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DISTORTIONS ASSOCTATED WITH RANDOM SEA STMULATORS

KEY WORDS : Algorithms; Computer simulation; Fourier transformation; Maithematical

models; Stochastic processes; Waler waves

ABSTRACT : Some numerical techniques for simulating Gaussian ergodic stochastic
sea models are described, analyzed and contrasted. A general method for generating
all numerical, linear, one-dimensional simulators by wave superposition permits
one to describe or create any of these numerical random sea simulators in five
steps. The distortions associated with each numerical simulator by wave super-
position are analyzed from a general point of view and the arbitrariness of
some numerical simulation techniques commonly used is noted. The time-consumed
thege
in this Monte Carlo experiments is an important factor. The numerical algorithms
used can change indirectly the level of distortions zssociated with cach numerical
simulation technique. A special reference has been made to the usc of the fast
Fourier transform (FFT) for computing and to the second-order autoregressive
behaviour of each wave component in order to reduce the time-consumed. Three
criteria are.proposed for qualifying the numerical simulators in order to adapt
the requirements éf each numerical experiment censidered. To explain the vari-
ability of random sea, the determinisiic anplitude corponent simulators are rejected
vhile a nondetcrministic spectral amplitude simulator (NSA) using a FFT algorithm

can be employed.

SUMMARY : Numerical simulation techniques for linear random sca models arc analyzed

resulting in a peneral method 1o generale all wave superposition simulators, the

o

distortions associated with them and the role of the efficicent alporithmz for

computing these Monte Carlo experiments.



DISTORTIONS ASSOCIATED WITH RANDOM SEA SIMULATORS

, A 5 ; 2 . i
By Josep R. Medina , José Aguilar , and J. Javier Diez

INTRODUCTION

The numerical random sea simulation techniques of stationary stochastic
processes defined by their continuous variance spectrum and the results obtained
in the numerical experiments involved are illustrated in numerous coastal and
ocean engineering publications. These Monte Carlo methods are especially significant
for random sea simulations in which the spectral description of the sca surface
has long been used. Kinsman(25) focuses on the sea spectral description history
from an oceanographic point of view. He mentions the Gaussian(linear), ergodic
(stationary) stochastic model first and later alludes to nonlinear models developed
by Hasselman(18,19,20), Longuet-Higgins(27,28), and other researchers. On the
other hand, directicnal sea models have been developed and this has signified
an added degree of complication with respect to the linear, ergodic, one-dimensional
model,

Various random sea models have been used in several different numerical
experiments to solve distinct problems: Hudspeth and Min-Chu-Chen(23) utilized
a stationary, one-dimensional, nonlinear stochastic model to carryt%ﬂ a dynamic
analysis of multilegged pile-supported ocean structures; Goda(13) employed a
stationary, directional, linear stochastic model to study dircctional wave register
systems; Hudspeth and Borgman(22) used a stationary, one-dimensional linear veréion
for generating efficient large random surface gravity waves by a hinged wavemaker,
and other numerical simulation models for the study of a wide range of coastal

and ocecanic engineering problems.
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. Although it can be staled that a real wave fielq cqqlg be cqnsidercq a
nonstationary directional nonlinear stochastig process, the limited vo]umé of

real wave data available justifies simplified models for describing random seas.

It can be said that all available numerical random sea modecls are theoretically
incorrect, but they are in some sense justified; perhaps for this reason some

recent publications such as the study of wave grouping by Goda(12) or the com-
parison of numerical random sea simulatiops by Tuah and Hudspeth(36) use different
simulation techniques without any unifying criterion to get the best simulation
technique for each specific case.

The simulation techniques for ocean engineering applications presented by
Borgman(2) pointed out the two basic methods for linear random ocean wave simulators:
the filtering of white noise by a determinated digital linear system and the wave
superposition method. Goda(13) explains the advantages-of the latter method for
numerical experiments while Houm and Overvik(21) assume the digital filtering
techniques for generating waves in model flumes. Tuah and Hudspeth(36) carry out
the numerical simulations by nondeterministic spectral amplitude(NSA) and deter-
ministic spectral amplitude (DSA) models using a fast Fourier transform (FFT)
algorithm to simulate stationary linear random wave realizations employing the
process of filtering Gaussian white noise in  the frequency domain. Tt will be
shown that these techniques are especial algorithms for efficient simulation
within the wave superposition method.

This paper proposes the establishment of a general structure and a unified
criterion for the discussion of the best numerical simulation technique for each
problem., The study is centered on stationary linear stochastic models which are
the bases for nonstationary or nonlinear simulation models. The starting point
is the impossibility of using a perfeet nuperical simulation technique and the
need for making use of ever limited computer facilities in order to achicve, in the

best possible way, the stochastic realizations desired « The analysis of numerical



random wave s:mulaLlon prohlemfln the tJme dnd frequcncy domaln, contr st1n&
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dlffercnt 51mulabors, permits thc estab]nshlng of a rela Llon%hlp between these
techniques. The estimation of theorctical divergence produced by cach one permits
the establishing of general criteria for selecting the suitable technique. Many
random wave simulation techniques can be used with different requirements but

only a few of them are really justified for each determined case.

SIMULATION MODELS

This paper concentrates on the lincar(Gaussian) ergodic(stationary) stochastic
model for describing the random ocean wave field. The principles of irregular
wave simulation using digital computers will be described.

Borgman(2) has noted two different ways of achieving simulated realizations
of a desired linear stochastic process. The first is the digital filtering of
white noise by a predicted filter, and the second is the wave superposition method,

A simulator by digital filtering of white noise describes ocean waves by
an autoregressive-moving average model (ARMA). This ARMA model can be considered
the most general way of descriling ocean waves employing digital filtering tech-
niques. The time series generated under this principle will satisfy the following

general equations:
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paramcters. The particular model described by Egs. (1) and (2) in which'p and g
orders are f{ixed, is called ARMA(p,q); it can produce stationary renlizations
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the stationary conditions (see Box and Jenkins(3)). The stalionary Gaussian time
series produced by this model can be considered random Peaiizations belonging

to the ensemble of the stochastic process. The stationary linear stochastic process
for describing the sea state would be defined exactly by ils continuous variance

spectrum, th(f). From Box and Jenkins(3) and Bendat and Piersol(1) the following
o

can be written: Joullc oia
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vhere B is the backward shift operator, Y(B) is the transfer function of the
linear system ARMA(p,q); H(f) is the frequency response function, At is the time
interval, ¢% and @h\the autoregressive and moving average parameters, 6§ the
variance of the white noise input and Snﬁ(f) the variance spectrum of the time
series generated by this linear system.

