

that limn→∞
logn
αn

= 0.
(d) Let αn := β log(n + 1), for n ∈ N, with β > 0 fixed. Then αn ↑ ∞

with (αn+1 − αn) = β log
(
1 + 1

n+1

)
→ 0 for n → ∞, i.e., v(α) = 0. In this

case, limn→∞
logn
αn

= 1
β
> 0. In particular, Λ0(α) is not nuclear.

Proposition 2.4. Let α be any sequence with αn ↑ ∞. The Cesàro operator
C acts continuously on Λ0(α) and satisfies

(2.3) pk(Cx) ≤ pk(x), x ∈ Λ0(α),

for each k ∈ N, with {pk}k∈N being the norms in (2.1).

Proof. Since wk = (wk(n))n is decreasing, Corollary 2.3(i) in [9] implies that
C ∈ L(c0(wk)) and pk(Cx) ≤ pk(x), for x ∈ c0(wk) and k ∈ N. �

Let A = (ak)k be a Köthe matrix. Since λ0(A) = projkc0(ak) and λ0(A)

is dense in c0(ak) for each k ∈ N, the Cesàro operator C acts continuously
on λ0(A) if and only for each k ∈ N there exists l > k such that C : c0(al) →
c0(ak), acting between Banach spaces, is continuous. Applying [29, Theorem
4.51-C] and proceeding as in the proof of Proposition 2.2(i) in [9], this turns
out to be equivalent to the fact that for each k ∈ N there exists l > k such
that

sup
n

ak(n)

n

n∑
m=1

1

al(m)
< ∞.

If we take, for example, ak(n) = nk (in which case λ0(A) = s) or ak(n) = kn

for all n, k ∈ N, then the sequence
(

ak(n)
n

∑n
m=1

1
al(n)

)
n

is unbounded and
so C /∈ L(λ0(A)) for these Köthe matrices A. This is why we restrict our
attention to the operator C when acting on power series spaces Λ0(α) of
finite type.

Since Λ0(α) is Montel and C ∈ L(Λ0(α)), it follows that C is always a
Montel operator (i.e., maps bounded sets to relatively compact sets). Recall
that an operator T ∈ L(X), with X a Fréchet space, is compact if there
exists a neighbourhood U of 0 such that T (U) is relatively compact in X.

Proposition 2.5. For every sequence α satisfying αn ↑ ∞ the corresponding
Cesàro operator C ∈ L(Λ0(α)) fails to be compact.
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Proof. Suppose C is compact. Then there is k ∈ N such that C : c0(wk) →
c0(wl) is compact for all l > k, as a linear map between Banach spaces.
In particular, C : c0(wk) → c0(wk+1) is compact. Since c0(wk+1) ⊆ c0(wk)

continuously (via the identity map), it follows C ∈ L(c0(wk)) is compact.
By Proposition 3.9 of [9] the weight wk ∈ s. Hence, via Lemma 2.2 with
r = rk, we have limn→∞

logn
αn

= 0, i.e., Λ0(α) is nuclear.
Since C : c0(wk) → c0(w2k) is compact, Proposition 2.2 of [9] yields that

(2.4) sup
n∈N

Ak(n) := sup
n∈N

w2k(n)

n

n∑
m=1

1

wk(m)
< ∞.

But, for each n ∈ N we have

Ak(n) =
exp(−αn/2k)

n

n∑
m=1

eαm/k ≥ 1

n
exp(−αn/2k) exp(αn/k) = epαn−logn

with p = 1
2k

. Since limn→∞
logn
αn

= 0, there exists N ∈ N such that (pαn −
log n) ≥ pαn

2
for all n ≥ N . Accordingly, Ak(n) ≥ epαn/2, for n ≥ N , which

contradicts (2.4). So, C ∈ L(Λ0(α)) cannot be compact. �

Remark 2.6. Even though C ∈ L(Λ0(α)) is never compact, there do exist α
satisfying αn ↑ ∞, even with Λ0(α) nuclear, such that C : c0(wk) → c0(wk) is
compact for every k ∈ N. Indeed, fix any 0 < β < 1 and set αn :=

∑n
k=1

1
kβ

for n ∈ N. Then 1 < αn < αn+1 with αn ↑ ∞. The Stolz-Cesàro criterion
implies limn→∞

logn
αn

= 0, i.e., Λ0(α) is nuclear. Fix 0 < r < 1 and set
w(n) := rαn for n ∈ N. The Stolz-Cesàro criterion implies

lim
n→∞

w(n)

n

n∑
m=1

1

w(m)
= lim

n→∞

rαn

n

n∑
m=1

r−αm = 0.

By [9, Corollary 2.3(ii)], C ∈ L(c0(w)) is compact. In particular, C ∈
L(c0(wk)) is compact for every k ∈ N.

For a lcHs X and T ∈ L(X), the resolvent set ρ(T ) of T consists of all λ ∈
C such that R(λ, T ) := (λI−T )−1 exists in L(X). The set σ(T ) := C\ρ(T ) is
called the spectrum of T . The point spectrum σpt(T ) of T consists of all λ ∈ C
such that (λI − T ) is not injective. If we need to stress the space X, then
we write σ(T ;X), σpt(T ;X) and ρ(T ;X). Given λ, µ ∈ ρ(T ) the resolvent
identity R(λ, T )−R(µ, T ) = (µ−λ)R(λ, T )R(µ, T ) holds. Unlike for Banach
spaces, it may happen that ρ(T ) = ∅ or that ρ(T ) is not open. This is why
some authors prefer the subset ρ∗(T ) of ρ(T ) consisting of all λ ∈ C for
which there exists δ > 0 such that B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T )

and {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous in L(X). The advantage of
ρ∗(T ), whenever it is non-empty, is that it is open and the resolvent map
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R : λ 7→ R(λ, T ) is holomorphic from ρ∗(T ) into Lb(X), [5, Proposition 3.4].
Define σ∗(T ) := C\ρ∗(T ), which is a closed set containing σ(T ). If T ∈ L(X)

with X a Banach space, then σ(T ) = σ∗(T ). In [5, Remark 3.5(vi), p.265]
a continuous linear operator T on a Fréchet space X is presented such that
σ(T ) ⊂ σ∗(T ) properly. We now turn our attention to the spectrum of
C ∈ L(Λ0(α)).