Looking at this from the frequency domain, the variance spectrum Sﬁﬁ(f)
of the output signals has been obtained by the product of the white variance
spectrum of the input and the squared frequency response function of the linear
system, ]H(f)r%{ At the same time, in the time domain, it can be considered that
the output signal, n(t), has been achieved by a convolution of the input signal,
w(t), and the impulse response function of the lincar system, h(t), which is the
inverse Fourier transform of the frequency response function, HIL),

Fryer and Wilkie(9) and Dedow, Thompson and Fryer(4) have proposed cfficient

applications of the filtering techniques based on the use of a pseudo-randon
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binary secquence as while noise and employing only moving average parameters in

order tolachicve a simplcv'désign of the filter's impuise response function.
Houm and Overvik(21) have noted the advantages of filtering simulation techniques
in order to produce a generalion of a time series directly from real wave ARMA
parameters which are estimated by the criterion of maximum entropy (MEM). And
they also noted the possibility of assuming a spectral shape for the process to
determine the ARMA parameters that would fit the variance spectrum, defined by
Eq. (5), to the spectral shapc desired. The digital filtering of white noise seems
to be the most common technique for generating waves in model flumes. But Goda(13)
has pointed out that a series representation with trigonometric functions has
some advantages in comparison with the digital filtering techniques, especially
for numerical simulation by computer in which the role of the phase information
is important.

A simulator by wave superposition describes ocean waves by component sum-

mation., The realizations generated satisfy

M capifal mona 0,
. P
N(t) = > R. cos(2m £.t+ 0 .) TTITIIT
m “m m
m=1
M
z. = wn &t) = R. cos(2mf.n At+ 6 ) ;0<T < 1/(2 At) APpR—
A = /I /m m

where 7 is a random time series of the ensemble corresponding to the simulated
stochastic model, M is the number of wave components, Rm are the M amplitudes
of the wave componenis, fm are the M frequencies, and Om are the M random phase
angles distributed uniformly in the interval U(0,2# ). The one-dimensional wave
superposition method described by Eq.(7) can generate stationary realizations
of an approximately Gaussian slochastic process if M is a large number and the

R amplitudes are not too unbalanced. The time interval, At, is related Lo the
I

maxinum frequency imposed by the aliasing condition, and the onc-sided variance



_ spectrum for the.process described by Eq.(7) can be written
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in which S(f—gﬁ) is Dirac's delta function centered on the point f:fm.
m
The relationship which is commonly used to convert a variance spectrum
to the amplitude spectrum Rm is

8508 ) Afs = fi—272 i0<f. < 1/(2 At) s Eaveeaing ¥ 6 4 a s peme (9]
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where Af is the frequency interval related to the frequency component fﬁ and
the variance spectrum, Sdh(f), defines the stationary Gaussian stochastic process
to be simulated. Borgman(2) and Goda(15) showed two of this models by wave super-
position based on Eqs. (7) and (9); later, Goda(14) modified the Eq.(9) to
explain the variability of statistics of surface sea elevation, taking into
consideration the directionality of ocean waves.

A directional simulator by wave superposition describes ocean waves by a
éomponent gsummation such as in a one-dimensional case. The directional time

series of random surface must satisfy
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where (x,y)} are the coordinates of the point in which the time evolution of the
vave surface #n(x,y,t) is simulated, R y are the amplitude components of the
n

waves with k- wave numbers, . freguencies and aj angle dirccetions; 6-1 arce random
n At 1 m
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phases uniformly distributed in U(0,2# ) interval, M is the number of frequency
. . |. . . .

. ::, ! t. .
components, L is the number of direction components for each frequency and 2

is the one-dimensional time series of sea elevations at the point defined by
the (x ,y.) coordinates. The wave number k- is usually presumed to satisfy the
o’ %o “n

relationship
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in which h denotes the water depth. The relationship between the amplitude of

wave components and the directional variance spectrum commonly used is

(£, . Aay = RA ey 8 4 3 Sy 8 ¢ 8 3 e D
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where Sﬁa(f,cz) is the wave directional spectrum, Afﬁaare the frequency component

intervals, ax are the angle intervals of the direction components and Rﬁi the

1
amplitude of the wave components.

Goda(14) also showed that the one-dim_ensional time series generated by
Eq.(11) could be understood as having been generated by Eq.(7) in which R- would
m
be a random variable with average value and standard deviation as defined by

Eq.(14). The squares of Rﬁ divided by Sﬁﬁ(fﬁ) Afﬁ‘ would be a random variable
with a chi-squared distribution with two degrees of freedom and with the presump-
That

tion of a sufficiently large number of directional components, L. This is to say
(x;gA{A valee

(14)
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The random variable ¢ has a chi-squared distribution with two degrces of

A
freedom,.xg(z). The probability density function of the amplitude components Hm

i -
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' cduldrbc caleulated by Eg. (17) in ilhe following manner:
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The probability density function of Ri\is a Rayleigh function in which

the mean and standard deviation can be calculated by
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stardard deviahon

where the assumption of a great nﬁmber of wave components with the same frequency,
different directions of propagation and random phases are made to explain the
random sea elevations producing a double random model for random sea simulations.
The two main groups of random wave simulators have advantages and disadvan-
tages for solving different problems. Digital filtering techniques have the advan-
tages of easy implementation, high velocity and adaptability to ocean wave analysis
made with parametric methods of spectral estimation. On the other hand, flexibility,
adaptability to any spectral shape and extensive use of nonparametric techniques
of espectral estimation are advantages of wave summation simulation techniques.
The random wave generation techniques for laboratory tests have specific problems
related to the generation of the required signals and the conditions of the
response of the equipfment available. Funke and Mansard(10) have recently proposed
a clasificalion of these simulators in deterministic and probabilistic groups in
which the wave generation techniques used by most laboralories in the world are

included.

NUMERICAJL, SIMULATION TECHNIQUES

the numerical linear simulation techniques of one-dimensional random wave



models are the partlculdr methods for generaling, by digital computer, Lime
ceries associated ulth the wave energy spectrum Sn”(f) that defines LﬂCh random
sca model. In the same way, a directional random sea model can be described by
its directional wave energy(variance) spectrum, th(f,a ).

If the ergodic-stationarity and Gaussian-lincarity stochastic properties
for a random wave model are assumed, the process can be defined exactly by its
variance spectrum qﬂﬂ( ) for one-dimensional problems or Sn\(f,(i) for directional
cases. Considering one-dimensional numerical simulation by wave SUpCTpOGlthﬂ
techniques, different numerical simulators can be used for achieving a time series
corresponding to a given spectlrum.

A numerical random sea simulator by the wave components method will be
defined by its particular way of solving the simulaticn described‘by Eq. (7).

The construction of one of these numerical simulation techniques can be under-
stood in five steps: the definition of the variance spectrum whose numefical
simulation is possible; the division of the variance spectrum in spectral bands;
the accumulation of the band variance in fixed frequencics for each spectral
band; the determination of the random phases;and finally, the application of an
algorithm for computing the basic method described in Eq. (7).