The Cesàro matrix C, when acting in CN, is similar to the diagonal ma-
trix diag(( 1

n
)n). Indeed, C = ∆diag(( 1

n
)n)∆, with ∆ = ∆−1 = (∆n,k)n,k∈N ∈

L(CN) the lower triangular matrix where, for each n ∈ N, ∆n,k = (−1)k−1
(
n−1
k−1

)
,

for 1 ≤ k ≤ n and ∆n,k = 0 if k > n, [19, pp. 247-249]. The dual
operator C′ acts on the (row) vector space φ of all finitely supported se-
quences via x′ → x′∆′diag(( 1

n
)n)∆

′. Thus both operators have point spec-
trum Σ and each eigenvalue 1

n
has multiplicity 1 with eigenvector ∆en (resp.

e′n∆
′), for n ∈ N. Moreover, λI − C (resp. λI − C′) is invertible for each

λ ∈ C\Σ. If X is a lcHs continuously contained in CN and C(X) ⊆ X, then
σpt(C;X) = { 1

n
: n ∈ N, ∆en ∈ X}. In case φ is densely contained in X,

then φ ⊆ X ′ and Σ ⊆ σpt(C
′;X ′) ⊆ σ(C;X). These comments imply the

following result; observe that always ∆e1 = 1 := (1)n∈N ∈ Λ0(α).

Lemma 2.7. Let α be any sequence with αn ↑ ∞. Then 1 ∈ σpt(C; Λ0(α)) ⊆
Σ and Σ ⊆ σ(C; Λ0(α)).

Proposition 2.8. For α with αn ↑ ∞ the following assertions are equiva-
lent.

(i) Λ0(α) is nuclear.
(ii) limn→∞

logn
αn

= 0.
(iii) σpt(C; Λ0(α)) = Σ.
(iv) σpt(C; Λ0(α)) \ {1} ̸= ∅.

Proof. (i)⇔(ii). See Remark 2.1(iii).
(ii)⇒(iii). Since limn→∞

logn
αn

= 0, Lemma 2.2 implies that wk ∈ s for
all k ∈ N. Hence, {(nm−1)n∈N : m ∈ N} ⊆ Λ0(α). Therefore each vector
x(m) := ∆em, m ∈ N (i.e. x(m)

n = 0 for 1 ≤ n < m and x
(m)
n = (−1)m(n−1)!

(m−1)!(n−m)!
for

n ≥ m), being an eigenvector of C ∈ L(CN) corresponding to the eigenvalue
1
m

, belongs to Λ0(α); see the comments prior Lemma 2.7 and [9, Proposition
2.6]. This shows Σ ⊆ σpt(C; Λ0(α)). Equality now follows from Lemma 2.7.

(iii)⇒(iv). Obvious.
(iv)⇒(ii). Let λ ̸= 1 belong to σpt(C; Λ0(α)) ⊆ Σ; see Lemma 2.7. Then

λ = 1
m

for some m ∈ N\{1}. Moreover, (nm−1)n ∈ Λ0(α); see the proof of (ii)
⇒ (iii) above from which it is clear that (nm−1)n∈N behaves asymptotically
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like ∆em. Since (m − 1) > 0, given ε > 0 select k ∈ N satisfying 2
k(m−1)

<

ε. Recall wk(n) = e−αn/k for all n ∈ N. So, there is Mk > 1 such that
nm−1e−αn/k ≤ Mk for each n ∈ N. Hence, (m− 1) log(n) ≤ log(Mk)+

αn

k
for

n ∈ N. This implies
log n

αn

≤ logMk

m− 1
· 1

αn

+
1

k(m− 1)
, n ∈ N.

On the other hand, since αn ↑ ∞ there exists n0 ∈ N such that logMk

αn
< 1

k

for all n ≥ n0. It follows that logn
αn

≤ 2
k(m−1)

< ε, for n ≥ n0, which implies
(ii). �

Proposition 2.9. For α with αn ↑ ∞ the following assertions are equiva-
lent.

(i) 0 ̸∈ σ(C; Λ0(α)).
(ii) For each k there exists l > k such that supn(log(n)−( 1

k
− 1

l
)αn) < ∞.

(iii) Λ0(α) is nuclear.

Proof. (i)⇒(ii). Suppose that 0 ̸∈ σ(C; Λ0(α)), i.e., the inverse operator
C−1 : CN → CN, given by y = (yn)n∈N 7→ C−1(y) = (nyn − (n − 1)yn−1)n∈N,
with y0 := 0, is continuous on Λ0(α). In view of (2.1) this holds if and only
if

(2.5) ∀k ∃l > k ∃D > 0 : sup
n

wk(n)|nyn − (n− 1)yn−1| ≤ D sup
n

wl(n)|yn|,

for all y ∈ Λ0(α). Given n ∈ N, set y = en to be the n-th canonical basis
vector of Λ0(α). Then (2.5) yields nwk(n) = max{nwk(n), nwk(n + 1)} ≤
Dwl(n). Since n ∈ N is arbitrary, by taking logarithms we have shown that

∀k ∃l > k ∃D > 1 ∀n : log(n)−
(
1

k
− 1

l

)
αn ≤ logD,

which is precisely the condition stated in (ii).
(ii)⇒(i). Recall that wk(n) = exp(−αn/k) for all n, k ∈ N. Fix now

k ∈ N. Then there exist l > k and M > 0 with log n ≤ ( 1
k
− 1

l
)αn + M

for each n ∈ N. Hence, nwk(n) ≤ eMwl(n) for each n ∈ N. Since wk is
decreasing, this implies, for every y ∈ Λ0(α) and n ∈ N, that

wk(n)|nyn − (n− 1)yn−1| ≤ nwk(n)|yn|+ (n− 1)wk(n)|yn−1|

≤ nwk(n)|yn|+ (n− 1)wk(n− 1)|yn−1| ≤ 2eM sup
n

wl(n)|yn|.

Hence, (2.5) is satisfied and so C−1 is continuous on Λ0(α), i.e., 0 ̸∈ σ(C; Λ0(α)).
(iii)⇒(ii). Observe, for any given k ∈ N, that

log(n)−
(
1

k
− 1

k + 1

)
αn = αn

(
log n

αn

− 1

k(k + 1)

)
, n ∈ N.
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Since Λ0(α)) is nuclear, limn→∞
logn
αn

= 0 and so
(

logn
αn

− 1
k(k+1)

)
< 0 for all

n large enough. Hence, the condition stated in (ii) follows for l := (k + 1).
(ii)⇒(iii). Fix k ∈ N. Then there exist l > k and M > 0 with

log(n) ≤
(
1

k
− 1

l

)
αn +M <

αn

k
+M, n ∈ N.