First step: The variance spectrum of the process can be simulated only
to a maximum frequency limit( £ ;k—1/(2 At) ) because the digital rcalizations
arc generated with a constant time interval, At. Dircctly from the establishing
of the maximum simulation frequency limit or indirectly fixing the time interval
for simulation, the fact is that the variance spectrum actually simulated is

:;-':w g lo

reduced to a specific frequency range, FE(E fnéx)’ which is not always exactly
min o

equal to the variance spectrum of the process that should be simulated.
Second step: IT the spectral shape of a process that is possible to simulate
is decided on, lhe second step for construction of a speeific wave Jupc1position
e

simulator is Lo divide the basic spectrum inte M speelral bands (f f' }), that
n’

-'15.



must satisfy

M

L) @) = (F o 0f =)
m m+l .min . max
m=1

(20)

where each (f':f'lj) is the range of a spectral band of the total variance spectrum
A m+l
defined in the frequency range, (f.., ,f = ). In the time domain this is equivalent
min’ max

to achieving the wave stochastic realizations, defined by S, (f);fe(f [ ,f ) in
m min’  max

the frequercy domain, by the addition of M realizations of M independent stationary
linear stochastic processes defined by M different band spectra: S”ﬁ(f);fti(fQ,f£;i)
Third step: When the spectral shape desired for the process to be simulated
is divided into M band speétra, the total variance of ecach band spectrum must be
concentrated in a fixed frequency for each band. In the frequency domain, each
band spectrum is reduced to Dirac's delta function spectrum corresponding, in the
time domain, to the change of a stochastic realization of a band spectrum process
for a sine wave with random phase and the same variance. This can be considered

as the band spectra's partial simulations of the process to be simulated, in which

the amplitude and phase of each wave component can be calculated

. 8 Pl P s] et Byend Bl - 3
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This plan is equivalent to the one expressed by Eq. (9) and can be called a
Deterministic Amplitude Component model in a similar way as the Deterministic
Spectral Amplitude model(DSA) noted by Tuah and Hudspeth(36).

If each ba%d spectrum were divided into L band spectra with the same frequency
range, but witﬁ$Sﬁn(f)/L variance spectrum, and each one were reduced to a sine
wave with the same frequency( fmﬁi(f%afgl{) ) but with random phases in the

U(0,2 1) interval, the resultant wave component would be a sinc wave with the

same frequency, T.; and this component would result in a random amplitude with
m



a Rayleigh distribution, as defined by Eq. (17), and a random. phase uniformly

" distributed in a U(0,2 7 ) interval., It would give the same result if the one-
~dimensional sea variance spectrum were considered from a directional sea variance
spectrum and if each wave component werc considered the result of a L directional
wave summation as Egs.(10) and (11) expressed. These equations refer to Goda's(14)
work, assuming that L is sufficiently large for the application of the Central
Limit Theorem to the wave superposition. Egs. (7) and (17) define a Nondeter-
ministic Amplitude Component model, and the one-sided variance spectrum Sﬁﬁ(f)

of the process produced by this simulator is

M M
2/
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in which cﬁ_is a random variable with! X (2) distribution and &(f) is the Dirac's
/ 5

delta function. cli-squared £

Fourth step: Hudspeth and Min-Chu-Chen(23) have noted that this can be a
critical element of the linear simulation technique. An algorithm must be chosen
for generating the pscudo-random sequences which require that no reasonable
statistical test detects any significant departure from randomness. Perhaps the
multiplicative congruential method given by Lehner(26) and gencralized by Green-
berger(16), as -it-is- defined by Eq. (24),arc the most popular methods of generating

pseudo-random numbers to carry out Monte Carlo methods (see Zelen and Severo(38)

and Hammersley and Handscomb(17) ):

{;n’-". b;:" &

J/ A (
uV =X uv o o+ A modulo J O 22
s AN m=1 22N ) (24)

J is a large integer and u'l, Ai and AQ arc integers between 0 and J-1. The
AT ]

'/J are uscd as pseudo-randow numbers in the U(0,1) interval. The

numbers u =u
m -

yseudo—random sequence defined by Eq. (24) has a maximum yeriod of J numbers,
{ 2

but the paramctlers Ai, K? and J can be chosen to achieve a very large period



and very low autocorrelations,in which case the usual statistical tests of
randomness and uniformness can be easily accomplished.

Fifth step: The algorithm for computing the numerical wave superposition
technique chosen has no direct influence on the results of the numerical simu-
iation model considered, but it can considerably affect them. It must be pointed
out that only limited computer facilities can be used in each numerical experiment.
For this reason an efficient algorithm can permit the use of a better numerical
technique with the same simulation method.and computer facilities consumed. Re-
ducing the time-consumed for the numerical equations that define the simulation
technique permits an increase in the number of wave components, the number of
data points simulated and the number of realizations for each numerical experiment
or other desired simulation characteristics.

Therefore the most efficient algorithm in each case must be used in order
to save the maximum computer facilities and to achieve the best numerical experiment.
The first writer(29), using the simple algorithm showed- in Eqs. (27) and (28)
for computing the Eq.(7), found satisfactory results for economizing time-consumed
against the direct use of the C0S(x) function (32/4 ratio) and Goda's(13) fast
algorithm (32/13 ratio). The ratio of time-consumed can change depending on the
computer, the software, and characteristics of the numerical experiment (especially
for one or two-dimensicnal simulations). The Eqs. (25) and (26) describe Goda's(13)
fast algorithm,especially for computing two-dimensional random waves, while the
algorithm described by Egqs. (27) and (28) points out the second-order autoregres-

sive behaviour of a sine function.
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On the other hand, we can use FFT algorithms to achieve simulations of
discrete random time sequences by initializing a complex vector in the frequency
domain of a FFT algorithm and inverting the Fourier transform back to the time
domain. This can be considered a special technique for computing Eq.{(7) in the

cases where the following equations are fullfilled:

ff\:;nlAf =/ (N At) ;m=1,2,...,%N-1 . s § s e (2O)
m A
1
M=¥N- 1 <y g T ey .
LYz .

where N is the number of data points simulated and Af is the frequency interval.
The characteristics of the FFT algorithm reduce time-consumed, especially if N

is a power of two(e.g. 4096, 8192). The Tuah and Hudspeth(36) technique of fil-
tering in the frequency domain simulations based on a Rice's representation of
Gaussian noise currents can also be understood as a specizal algorithm for computig
the basic numerical model for Eq. (7). The complex valued TFFT coefficients, Am,

may be computed for DSA simulation (Rm deterministics) by

RS U0

A~ =¥%R,ex (+:‘f 0-) = [‘/ S (£ )Af']\%/ exp(+i 0,) jm=1,2 ¥N-1 (31)
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as in Eq. (7). For Nondeterministic Spectral Amplitude simulations (NSA), the
amplitudes Rﬁ are random variables with Rayleigh distribution and the set of

FFT coefficients, A ., can be computed
n

e : _ _ : %! . .
Aoy = kRl 0,) = (e sy () AT/ 4 )% expei 0.) w1201 (32)

. : y 2 . , ;
where ¢ is a random variable with X7(2) distribution. These complex valued
m

NSA—FFT coefficients, A., can also be obtained,bencfiting the relationship between
mn

~2 : . .
the X7 (2) and the uniformly distributed random numbers.
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in which v. are random uniformly distributed numbers in the interval u(o,1).
‘m



Depending on the computer and software available, the algorithm described by

Eq.(33) can be more efficient than the one described in Eq. (32).

DISTORTION OF THE RANDOM PROCESS

At first we wanted to simulate a stationary Gaussian(linear) stochastic
process defined by its continuous variance spectrum, Sﬁﬁ(f)’ in the range >0.
From Lhis theoretical process to the onc which can be generated by a numerical
simulation technique there are some differences that depend on the numerical
method used. This loss of information about the original process imputable to
the numerical simulation technique used will be analyzed in this study.

First of all, we will point out the large number of theoretical sea specira
used for numerical simulation experiments defined in the entire frequency range,

boly
. . 5 L\ e 5 g
f >0, with an asymptote potential tall,dﬁé\f

(see Pierson and Moskowitz(32)

and Hasselman et al.(18) for PMK and JONSWAP spectra). This is true because of
Kitaigorodskii's similarity law and the dimensional analysis based on Phillips' (31)
jideas of an equilibrium range in the wave spectrunm.

A problem associated with this type of sea spectra defined for the entire
frequency range, £>0, is the infinite spectral moment for orders up to and
including 4. Thif fgpt produces a theoretical inconsistency by which the spectral
bandwidth paramgéérj;%, would always be ¢€=1, and the mean wave period, ?} would
be zero for Bretschneider, Pierson, Moskowitz, ITTC and ISSC spectra, as Denis(5)
has noted. Denis(5) proposes resolving this inconsistency by determining the
cut-off-frequency wherc gravity waves first make their appearance,and the frequency
where the variance spectrum is determined by viscous action, and then studying
spectral shapes related to different mechanisms of wave generation-propagation.
1L must be remembered that Phillips(31) pointed out the restrictions for wave
numbers and frequencies in order to apply the idea of an equilibriwe range in

the sea spectrum, and Kitaigorodskii's law is basecd on restrictive conditions



in which the water surface stress and viscosity are not considered.

J Another way of spotting possible incongruences in the model is by studying
the reletionship between spectral moments and derived time series. The variance
spectra of the derivative processes are related to Qﬁﬁﬁf), if n(t) is the surface

elevation, ﬂVTt) is the vertical velocity of sea surface, n'¥(t) is the vertical

acceleration and ﬁhkt) is the kth derivative of n(t),in the following way:

TR 7 PN |
s/n@?\(f)_(zn) £ s;m(f) s pv(t) = d n(t) / dt Y PPN
double éb.pdﬂw-f
\ \4/ \ ;. . . G 3 \2 2',
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q{av(f), §ﬂkfﬁtP£f)’ and ﬁﬁk%kff) are the variance spectra of the vertical
velocity, vertical acceleration and k-derivative function of vertical displacement

where S

of sea surface at a given point. If the fourth spectral moment is infinite, it
means that the zeroeth spectral moment of the vertical acceleration process is
infinite,and therefore the variance of vertical acceleration is also infinite.
The kinematic and dynamic stability conditions for sea waves are inconsistent

with high vertical accelerations for the sea surface. The variance spectrum of
vgrtical displacement must be cut or modified for high frequencies in order to

afgngfinite spectral moments for all orders. This is not only a condition imposed

by digital computer numerical methods, but it is also a necessary method for

achieving a minimum consistency with the linearity property assumed for the

stochastic model.

of

On the other hand, it can be affirmed thal the direct measurcs on real
sea waves are usually analyzed below a cut-off-frequency of about 0.7 Hz . The
Pierson and Moskowilz spectrum(32) was derived from spectra estimated over the

frequency range 0 to 0.33 Hz ; the JONSWAP spectrum(18) was derived from a varicty

il



of wave instruments with high-frequency cut-offs between 0.7 to 1 Hz ; Forristall(8)
has studied the measurements of saturated range in ocean wave spectrum with recorder
and processing sysltems that had frequencies of less than aboub 0.7 Hz ; and Scolt's
spectrum(34) was derived from Pierson-Moskowitz's spectral estimations fitting
Darbyshire's formulation truncated at a frequency of 0.33 Hz. For the frequency
range between 0 and about 0.2 Hz, the recording systems commonly used can give
a reasonable support ég an empirical formulation of Sﬁﬁ(f)’ and the spectral
shape in the frequency range of about 0.2 to 0.7 Hz interval can be specifically
studied in order to achieve reasonably well fitted tails such as @5 fﬂ§: But
the viscous action in the fluid motion appears in frequencies over 0.7 Hz . As
of this frequency one can suppose that a Eﬁs/law (Forristall(8)) is positive; or
there is a special shape within the range in which the viscous action is present
(Denis(5)); or there is a non-equilibrium state as Garret(1i) proposed,using
sensors with cut-off frequencies of about 3 Hz . The nonlinear effects, the char-
acteristics of the frequency response functions of the available wave recorders
and the questionable imporiance of the spectral shape in the frequency range over
0.7 Hz can support an arbitrary cut-off--frequency for the numerical random sea
simulators.

The theoretical sea spectrum desired will be modified for numerical simu-
lation because the cut-off-frequency will be directly determined by some criterion
or, indirectly, by the time interval chosen, At. The information of the frequency

range lost will produce distortions on some parameters which will change their

- y Yo NP N -
original values. Table 1 shows the evolution of the Iy arfg ot and T
s P 0
associated with a PMK sea spectrum (m.= 66.5 sq ft (6.19 m”), gh: 0.0635 Hz) for
0 p

different cut-off frequencies, It can be observed thal an arbitrary cut-off-frequency
; ; 27 : :
cut over 0.9 Hz does not affect the elevaltion variance, Uy the velocity variance,
i . \I
q,f, and the mean wave period, T,L(m./m?)f as these are not related to the fourth
o 0 2

spectral moment. However the spectral bandwidth paramcter, €, and the accecleration
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variance, UWK" are very distorted by the chosen cut-off-frequency. Rye(33) has

also shown the instability of some currently used wave parameters with respect
to the éut—ofqurcqucncy. An arbitrary cut-off-frequency can be justified in
some cases, but it must be taken into consideration in order to determine which
parameters can be employed and their associated initial level of distortions.

Secondly, the sea spectrum that can be simulated, Sﬁn(f);fég(fﬁin’fmék}’
could be considered added M band spectra due to the linearity property of the
theoretical model. This step does not introduce any distortion in the numerical
model.