Hence, logn
αn

< 1
k
+ M

αn
, for n ∈ N. Since M

αn
→ 0, there exists n0 ∈ N such that

logn
αn

< 2
k
, for n ≥ n0. The arbitrariness of k in N yields that limn→∞

logn
αn

= 0.
Hence, the condition stated in (iii) follows. �

The formal operator of differentiation acts on CN via

D(x1, x2, x3, ...) := (x2, 2x3, 3x4, ...), x = (x1, x2, x3, ...) ∈ CN.

The inverse operator C−1 of C then coincides with the formal differential
operator (1 − Z)(1 + ZD(Z)) on the algebra of all formal power series Z.
The referee suggested there should be a connection between the nuclearity
of Λ0(α) and the continuity of D on Λ0(α). The following result and Remark
2.11 address this point. Recall that Λ0(α) is shift stable if lim supn→∞

αn+1

αn
<

∞, [32].

Proposition 2.10. For α with αn ↑ ∞ the following assertions are equiv-
alent.

(i) The differentiation operator D : Λ0(α) → Λ0(α) is continuous.
(ii) For each k there exist l > k and M > 0 such that

(2.6) nwk(n) ≤ Mwl(n+ 1), n ∈ N

(iii) Λ0(α) is both nuclear and shift stable.

Proof. (i)⇒(ii). If D : Λ0(α) → Λ0(α) is continuous, then for each k there
exist l > k and M > 0 such that supn wk(n)|(Dx)n| ≤ M supn wl(n)|xn|, for
each x ∈ Λ0(α). Select x := ej, for j ≥ 2. Since Dej = jej−1, it follows that
jwk(j − 1) ≤ Mwl(j) for each j ≥ 2,. This implies (ii).

(ii)⇒(i). Given k, select l and M > 0 via (ii). For x ∈ Λ0(α), n ∈ N we
have

wk(n)|(Dx)n| = wk(n)n|xn+1| ≤ Mwl(n+ 1)|xn+1| ≤ Mpl(x), n ∈ N,

that is, pk(Dx) ≤ Mpl(x). This shows that D ∈ Λ0(α).
(i)⇒(iii). Fix k ∈ N. According to (2.6) there exist l > k and M > 1

such that ne−αn/k ≤ Me−αn+1/l ≤ Me−αn/l, for n ∈ N. Taking logarithms
implies the inequality log(n)−

(
1
k
− 1

l

)
αn ≤ log(M), for ∈ N. According to

Proposition 2.9 the space Λ0(α) must be nuclear.
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For k = 1, choose l > k and M̃ > 1 to satisfy (2.6), i.e., ne−αn ≤
M̃e−αn+1/l for n ∈ N. With β := log(M̃) it follows that log(n) − αn ≤
β− αn+1

l
which yields the inequality αn+1

αn
≤ l+ βl

αn
− log(n)

αn
l, for n ∈ N. Since

limn→∞
log(n)
αn

= 0, we see that lim supn→∞
αn+1

αn
< ∞, that is, Λ0(α) is shift

stable.
(iii)⇒(ii). Fix k ∈ N. Choose l > k and R > 1 with log(n)−

(
1
k
− 1

l

)
αn ≤

R, for n ∈ N; see Proposition 2.9. With M := eR it follows that nwk(n) ≤
Mwl(n) for n ∈ N. Since Λ0(α) is shift stable, there is s ∈ N such that
αn+1 ≤ sαn for n ∈ N, which implies that wl(n) ≤ wsl(n + 1) for n ∈ N.
Accordingly, with L := sl we have nwk(n) ≤ MwL(n+1) for n ∈ N. So, (ii)
satisfied. �

Remark 2.11. There exist nuclear spaces Λ0(α) such that D is not con-
tinuous on Λ0(α). Indeed, let αn := nn for n ∈ N. Then Λ0(α) is nuclear
but, not shift stable. Proposition 2.10 implies that D ̸∈ L(Λ0(α)). On the
other hand, for αn := log(n), n ∈ N, the space Λ0(α) is shift stable but, nut
nuclear; again D ̸∈ L(Λ0(α)).

Proposition 2.12. Let α be any sequence with αn ↑ ∞.

(i) Suppose that Λ0(α) is nuclear. Then

σ(C; Λ0(α)) = σpt(C; Λ0(α)) = Σ.

(ii) If, in addition to Λ0(α) being nuclear, also v(α) > 0, then

σ∗(C; Λ0(α)) = σ(C; Λ0(α)) = Σ0.

Proof. (i) By Proposition 2.8 we have Σ = σpt(C; Λ0(α)). Thus, Σ ⊆ σ(C; Λ0(α)).
Moreover, 0 /∈ σ(C; Λ0(α)) by Proposition 2.9. It remains to verify that
λ /∈ σ(C; Λ0(α)) for each λ /∈ Σ0. The proof follows the lines of that of
Theorem 3.4, Step 4, in [9]. Fix λ ∈ C \ Σ0, in which case λ ∈ ρ(C;CN).
We recall the formula for the inverse operator (C − λI)−1 : CN → CN, [27,
p.266]. For n ∈ N the n-th row of the matrix for (C− λI)−1 has the entries

−1

nλ2
∏n

k=m

(
1− 1

λk

) , 1 ≤ m < n,

n

1− nλ
=

1
1
n
− λ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(2.7) (C− λI)−1 = Dλ −
1

λ2
Eλ,
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where the diagonal operator Dλ = (dnm)n,m∈N is given by dnn := 1
1
n
−λ

and
dnm := 0 if n ̸= m. The operator Eλ = (enm)n,m∈N is then the lower tri-
angular matrix with e1m = 0 for all m ∈ N, and for every n ≥ 2 with
enm := 1

n
∏n

k=m(1− 1
λk)

if 1 ≤ m < n and enm := 0 if m ≥ n.