Thirdly, if each stochastic component of each spectral band is simulated
by a single sine wave with random phase and amplitude related to the variance
of the band spectrum, the stochastic component irreversibly losses the information
about the process contained in its original continuous spectral shape. The simu-
lation of a process with continuous spectrum would need a time series for an
infinite duration, which is impossible to achieve. In the frequency domain each
band spectrum (Fig. 1-a) is replaced by a Dirac delta function spectrum (Fig. 1-b)
defined by a fixed frequency, fﬁ’ and included in the frequency range of the band,
(g%ﬁf;ii), where each has a variance related to the variance of the band spectrum
as a result of the deterministic or probabilistic relationships pointed out in
Egs. (9) and (15). In the time domain, each stochastic component defined by a band
spectrum (Fig. 1-c) would be changed by a sine wave function (Fig. 1-d).

The information about the original process lost in this step depends on
the method used to divide the sea spectrum and the m=thod used to determine the
representative frequency of each band. Borgman(2) and Goda(13,14) have used a
regular spectral discretization in order to obtain the same variance for all
spectral bands, while Goda(1%5) used a random mcthod for spectral division in
order to obtain additional flexibility in the numerical model. Many other kinds
of discretization methods can be employed, such as spectral division in constant
frequency intervals when used for the application of FFT algorithms. The repre-

sentative frequency of cach band, £/, must be a type of frequency average of
‘m
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the frequency range interval's limits, (f"ﬁflﬂl), such as in the case of the
m m+

arithmetic mean frequency

T d To =% (P8 ) $m=1385u50:M AR H O R K S RSO s 6 2 ¢ swum LaT )
o " om m . m-+1
(for)
or 'the median variance frequency

o {14
£ f S (f) dfzf L s () df 1 P R | yewnes s s s amass (38)
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None of these frequency averages can be considered a correct method for
determining the representativé frequency of each band spectrum. The arithmetic
mean frequency used by Borgman(2) and Goda(15) does not consider the distribution
of variance in the frequency range of each band, and the median variance frequency
used by Goda(13,14) does not consider the dispersion of the variance in the band
spectrum. All methods of frequency average of spectral discretization have serious
theoretical inconsistences ig?;arryygut stochastic process simulations, theoretically
defined by a specific continuous one-sided variance spectrun, Sﬁb(f);fég(fmin'fmax
Fourthly, the generator for pseudo-random numbers can not produce strict
random sequences because they are deterministic sequences related to a specific

type of generation. It would be necessary to produce infinite random numbers

and to perform infinite statistical tests on these numbers in order to guarantce

; \
\have )

the property of randomness. Hull and Dobell(24);éhowéérsome arbitrary acceptance
criteria which are based on several statistical tests. And they noted that a

; ; Lo ;
succesful passing of these tests may be considered a necessary, but not.sufficient
condition. If the sequences generated pass several reasonable tests which are
designed to reflect the requirements of the simulation problem, such as uniforn
distribution and independence properties, and if evidence about the peor local
behaviour of the pseudo-random sequences has not been located, and if all rcascnable
precautions about the subroutines used have been taken, one may reasonably assume

that this step produces no sipnificant distortion.
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Fifthly, it has been noted that the numerical algorithms for computing a
specificd numerical simulation technique do not directly produce distortions of
the simulation method, but rather distortions are indirectly produced. The most
efficient algorithm used by the first writer(29) to compute Eq. (7) was that
defined by Egs.(27) and (28). For numerical simulations via FFT algorithms, a
double unstacked algorithm was used because only the time-consumed was considered.
The wave superposition method given by Egs. (7),(29) and (30) can be expressed

in the frequency domain by

‘;;E’Q' )-H‘f
7, =% R, exp(+i @) ;m=1,2,...,%N-1 I )
. M M
aelerisk
* :Z '=12.n-1 "‘1 T R R I e
Z/(_m =5 yM=1, 2, AN (40)

where Zffl are the discrete Fourier transform of the time series, Zae Two processes
can be simulated at the same time by locating the time series in the real and

imaginary parts of a complex time series

2, =284 izg the=l s Bhees i N Cereaeerrssenenrasaes (41)
z, is the complex array in the time domain. If R_°,R_". and @8-, 0.~are the
fi Am” 2m ‘Im 2m
amplitudes and phases corresponding respectively to the processes 7 and
n
28 the Fourier transform of this complex time series can be expressed by
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Using the Egs. (7),(29),(30) and either (9) or (15}, 1this complex array



for deterministic or nondeterministic amplitude methods can be directly constructed
in the frequency domain, and afterwards a FFT algorithm can directly give us

the complex array in the time domain with realizations of two stochastic and
independent time series which correspond to real and imaginary parts. Hudspeth

and Borgman(22) have presented an explanatlion for the construction of unstacked

FFT and stacked algorithms which are especially appropiate for minicomputers.

The relative efficiency between the FFT and the algorithm described by Eqs. (27)
and (28) depends on the hardware and the software available in each case; the

first writer(29) consumed approximately equal time on a number of wave components

M=32(log N)/(log 2048), in which N is the number of points to be simulated.

CRITERTA FOR QUALIFYING

The distortions associated with each numerical random sea simulation
technique, and which has proved to be impossible to eliminate for numerical
experiments, induces one to plan these techniques from another point of view,

If it is necessary to use a numerical simulation technique, and each is incorrect
in a strict sense, general criteria for qualifying all numerical simulators must
be established in order to get the best one for each problem. With some fixed
computer facilities and a given problem the best numerical method can be selected
by using the general criteria and admitting the simultancous distortions related
to it.

A numerical onc-dimensional linear random sea simulation technique by wave
superposition can only produce realizations corresponding to stationary Gaussian
stochastic processes defined by Eqs. (8) or (23), which are somewhat similar to
the continuous sea spectrum proposed for simulation, Snb(f). The ideal case would
be the unrestricted use of an infinite number of wave components, M-#-00, as was
carlier mentioned. ﬁkﬁfh
The analysis of simulators in the frequency domain can point out charac-

teristics difficult to observe in the time domain. Goda(18) speeified two appro-



priate properties for numerical random sea simulators. That is to say, the set
of frequencies, f., should not constitute harmonics between each other, and it
would be desirable that the amplitude of each component wave iig approximately
equal in magnitude. For common spectral shapes, Borgman's(2) technique for
discretization produce wave components with the same amplitude, but they do not
constitute harmonics between each other (Fig. 2-b). The FFT simulators can only
produce periodic random time SeQuences because the wave components are harmonics
(Fig. 2-c). A

It is reasonable to assert that a numerical sea simulation technique must
generate nonperiodic realizations because the theoretical variance spectrum, Snﬁ(f),
is a continuous function in the general case. For thal reason, an adecuate property
would be when the frequency component does not constitute harmonics so that
synthetic registers have an infinite or almost-infinite period. The simulators
with FFT algorithm like the one showéé in Egs. (42),(43) and (44) can only produce
N-periodic random time series. These simulators would be rejected by this criterion
in opposition to classic simulators such as Borgman's and Goda's method using
non-harmonic component waves.

It is reasonable to affirm that a numerical sea simulation technique must
generate nondeterministic realizations because the theoretical process is con-
sidered a Gaussian ergodic stochastic process, and a none simulated point can
be exactly predicted from the knowledge of the rest of its time series. With
this criterion a realization simulated via FFT can be entirely predicted knowing
N points. And this will reproducc a recurrent N, N being the length of the complex
array in an unstacked algorithm or a double length for onc which is stacked.
However, the classical non-harmonic wave summation techniques are not preferable
under this criterion because a digital sine wave can be considered a deterministic,
second-order, special autoregressive realization as shown in Eqs. (27) and (28),

This can be written in the following manner:
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7 =d z -z 7 im=1,2,...,M and n=1,2,... : ceseeeraanaees (45)
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where d is determined by Eq.(28),depending on the time interval, At, and the wave
S Im

frequency, fﬁ’ and ZM?n) correspond to the wave frequency, fm, and the time, N At,
A summation function of M sine waves can be considered a special 2M-order autoregres-
sive deterministic realization because ecach discrete sine wave can be exactly
predicted from two starting points and the frequency factor, @ﬁ. So a wave super-
position simulation method has only 2M nondeterministic points, where M is the
number of wave components. This criterion permits one to conclude that the best
method is that which has the largest number of wave components., Therefore the
methods based on FFT algorithms would be prefered, especially if N is a power
of two(see Witting and Sinha(37) related to Shinozuka(35)).

It is also reasonable to assert that a numerical sea simulation technique
must generate realizations corresponding to a stochastic process with spectral
moments almost-equal to the one theoretically designed. The properties of the
variance spectrum and the time series related to it can be defined by the spectral
moments of the process, and it is also necessary to support a minimum coherence
among derivative processes that can be simulated in the same numerical experiment.

If this noted criterion is taken into account, a good simulator could be made

resolving
M
2, ks
:?1(3 R) £ =m ;k=k +1,k +2,...,k +2M st w ¥ 8 @ wEieEes € LO0)
d SmT o m k o o 0
m=1 F
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where Rm are the M wave amplitudes, fﬁ are the wave frequencies and the mk are

2M spectral moments chosen to be equalized belween the theoretical spectrum and
the process actually simulated. If the M wave frequencies are previously fixed,
the 2M nonlinear equations given by Eq.(46) can be reduced to M linear equations,
and M spectral moments could be equalized. If a spectral discretization is fixed

and the frequency bands are determined as in Egs. (20), (21) and (22), only an

cqual zerecth spectral moment between the theoretical and simulated process can

7
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be guaranteed. Nagai(30) -has—taken the frequency representing each band spectrun

,in such a way that the second spectral moment was also guaranteed.

— Three deterministic amplitude wave superposition simulators and one non-
deferministic amplitude wave superposition were contrasted, and subsequently
denominated B1,B2,DSA and NSA respectively. The Bl and B2 are deterministic ampli-
tude non-harmonic frequency wave superposition simulation techniques that utilize
Borgman's method of spectral discretization given in Eq. (22), and in which all
the amplitudes Ré_are equal. The Bl simulator has a band frequency given in Eq. (38)
(median variance frequency), and B2 has a band frequency given by Eq. (37)(arithmetic
mean frequency). The simulators denominated DSA and NSA are two FFT simulators
with deterministic and nondeterministic amplitude components shown in the frequency
domain by Eqgs.(31) and (33) respectively.

It must be noted that a nondeterministic amplitude simulator generates a
stochastic process with all spectral moments, m s scatlered about the ones obtained

by the deterministic amplitude simulator; the arithmetic means are equal for

each moment and their standard deviations can be calculated

M
nu 4/ 2k M
j (Z R I )\é M
i 1/3'/ m=1 ’ 4 Zk/ \Z,/
(o = (1/ Bv)” i Y} = ———————————r =} o ‘ sssmwene (47
(m) = (17 %5)7 Em) = = — Bl =% RIET) (47)
N SRR et
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m=1
in which Rlﬁ are the deterministic amplitudes of the wave components, fﬁ are the
wave frequencies and kathe number of degrees of freedom that can be considered

for the X@/distribution of each spectral moment variable, m .
The choice of spectral discretization and fixed frequency systems based

on the equalizing of certain spectral moments may be justified, but it also causes

additional time-consumed. It can also be justified if we consider that the available

sea wave recorders and digital processing methods produce high uncertainties about

the true spectral moments, and therefore it would make no sense to try to cqualize

many spectral moments.
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CONTRAST OF SIMULATIONS

The distortions produced by each numerical random sca simulator induce
an obvious result: the stationary Gaussian time series generated by any linear
random sea simulator can not have the exact properties desired. The writers(6)
have studied some wave parameters associated with time series generated from
different simulators (B1,B2; and DSA), and have pointed out significant differences
which depend on the number of each simulator's wave components. In table 2 relative
mean and stendard deviation estimations of some simulated wave parameters arc
compiled. The root-mean-square of surface elevations, NS significant wave height,
ng median wave height, Hof%’ mean wave period, T, and maximum wave height, Hméx,
have been studied. B1,B2,DSA and NSA simulators have been employed with various
wave components which are indicated by an integer following the nomenclature
(i.e. B1-256 : Bl technique with 256 wave components). The same theoretical
variance spectrum and forty realizations have been generated for each case.

To analyze these results one may consider, assuming Gaussianity, that the
means estimated oscilate around the exact means with an expected standard deviation
of about 16% of the standard deviation estimated from the forty realizations. And
the standard deviations estimated oscilate around the exact ones with an expected
standard deviation of about 8% of the sample standard deviation estimated. The
B1 and B2 simulators have the same random phase sequences for the same number
of wave compcnents, so the differences between pairs of these simulations correspond
to the different frequency choices in the numerical simulator given in Egs. (37)
and (38). The zero-up-crossing criterion has been used to define the wave charac-
teristics of the sea surface elevations.

Analyzing table 2,a first significant difference can be noted between the
nondeterministic amplitude simulations(NSA) and deterministic amplitude simulations
(DSA). This is because the double variability of the NSA simulator has influence
on the standard deviation of the parameters calculated, A second difference can
be indicated with respect to the increase of the dispersion of the z - of surface

rms

elevations simulated by deterministic amplitude simulators when the number of wave



components increases. Thirdly, it can be noted from the wave period parameter
obtained from realizations generated by Bl and B2 simulators‘that time series
produced by the simulator denominated Bl achieve wave periods which are signifi-
cantly larger than the ones generated by simulator B2. Other significant differences
may be observed because these are realizations which correspond to different

stochastic processes as shown in Fig. 3. The simulation parameters are the same

=0, f = 0.5 Hz,
‘max

for all simulators: variance spectrum PMK(ﬁp: 0.0635 Hz), fmln
e -

and At= 0.5 sec .