Since λ ̸∈ Σ0, it follows from (2.1) that Dλ ∈ L(Λ0(α)). By (2.7) it re-
mains to show that Eλ ∈ L(CN) maps Λ0(α) continuously into Λ0(α). To
this end we observe, for every k ∈ N, that c0(wk) is isometrically isomor-
phic to c0 via the linear multiplication operator Φk : c0(wk) → c0 given by
Φk(x) := (wk(n)xn)n, for x = (xn)n ∈ c0(wk). If we can show that Eλ maps
c0(wk+1) into c0(wk) continuously, for all k ∈ N, then Eλ will map Λ0(α) into
itself continuously. So, it suffices to show that Ẽλ,k := ΦkEλΦ

−1
k+1 ∈ L(c0)

for all k ∈ N.
Fix k ∈ N. Now, Ẽλ,k is the restriction to c0 of the operator on CN given

by

(Ẽλ,k(x))n = wk(n)
n−1∑
m=1

enm
wk+1(m)

xm, x ∈ CN, n ∈ N,

with (Ẽλ,k(x))1 := 0. Observe that Ẽλ,k = (ẽ
(k)
nm)n,m∈N is the lower triangular

matrix given by ẽ
(k)
1m = 0 for m ∈ N and ẽ

(k)
nm = wk(n)

wk+1(m)
enm for n ≥ 2

and m ∈ N. So, we need to verify that Ẽλ,k ∈ L(c0). To prove this, set
α := Re

(
1
λ

)
. Since λ ∈ C \Σ0, by both Lemma 3.3 and the proof of Step 4

in the proof of Theorem 3.4 in [9] there exist c > 0 and C > 0 such that
c

n1−α
≤ |en1| ≤

C

n1−α
, n ≥ 2,(2.8)

c

n1−αmα
≤ |enm| ≤

C

n1−αmα
, 2 ≤ m < n.(2.9)

So, by [29, Theorem 4.51-C] to prove that Ẽλ,k ∈ L(c0) we need to verify,
for each k ∈ N, that the following two conditions are satisfied:

(a) limn→∞ ẽ
(k)
nm = 0, for each m ∈ N and

(b) supn∈N
∑∞

m=1 |ẽ
(k)
nm| < ∞.

First observe that (2.8) and (2.9) imply for every m, n ∈ N that

|ẽ(k)nm| =
wk(n)

wk+1(m)
|enm| ≤ C ′

m

rαn
k

n1−α
.

But, for each fixed m ∈ N, we have via Lemma 2.2 that rαn
k

n1−α → 0 for n → ∞
and hence, condition (a) is satisfied.

Next, fix k ∈ N. Then (2.8) and (2.9) imply, for every n ∈ N, that

(2.10)
∞∑

m=1

|ẽ(k)nm| =
n−1∑
m=1

wk(n)

wk+1(m)
|enm| ≤ C

1

n

n−1∑
m=1

rαn
k

rαm
k+1

nα

mα
.
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Suppose first that α < 1. Since 0 < rk+1 < 1 and (αn)n is an increasing
sequence, we have rαm

k+1 ≥ rαn
k+1 for n ∈ N and m = 1, . . . , n − 1, and so

rαn
k

rαm
k+1

≤
(

rk
rk+1

)αn

< 1 for n ∈ N and m = 1, . . . , n − 1. It follows for every
n ∈ N that
(2.11)

1

n

n−1∑
m=1

rαn
k

rαm
k+1

nα

mα
≤ 1

n

n−1∑
m=1

nα

mα
≤ 1

n1−α

n−1∑
m=1

1

mα
≤ max

{
1,

1

1− α

}
< ∞

whenever α < 1; see the proof of Corollary 3.6 in [9]. So, (2.10) and (2.11)
ensure that condition (b) is surely satisfied if α < 1.

Consider now α ≥ 1. Then, for every n ∈ N, we have (as 1
rk+1

> 0) that

1

n

n−1∑
m=1

rαn
k

rαm
k+1

nα

mα
= nα−1rαn

k

n−1∑
m=1

(
1

rk+1

)αm 1

mα

≤ nα−1rαn
k (n− 1)

(
1

rk+1

)αn

≤ nα

(
rk
rk+1

)αn

.(2.12)

But, by Lemma 2.2, nα
(

rk
rk+1

)αn

→ 0 for n → ∞ (because 0 < rk
rk+1

< 1

and logn
αn

→ 0 for n → ∞ via Remark 2.1(iii)). So, (2.10) and (2.12) ensure
that condition (b) is also satisfied if α ≥ 1.

(ii) According to part (i), σ(C; Λ0(α)) = Σ. For k ∈ N fixed, wk(n+1)
wk(n)

=

r
αn+1−αn

k ≤ r
v(α)
k for all n ∈ N. Hence,

lim sup
n

wk(n+ 1)

wk(n)
≤ r

v(α)
k < 1.

It follows from [9, Proposition 2.7] that σ(C; c0(wk)) = Σ0. Accordingly,

∪k∈Nσ(C; c0(wk)) = Σ0 = Σ = σ(C; Λ0(α)).

Now [10, Lemma 2.1] implies that σ∗(C; Λ0(α)) = σ(C; Λ0(α)) = Σ0. �

Corollary 2.13. For α with αn ↑ ∞ the following assertions are equivalent.

(i) Λ0(α) is nuclear.
(ii) σ(C; Λ0(α)) = σpt(C; Λ0(α)).
(iii) σ(C; Λ0(α)) = Σ.

Proof. (i)⇒(ii). This is part of Proposition 2.12(i).
(ii)⇒(i). The equality in (ii) together with Lemma 2.7 imply that Σ ⊆

σpt(C; Λ0(α)) and hence, by Proposition 2.8, the space Λ0(α) is nuclear.
(i)⇒(iii). Clear from Proposition 2.12(i).
(iii)⇒(i). The equality in (iii) implies that 0 ̸∈ σ(C; Λ0(α)) and so Λ0(α)

is nuclear; see Proposition 2.8. �
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The identity C = ∆diag(( 1
n
)n)∆ holds in L(CN) with all three operators

continuous; see the discussion prior to Lemma 2.7. For every sequence αn ↑
∞, both of the operators C and diag(( 1

n
)n) also belong to L(Λ0(α)). Since

the columns {∆en : n ∈ N} of ∆ are the distinct eigenvectors of C ∈ L(CN),
it follows from the discussion prior to Lemma 2.7 and Corollary 2.13 that a
necessary condition for ∆ to act in Λ0(α) is the nuclearity of Λ0(α). However,
this condition alone is not sufficient for the continuity of ∆.

Proposition 2.14. Let Λ0(α) be nuclear. The following assertions are equiv-
alent.

(i) ∆ : Λ0(α) → Λ0(α) is continuous.
(ii) For each k ∈ N there exists l ≥ k such that

(2.13) sup
n

n∑
m=1

wk(n)

wl(m)

(
n− 1

m− 1

)
< ∞.

(iii) limn→∞
n
αn

= 0.

Proof. (i)⇔(ii). By definition ∆ ∈ L(Λ0(α)) if and only if for each k ∈ N
there exists l ≥ k such that ∆ : c0(wl) → c0(wk) is continuous. Since the
linear map Φm : x = (xn)n∈N 7→ (wm(n)xn)n∈N is an isometric isomorphism
from the weighted Banach space c0(wm) onto c0, for each m ∈ N, it follows
that ∆ : c0(wl) → c0(wk) is continuous if and only if Tk,l : c0 → c0 is
continuous, where Tk,l := Φk∆Φ−1

l is given by the lower triangular matrix
Tk,l = (tn,m)n,m∈N with |tn,m| = wk(n)

wl(m)

(
n−1
m−1

)
for 1 ≤ m ≤ n and tn,m = 0

otherwise. By Theorem 4.51-C of [29], Tk,l ∈ L(c0) if and only if both
limn→∞ |tn,m| = 0 for each m ∈ N (which is equivalent to the nuclearity of
Λ0(α)) and that (2.13) is satisfied.

(ii)⇒(iii). Fix k ∈ N and select l ≥ k to satisfy (2.13). Then there is
Rk > 1 such that

wk(n)
n∑

m=1

(
n− 1

m− 1

)
1

wl(m)
≤ Rk, n ∈ N.

Since 1
wl(m)

> 1 for all m, l ∈ N and
∑n

m=1

(
n−1
m−1

)
= 2n−1, it follows that

2n−1e−αn/k = 2n−1wk(n) ≤ wk(n)
n∑

m=1

(
n− 1

m− 1

)
1

wl(m)
≤ Rk, n ∈ N.

Via the identity 2n−1e−αn/k = exp
(
(n− 1) log(2)− αn

k

)
this inequality can

be solved to yield
n

αn

≤
(
1 +

log(Rk)

log(2)

)
1

αn

+
1

k log(2)
, n ∈ N,

which implies that limn→∞
n
αn

.



14 A.A. ALBANESE, J. BONET, AND W.J. RICKER

(iii)⇒(ii). Fix k ∈ N and set l := 2k. Since wl is decreasing and wk(n)
w2k(n)

=

e−αn/2k we have, for each n ∈ N, that
n∑

m=1

wk(n)

wl(m)

(
n− 1

m− 1

)
≤ wk(n)

w2k(n)

n∑
m=1

(
n− 1

m− 1

)
≤ e−αn/2k2n

= exp

(
αn

(
n log(2)

αn

− 1

2k

))
.

It is then clear from αn ↑ ∞ and limn→∞
n log(2)

αn
= 0 that the left-side of

the previous inequality converges to 0 for n → ∞. In particular, (2.13) is
satisfied. �

Remark 2.15. (i) For each β > 0 consider αβ(n) := nβ, for n ∈ N.
Then limn→∞

log(n)
αβ(n)

= 0 and so Λ0(αβ) is nuclear for every β > 0. But,
limn→∞

n
αβ(n)

= 0 if and only if β > 1, i.e., ∆ ∈ L(Λ0(αβ)) if and only if
β > 1.

(ii) The continuity of the operators ∆ and D in Λ0(α) is unrelated.
Indeed, D is continuous on Λ0(αβ) for every β ∈ (0, 1) whereas ∆ is not. On
the other hand, by Proposition 2.14, ∆ is continuous on Λ0(α) for αn := nn,
n ∈ N, but D fails to be continuous on this space; see Remark 2.11.

Recall that wk(n) = e−αn/k for k, n ∈ N. In order to formulate the
following results, given a sequence α with αn ↑ ∞ define

(2.14) Sk(α) :=

{
s ∈ R :

∞∑
n=1

1

nswk(n)
=

∞∑
n=1

eαn/k

ns
< ∞

}
, k ∈ N.

It follows from (2.14) and wk ≤ wk+1 that Sk(α) ⊆ Sk+1(α) for all k ∈ N.
If Sk0(α) ̸= ∅ for some k0 ∈ N, then Sk(α) ̸= ∅ for all k ≥ k0 and we
define s0(k) := inf Sk(α), in which case s0(k) ≥ s0(k + 1) for all k ≥ k0.
Moreover, s0(k) ≥ 1 for all k ≥ k0; see the inequality (3.1) in [9]. Observe
that αn = β log n, for β > 0, satisfies S1(α) = (1 + β,∞) ̸= ∅.

Lemma 2.16. For any sequence α with αn ↑ ∞ the following assertions
hold.

(i) Sk(α) ̸= ∅ for some k ∈ N if and only if Sk(α) ̸= ∅ for every k ∈ N.
(ii) If S1(α) ̸= ∅, then Λ0(α) is not nuclear and s0(α) := infk∈N s0(k) = 1.

Proof. (i) Suppose that Sk(α) ̸= ∅ for some k ∈ N. From the discussion
prior to the lemma it is clear that Sr(α) ̸= ∅ for all r ≥ k. If k = 1, then
Sr(α) ̸= ∅ for every r ∈ N. So, assume that k ≥ 2. According to (2.14) there
exists t ≥ 1 satisfying

∑∞
n=1

eαn/k

nt < ∞ and hence, for some n0 ∈ N, we
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have eαn/k

nt ≤ 1, for n ≥ n0. Since xβ ≤ x for every x ∈ [0, 1] and β > 1, it
follows that

eαn/(k−1)

ntk/(k−1)
=

(
eαn/k

nt

)k/(k−1)

≤ eαn/k

nt
, n ≥ n0.

So,
∑∞

n=1
eαn/(k−1)

ntk/(k−1) < ∞ which shows that tk
(k−1)

∈ Sk−1(α), i.e., Sk−1(α) ̸= ∅.
This argument can be repeated (k − 1) times to conclude Sr(α) ̸= ∅ for all
1 ≤ r < k. Hence, Sr(α) ̸= ∅ for every r ∈ N. The converse is obvious.

(ii) If Λ0(α) is nuclear, then Lemma 2.2 implies that w1 ∈ s and hence,
S1(α) = ∅, [9, Proposition 3.1(iii)]. This contradicts the hypothesis that
S1(α) ̸= ∅ and so Λ0(α) is not nuclear. Since S1(α) ̸= ∅, there exists t ≥ 1

satisfying
∑∞

n=1
eαn

nt < ∞. In particular, there exists n0 ∈ N such that
eαn ≤ nt for all n ≥ n0. Fix any ε > 0 and select k0 ∈ N satisfying t

k0
< ε

2
.