The speétral leakage in the frequency domain must be noted before analyzing
the behaviour of the sea variability. Each wave component considered is only
extended by a finite duration, N At, which does rot contain an exact number of
waves., This will be analyzed in the frequency domain as if it were a superposition
of harmonic wave components with phases and amplitudes related to phase, wave
frequency and spectral window corresponding to the chosen rectangular time window.
From the frequency point of view, the rms of sea elevations calculated from
deterministic amplitude simulators show some variability corresponding to the
multicomposition of harmonic waves with amplitudes and phases which are, to some
respect, random and deterministic. For instance, a DSA-FFT simulator can generate
only periodic sequences with exact rms, but it is possible to obtain variability
by chosing limited simulations from other larger periodic realizations generated
with a DSA simulator. Realizations of 1024 points were extracted from time series
of 8192 points generated by a DSA simulator, and the relative mean and standard
deviation for rms were estimated in 0.985 and 0.064 respectively(forty realizations).
This phenomen of variability produced by the limited duration of the time series
is clearly observed by the increase of the variability produced by simulators
with a larger number of wave components.

By contrasting with actual sea rccord, a reasonable measure of distortions
would be obtained for each numerical simulator. However, sea surface movement
is a nonstationary process and the actual available rccords are usually extended

S S . % 5
for less than Twenly minutes. Goda(14) pointed out the great wave variability of
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1he sea ficld and dissuaded the use of deterministic amplitude simulators such as

. Bl or B2, With nondeterministic amplitude component simulators based on the

B1-200 model Goda(12) compared the variability of simulated wave parameters to
the ones obtained from actual swell data, and he observed that the values of
coefficient of variation for wave heights of the observed swell were larger than
the numerical model. The variability(standard deviation) of rms sea elevations,
Z o and significant wave height, Héf were 6.8% and 7.6% respectively, which
contrasted Goda's numerical predictions of 5.1% and 5,5% for simulated records

of 120 waves. The realizations generated by NSA-FFT simulator produced a vériability
of rms elevation and significant wave height of about 5% contrasting Goda's 6.8%

and 7,6%. But one should consider that the peakedness of real wave spectra mecasured
by Goda(12) was higher than PMK spectrum, and consequently the number of degrees

of freedom considered for simulation was excessive. The Eq. (47) can clearly

give an idea of the variability expected from a NSA simulation and the influence

of the spectral shape on the wave variability.

Donelan and Pierson(7) have studied the variability of spectra of wind-
—generated waves of two sets of wave data: one from a controlled laboratory
experiment and the other from a fixed tower in lLake Ontario. They concluded that
the theory of stationary Gaussian processes provides accurate estimates of the
sampling variability. Therefore the simulations via NSA-FFT éimulator can be
acceplted in order to describe the random sea variability. But the sea spectrum
to be simulated must agree with the actual process, especially for the number
of degrees of freedom to be considered, The number of degrees of freedom for a

realization generated by a NSA simulator can be calculated
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vhere 1 ds the number of degrecs of freedom to be considered in order to calculate
[0

the variability of the variance of the process, N is the number of points in the

sequence analyezed or simulated, At the time interval, Sﬁﬁ(f) the sea spectrun
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estimated or tobe simulated, and m_. the variance of the process. The standard
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deviation for the z. can be estimated by
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With respect to the first term in Eq. (49), it may be noted that the parameter
expressed in Eq. (50) has time dimension and, to some degree, is a mesure for

the peakedness of the sea spectrum and the variability of its stochastic realizations

£,
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This parameter remains approximately constant whenever the time interval

At is sufficiently small.

SUMMARY AND CONCLUSIONS

The numerical simulation techniques for Gaussian ergodic stochastic models
applied to the description of random ocean wave field have been analyzed. The
continuous cne-sided variance spectrum of the sca surface elevations and the
series representation with trigonometric functions have been chosen as the two
basic elements for description and simulation of random sea processcs. The rela-
tionships among directional, one—dimensional, deterministic and nondeterministic
amplitude component simulation techniques have been studied from the perspective
of a practical numerical simulation.

From a general method for the creation of all numerical linear one-dimensional
simulators, each numerical wave summation technique has been described. The analysis
has been made in the time and frequency domain, dividing the numerical simulator
construction into five steps: the establishment of a variance spectrum which is
possible to simulate; the division into band spectra; the choice of a representative
frequency of band; the peneration of pseudo-randon sequences; and the choice of
algorithms for computing the numerical wave superposition technique chosen. This

_ ot
approach to understanding the wave superposition techriques os simulation permits

one to comparc.ihe diffecrent numerical techniques from a unique gencral method.

™



The undecirable distortions associated with the wave composition simulators
are analyzed noting the lack of information aboul the theoretical process refered
- to from each step in this simulator constructicn method. A discussion of the choice
of a cut-off-frequency for a theoretical sea elevation spectrum and the relationships
among spectral moments from derivative stochastic processes permits one to show the
inconsistency of some spectral asymptotic tails for each range of frequency commonly
used. All methods of frequency average show serious theoretical inconsistencies in
order to carry out correct simulations of a process defined by a continuous spectral
function., It is impossible to generate randor sequences with a digital computer, so
the statistical tests for uniform distribution and independence permit one to
guarantee, to some degree, the randomness of the sequences used for simulation.

Some efficient algorithms shown can indirectly reduce the level of distortions
associated with each numerical simulation technique such as the FFT algorithms.

Three criteria for qualifying one-dimensional wave superposition simulators
are justified in order to choose the most appropriate for each numerical experiment,
In order to obtain nonperiodic realizations, it is necessary to choose nonharmonic
frequencies. And in order to obtain nondeterministic time series of N points, N/2
wave components are necessary. The spectral moments of the process simulated must
be as approximate to the theoretical ones as possible. And finally, the time-consumed
is the last condition to be considered.

The contrast of some numerical simulation techniques commonly used in Monte
Carlo experiments have been analyzed in the frequency domain to support the vision
of observed distortions and the arbitrariness of some numerical experiments whick.
simulation techniques previously designed have used. For a correct representation
of the variability of ocean waves, nondeterministic amplitude component simulators
must be used, and the peakedness of the sea spectrum must be considered in order

to define the number of degrees of freedom of the estimated or theoretical sea spectrum,
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APPENDIX II .- NOTATION

The following symbols are used in this paper

Am = Complex valued fast Fourier transform (FrT) coefficient;

B = backward shift operator;

¢ - pandom variable chi square distributed with two degrees of freedom;
x % (2);

dﬁ = parameter related to wave frequency and time interval;

fé = cut-off frequency;

fm = frequency of the wave component:;

f&, fé+1 = frequency limits of a band spectrum;

fmax’ fmin - maximum and minimum frequency limits;

fp = peak frequency

g = pravitational constant;

h = water depth;

Hm;x = maximum wave height;

Hé = significant wave height;

HO.S = median wave height;

H(T) = frequency response function;

i = Vr:I_ = imaginary unit number;