Then it follows, for every k ≥ k0 and n ≥ n0, that e
αn
k < n

t
k . This yields,

for every k ≥ k0, that
∞∑

n=n0

1

n
t
k
+1+ ε

2wk(n)
=

∞∑
n=n0

e
αn
k

n
t
k
+1+ ε

2

≤
∞∑

n=n0

1

n1+ ε
2

< ∞.

Accordingly, t
k
+1+ ε

2
∈ Sk(α) for all k ≥ k0 and hence, 1 ≤ s0(k) ≤ t

k
+1+ ε

2

for all k ≥ k0. But, t
k
+1+ ε

2
< 1+ ε and so 1 ≤ s0(k) < 1+ ε for all k ≥ k0.

Since ε > 0 is arbitrary, this implies that s0(α) = limk→∞ s0(k) = 1. �

Remark 2.17. There exists α with αn ↑ ∞ for which S1(α) = ∅ but,
Λ0(α) is not nuclear. Indeed, let (j(k))k∈N ⊆ N be the sequence given by
j(1) := 1 and j(k + 1) := 2(k + 1)(j(k))k, for k ≥ 1. Observe that
j(k+1) > k(j(k))k +1 for all k ∈ N. Define β = (βn)n∈N via βn := k(j(k))k

for n = j(k), . . . , j(k+1)− 1. Then β is non-decreasing with βn → ∞. The
claim is that

(2.15)
∞∑
n=1

βn

nt
= ∞, t ∈ R.

To see this, fix t ∈ R and choose k ∈ N satisfying k > t. Then βj(k)

(j(k))t
=

k(j(k))k

(j(k))t
= k(j(k))k−t ≥ k for all k ∈ N and so the subsequence (

βj(k)

(j(k))t
)k∈N of

(βn

nt )n∈N satisfies supk∈N
βj(k)

(j(k))t
= ∞. In particular,

∑∞
n=1

βn

nt = ∞. Moreover,

(2.16) lim
n→∞

log n

log βn

̸= 0.

Indeed, this follows immediately from the fact that, for every k > 1, we
have

log(j(k + 1))− 1)

log βj(k+1)−1

=
log(j(k + 1))− 1)

log(k(j(k))k)
>

log(k(j(k))k)

log(k(j(k))k)
= 1.
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Next, let γ = (γn)n∈N be any strictly increasing sequence satisfying 2 < γn ↑
3. Define αn := log(βn+γn), for n ∈ N. Then 1 < αn ↑ ∞. The claim is that
S1(α) = ∅ and limn→∞

logn
αn

̸= 0. To see this fix t ∈ R. Then (2.15) implies
that

∞∑
n=1

eαn

nt
=

∞∑
n=1

βn + γn
nt

≥
∞∑
n=1

βn

nt
= ∞,

that is, t ̸∈ S1(α). Accordingly, S1(α) = ∅. On the other hand, for all n > 1

we have (βn + γn) < (βn + 3) and so
log n

log(βn)
>

log n

αn

=
log n

log(βn + γn)
>

log n

log(βn + 3)
.

But, logn
log(βn+3)

≃ logn
log βn

for n → ∞ and hence, by (2.16), it follows that
limn→∞

logn
αn

̸= 0. In particular, Λ0(α) cannot be nuclear; see Proposition
2.8.

For each r ≥ 1, define the open disc D(r) :=
{
λ ∈ C :

∣∣λ− 1
2r

∣∣ < 1
2r

}
.

Proposition 2.18. Let α satisfy αn ↑ ∞ and S1(α) ̸= ∅. Then

(2.17) D(1) ∪ {1} = ∪k∈ND(s0(k)) ∪ Σ ⊆ σ(C; Λ0(α))

and also

(2.18) σ(C; Λ0(α)) ⊆ ∪k∈Nσ(C; c0(wk)) ⊆ D(1).

In particular,

(2.19) σ∗(C; Λ0(α)) = σ(C; Λ0(α)) = D(1).

Proof. Lemma 2.16(ii) yields s0(α) = 1. By Lemma 2.7, Σ ⊆ σ(C; Λ0(α)).
Fix k ∈ N and let λ ∈ C\Σ satisfy

∣∣∣λ− 1
2s0(k)

∣∣∣ < 1
2s0(k)

, i.e., λ ∈ D(s0(k))\Σ.

For any y1 ∈ C \ {0} define y ∈ CN \ {0} by yn+1 := y1
∏n

m=1

(
1− 1

λm

)
for

n ∈ N. It is shown in the proof of Step 1 in the proof of [9, Proposition
3.7] that y ∈ ℓ1(w

−1
k ) = c0(wk)

′ satisfies C′
ky = λy, where C′

k is the dual
operator of the Cesàro operator Ck : c0(wk) → c0(wk). For z ∈ Λ0(α) ⊆
c0(wk) the vector (C − λI)z, with C ∈ L(Λ0(α)), belongs to c0(wk). Since
y ∈ c0(wk)

′ ⊆ Λ0(α)
′, it follows that ⟨(C − λI)z, y⟩ = ⟨(Ck − λI)z, y⟩ =

⟨z, (C′
k − λI)y⟩ = 0. Therefore ⟨u, y⟩ = 0 for every u ∈ Im(C− λI) ⊆ Λ0(α)

with y ∈ Λ0(α)
′ \ {0}. Then (C − λI) ∈ L(Λ0(α)) cannot be surjective

and hence, λ ∈ σ(C; Λ0(α)). This shows that D(s0(k)) \ Σ ⊆ σ(C; Λ0(α))

and hence, Σ ∪D(s0(k)) ⊆ σ(C; Λ0(α)). Since k ∈ N is arbitrary and 1
2s0(α)

(with s0(α) = 1) is the limit of the increasing sequence {1/2s0(k)}k∈N, this
establishes (2.17).

The first containment in (2.18) follows from [10, Lemma 2.1]. Moreover,
since each weight wk, k ∈ N, is strictly positive and decreasing, Corollary
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3.6 of [9] yields that σ(C; c0(wk)) ⊆
{
λ ∈ C :

∣∣λ− 1
2

∣∣ ≤ 1
2

}
= D(1) for each

k ∈ N, from which the second containment in (2.18) follows immediately.
The equality σ(C; Λ0(α)) = D(1) in (2.19) is a consequence of (2.17) and

(2.18). So, according to (2.18), we have ∪k∈Nσ(C; c0(wk)) ⊆ σ(C; Λ0(α)).
Then [10, Lemma 2.1] implies that σ∗(C; Λ0(α)) = σ(C; Λ0(α)) = D(1). �

Remark 2.19. An examination of the proof of the containments (2.18)
shows that the hypothesis S1(α) ̸= ∅ was not used. Accordingly, for every
sequence α with αn ↑ ∞ it is always the case that

σ(C; Λ0(α)) ⊆
{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
.

The behaviour of the Cesàro operator in the Fréchet space H(D) is
known; see for example, [15, pp.65-68] and also [11]. Since H(D) is iso-
morphic to Λ0(α) for α = (n)n∈N, the following result also follows from
Proposition 2.12.

Proposition 2.20. The Cesàro operator C : H(D) → H(D) satisfies σ(C;H(D)) =
σpt(C;H(D)) = Σ and σ∗(C;H(D)) = Σ0.

3. Iterates of C and mean ergodicity.

An operator T ∈ L(X), with X a Fréchet space, is power bounded if
{T n}∞n=1 is an equicontinuous subset of L(X). Given T ∈ L(X), the averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N,

are called the Cesàro means of T . The operator T is said to be mean er-
godic (resp., uniformly mean ergodic) if {T[n]}∞n=1 is a convergent sequence
in Ls(X) (resp., in Lb(X)). A relevant text for mean ergodic operators is
[21].

Proposition 3.1. Let α be any sequence with αn ↑ ∞. The Cesàro operator
C ∈ L(Λ0(α)) is power bounded and uniformly mean ergodic. In particular,

Λ0(α) = Ker(I − C)⊕ (I − C)(Λ0(α)).

Moreover, it is also the case that Ker(I − C) = span{1} and

(I − C)(Λ0(α)) = {x ∈ Λ0(α) : x1 = 0} = span{en}n≥2.

Proof. Clearly (2.3) implies that C is power bounded, from which τb-limn→∞
Cn

n
=

0 follows. Since Λ0(α) is a Montel space, Proposition 2.8 of [3] implies that C
is uniformly mean ergodic. The proof of the facts that Ker(I−C) = span{1}
and (I − C)(Λ0(α)) = {x ∈ Λ0(α) : x1 = 0} = span{en}n≥2 follow by apply-
ing the same arguments used in the proof of [6, Proposition 4.1]. �
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For each m ∈ N, recall the identities

(3.1) (Cmx)(n) =
n∑

k=1

(
n− 1
k − 1

)
xk

∫ 1

0

tk−1(1− t)n−kfm(t) dt, n ∈ N,

for all x ∈ CN , where

fm(t) =
1

(m− 1)!
logm−1

(
1

t

)
, t ∈ (0, 1];

see [17, p.2149], [22, p.125]. The following result is inspired by [17, Theorem
1].

Proposition 3.2. Let α be any sequence with αn ↑ ∞. The sequence of
iterates {Cm}m∈N is convergent in Lb(Λ0(α)).

Proof. We appeal to Proposition 3.1 to show that {Cm}m∈N converges to
the projection onto span{1} along (I − C)(Λ0(α)). Indeed, for each x ∈
Λ0(α), we have that x = y + z with y ∈ Ker(I − C) = span{1} and z ∈
(I − C)(Λ0(α)) = span{en}n≥2. For each m ∈ N, observe that Cmx = Cmy+

Cmz, with Cmy = y → y in Λ0(α) as m → ∞. The claim is that {Cmz}m∈N is
also a convergent sequence in Λ0(α). To this end, observe that (3.1) ensures,
for each m ∈ N and r ≥ 2, that (Cmer)(n) = 0 if 1 ≤ n < r and

(Cmer)(n) =

(
n− 1
r − 1

)∫ 1

0

tr−1(1− t)n−rfm(t) dt, n ≥ r,

where {er}r∈N is the canonical basis in Λ0(α). Proceeding as in the proof
of [17, Theorem 1], define gm(0) := 0, gm(t) := tfm(t), for 0 < t ≤ 1,
and am := supt∈[0,1] gm(t) for m ∈ N. Then, for each r ≥ 2 and m ∈ N
we obtain that |(Cmer)(n)| ≤ 1

r−1
am for all n ∈ N and hence, for fixed

k ∈ N, that wk(n)|(Cmer)(n)| ≤ wk(n)
r−1

am, for all n ∈ N. So, for each r ≥ 2

and m ∈ N, it follows from (2.1) that pk(C
mer) ≤ 1

r−1
am. But, k ∈ N is

arbitrary and am → 0 as m → ∞ (see [17, Lemma 1]) and so, for each
r ≥ 2, we deduce that Cmer → 0 in Λ0(α) as m → ∞. Since the sequence
{Cm}m∈N is equicontinuous in L(Λ0(α)) and the linear span of {er}r≥2 is
dense in (I − C)(Λ0(α)), it follows that Cmz → 0 in Λ0(α) as m → ∞ for
each z ∈ (I − C)(Λ0(α)). So, it has been shown that Cmx = Cmy+Cmz → y

in Λ0(α) as m → ∞, for each x ∈ Λ0(α). Since Λ0(α) is a Fréchet Montel
space, {Cm}m∈N is also convergent in Lb(Λ0(α)). �

Remark 3.3. Since Λ0(α) is a Fréchet Schwartz space, the sequence {Cm}m∈N

is even rapidly convergent in Lb(Λ0(α)), in the sense of [7].

It is known that there exist power bounded, uniformly mean ergodic
operators S acting on certain Köthe echelon spaces for which the range of
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(I−S) is not a closed subspace, [6, Propositions 3.1 and 3.3]. This shows that
a result of Lin [23], valid in the Banach space setting, cannot be extended
to general Fréchet spaces. However, we do have the following result.

Proposition 3.4. Let Λ0(α) be nuclear. Then the range (I − C)m(Λ0(α))

is a closed subspace of Λ0(α) for each m ∈ N.

Proof. Consider first m = 1. By Proposition 3.1 we have that (I − C)(Λ0(α)) =

{x ∈ Λ0(α) : x1 = 0}. Set X1(α) := {x ∈ Λ0(α) : x1 = 0} ⊆ Λ0(α). Clearly
(I−C)(Λ0(α)) ⊆ X1(α). The claim is that (I−C)(X1(α)) = (I−C)(Λ0(α)).
One inclusion is obvious. To estabish the other inclusion, observe that
(3.2)

(I−C)x =

(
0, x2 −

x1 + x2

2
, x3 −

x1 + x2 + x3

3
, . . .

)
, x = (xn)n∈N ∈ Λ0(α)

and, in particular, that
(3.3)

(I−C)y =

(
0,

y2
2
, y3 −

y2 + y3
3

, y4 −
y2 + y3 + y4

4
, . . .

)
, y = (yn)n∈N ∈ X1(α)

Fix x ∈ Λ0(α). It follows from (3.2) that

(3.4) xj −
1

j

j∑
k=1

xk =
1

j

(
(j − 1)xj −

j−1∑
k=1

xk

)
, j ≥ 2,

is the j-th coordinate of the vector (I−C)x. Set yi := xi−x1 for all i ∈ N and
observe that the vector y := (yi)i∈N ∈ X1(α) because (0, 1, 1, 1, . . .) ∈ Λ0(α);
see Lemma 2.7. Now, via (3.3), one shows that the j-th coordinate of (I−C)y

is given by (3.4) for j ≥ 2. So, (I − C)x = (I − C)y ∈ (I − C)(X1(α)).
To show that the range (I − C)(Λ0(α)) is closed in Λ0(α) it suffices to

show that the (restricted) continuous linear operator (I−C)|X1(α) : X1(α) →
X1(α) is bijective, actually surjective (as it is clearly injective by (3.3)). To
establish surjectivity, observe that X1(α) = ∩k∈NX

(k), with X(k) := {x ∈
c0(wk) : x1 = 0} being a closed subspace of c0(wk) for all k ∈ N. Actually,
set α̃ = (αn+1)n∈N and w̃k(n) := wk(n+ 1) for all k, n ∈ N. Then X1(α) is
topologically isomorphic to Λ0(α̃) := ∩k∈Nc0(w̃k) via the left shift operator
S : X1(α) → Λ0(α̃) given by S(x) := (x2, x3, . . .) for x = (xn)n∈N ∈ X1(α).
The claim is that the operator A := S ◦ (I − C)|X1(α) ◦ S−1 ∈ L(Λ0(α̃)) is
bijective with A−1 ∈ L(Λ0(α̃)).

To verify this claim observe that, when considered as acting in CN, the
operator A : CN → CN is bijective and its inverse B := A−1 : CN → CN is
determined by the lower triangular matrix B = (bnm)n,m with entries given
by: for each n ∈ N we have bnm = 0 if m > n, bnm = n+1

n
if m = n and
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bnm = 1
m

if 1 ≤ m < n. To show that B is also the inverse of A when
acting on Λ0(α̃), we only need to verify that B ∈ L(Λ0(α̃)). To establish
this it suffices to prove, for each k ∈ N, that there exists l ≥ k such that
Φ−1

w̃k
◦B ◦Φw̃l

∈ L(c0) where, for each h ∈ N, the operator Φw̃h
: c0(w̃h) → c0

given by Φw̃h
(x) = (w̃h(n + 1)xn)n for x ∈ c0(w̃h) is a surjective isometry.

Whenever k ∈ N and l > k, the lower triangular matrix corresponding to
Φ−1

w̃k
◦ B ◦ Φw̃l

is given by Dl,k := (wk(n+1)
wl(m+1)

bnm)n,m. For each fixed m ∈ N,
note that Dl,k satisfies

lim
n→∞

wk(n+ 1)

wl(m+ 1)
bnm =

1

mwl(m+ 1)
lim
n→∞

wk(n+ 1) = 0.

Moreover, for n ∈ N fixed, we also have
∞∑

m=1

wk(n+ 1)

wl(m+ 1)
bnm =

(n+ 1)

n

wk(n+ 1)

wl(n+ 1)
+ wk(n+ 1)

n−1∑
m=1

1

mwl(m+ 1)

≤ 2 + e−
αn+1

k

n−1∑
m=1

e
αm+1

l

m
≤ 2 + eαn+1(

1
l
− 1

k
)

n−1∑
m=1

1

m

≤ 2 + eαn+1(
1
l
− 1

k
)(1 + log n).

These inequalities are valid for every n ∈ N, whenever k ∈ N and l > k.
Fix k ∈ N. Since Λ0(α) is nuclear, there is l > k such that the quantity

supn∈N(log(n)− ( 1
k
− 1

l
)αn) =: M < ∞ (see Proposition 2.9). So, for every

n ∈ N, we have

log n ≤ M + (
1

k
− 1

l
)αn ≤ M + (

1

k
− 1

l
)αn+1 ≤ M + e(

1
k
− 1

l
)αn+1 .

This implies that eαn+1(
1
l
− 1

k
) log(n) ≤ 1+Meαn+1(

1
l
− 1

k
) ≤ 1+M for all n ∈ N.

It then follows that

sup
n∈N

eαn+1(
1
l
− 1

k
)(1 + log n) < ∞.

Thus, by [29, Theorem 4.51-C], Φ−1
w̃k

◦B ◦Φw̃l
∈ L(c0), as required. That is,

(I − C)(Λ0(α)) is closed in Λ0(α).
Since (I−C)(Λ0(α)) is closed, it follows from Proposition 3.1 that Λ0(α) =

Ker(I−C)⊕(I−C)(Λ0(α)). The proof of (2)⇒(5) in Remark 3.6 of [6] shows
that (I − C)m(Λ0(α)) is closed for all m ∈ N. �

A Fréchet space operator T ∈ L(X), with X separable, is called hyper-
cyclic if there exists x ∈ X such that the orbit {T nx : n ∈ N0} is dense
in X. If, for some z ∈ X the projective orbit {λT nz : λ ∈ C, n ∈ N0}
is dense in X, then T is called supercyclic. Clearly, hypercyclicity implies
supercyclicity.
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Proposition 3.5. Let α be any sequence with αn ↑ ∞. Then C ∈ L(Λ0(α))

is not supercyclic and hence, also not hypercyclic.

Proof. Suppose that C is supercyclic. Since the canonical inclusion Λ0(α) ⊆
c0(w1) is continuous and Λ0(α) is dense in c0(w1), it follows that C1 ∈
L(c0(w1)) is supercyclic in c0(w1) which contradicts Proposition 4.13 of
[9]. �
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