J = large integer, usually a large power of 2 or 10;

k = summation index;

km = magnitude of wave number;

L - number of direction components for each frequency;

1 = summation index;

M = number of wave compcnents;

m = Trequency domain summation index;

mj = jth spectral moment;

N = pumber of data points of the time series;

w
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Snn
o
Spene ()

°n

(f)

Hr{H (f)

time domain summation index;
autoregressive order of the ARMA model;
probability density function;
moving-average order of the ARMA model;
amplitude of the wave component;
. . \,.'g\(:ﬁ_‘w“.(, ok
continuous one-sided power spectrum for waler surface elevations;
. _ variance .
continuous one-sided power spectrum for water surface vertical
velocities;
VArLance
" -
continuous one-sided pewer spectrum for water surface vertical
accelerations;
variance
continuous one-sided power spectrum for water surface kth derivative
of the elevation function; )
varianceé
continuous one-sided directional power spectrum for water surface
elevations;
mean wave period of a realization;
\/n1/m2 = mean wave period parameter;
0
ndod J-1
rational pseudo random number between 0 and R
integer pseudo random number between O and J-1;
random number uniformly distributed in the interval betweml[- ,-];
white noise time series;
horizontal coordinates;
onedimensional time series;
DFT(z ), discrete Fourier transform of z_;
n
angle of directional component;
angle of reference direction;
coefficient;
frequency interval;

component interval;



Subscript

nn

= time interval;

= angle interval of directional component;
= Dirac's delta function;

= spectral bandwidth parameter;

= transfer function}

= kth autoregressive parameter;

= mth moving-average parameter;

= waler surface elevation;

= random phase angle;

= integers between 0 and (J-1);

= 3.,14159265...;

= standard deviation;

= chi square distribution with j degrees of freedom; and

= 25 f = radian frequency.

= complex conjugate value; and

= first, second,..., kth derivative.

variance

= power spectrum for water surface elevation, 1 ;
\;m’ianc(‘

= power spectrum for kth derivative of water surface elevation,rf H
= jth moment;

= summaltion index;

= summation index;

= summation index; and

= summation index.
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LIST OF CAPTIONS

FIG. 1.- Schemalic representation in the time and frequency domain of the change

in the information about the band spectrum process to be simulated.

FIG. 2.- Schematic representation in the frequency domain of the Goda, Borgman,

and DSA-FFT simulation techniques.

FIG. 3.— Relative spectral moments corresponding to B1,B2 and DSA simulation

techniques refering to theoretical ones.

N \2)

TABLE 1.~ Influence of the cut-off-frequency on the parameters %ﬁt qﬁ” qﬁj,

and @a.

TABLE 2.- Mean and standard deviation estimates of relative wave statistics

from sequences generated by different numerical random sea simulators.
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TABLE 1.-Influence of the cut-off frequency on the parameters o%,oﬁ;,

o ,€ and T .
fo)

2
r)”

2

Cut-off frequency, in
hertzs (1)

o%, in square feet (2)

2
anl, in square feet

per square second(3)

2 .
opn, in square feet

per second (4)
€ (5)
‘To’ in seconds (6)

0.200

65.66

18.24

.22

0.600

11.92

0.333

66.41

19.96

12.21

0.713

11.46

0.400

66.47

20.25

13.74

0.742

11.38

0.500

66.50

20.50

15.62

0.772

11.32

1.000

66.52

20.81

21.42

0.834

11.23

4.000

66.52

20.91

32.66

0.895

11.21

Note: PMK spectrum, peak frequency f

2 —
moment mO = 66.5 sq ft (6.19 m ). TO

= 0.0635 Hz, zeroeth spectral

(m /m
o

1

)A

o0



TARLE 2.-Mean and standard deviation estimates of relative wave statistics

from sequences generated by different numerical random sea simulalors.

Simulator rms elevations significant mean wave mean wave | maximum wave
=== wave height height period height
Number of z H H T H
components rm? B " e 0s8 . ~ L
(m )/2 4 (m )4 (8-1n2'm )é (m /m )/2
0 0 0 o 2 max o
(1) (2) (3) (4) (5) (6)
bB1—64 1.007(0.046) | 0.965(0.044) | 0.995(0.118) | 1.021(0.063) | 0.896(0.099)
B2-64 1.006(0.046) | 0.956(0.045) | 0.963(0.130) | 0.967(0.06%) | 0.820(0.102)
B1-128 0.997(0.064) | 0.951(0.069) | 0.985(0.112) | 1.017(0.060) | 0.888(0.102)
B2-128 0.997(0.065) | 0.953(0.067) | 0.972(0.092) | 0.995(0.050) | 0.895(0.104)
B1-256 0.995(0.074) | 0.955(0.079) | 0.975(0.110) | 1.017(0.056) | 0.905(0.099)
B2-~256 0.993(0.074) | 0.951(0.079) | 0.977(0.114) | 0.999(0.058) | 0.906(0.111)
B1-512 1,006(0.082) | 0.964(0.086) | 0.977(0.107) | 1.021(0.054) | 0.907(0.140)
"B2-512 1.005(0.082) | 0.964(0.087) | 0.978(0.119) | 1.014(0.064) | 0.900(0.142)
DSA-(256) 1.000(0.000) | 0.954(0.019) | 0.985(0.094) | 1.017(0.061) | 0.926(0.078)
NSA-(256) 1.022(0.072) | 0.979(0.074) | 1.014(0.106) | 1.034(0.063) | 0.949(0.136)
°B1-64 0.999(0.006) | 0.953(0.010) | 0.985(0.032) | 1.013(0.019) | 0.903(0.C70)
B2-64 0.999(0.006) | 0.951(0.009) | 0.968(0.029) | 0.955(0.019) | 0.893(0.082)
B1-128 1.001(0.006) | 0.957(0.012) | 0.987(0.034) | 1.013(0.015) | 0.887(0.069)
B2-128 1.001(0.009) | 0.955(0.011) | 0.977(0.030) | 0.988(0.014) | 0.899(0.074)
B1-256 1.003(0.013) | 0.959(0.016) | 0.987(0.029) | 1.009(0.014) | 0.921(0.092)
B2-256 1.003(0.013) | 0.958(0.015) | 0.977(0.029) | 0.995(0.016) | 0.924(0.084)
B1-512 1.001(0.022) | 0.954(0.023) | 0.983(0.035) | 1.005(0.016) | 0.915(0.089)
B2-512 1.001(0.022) | 0.953(0.024) | 0.985(0.036) | 1.000(0.019) | 0.905(0.088)
DSA-(2048) 1.000(0.000) | 0.955(0.008) | 0.985(0.029) | 1.006(0.015) | 0,921(0.073)
NSA-(2048) 0.998(0.033) | 0.954(0.033) | 0.982(0.041) | 1.003(0.019) | 0.900(0.084)
1 1
a The theoretical mean maximum wave height is (H ) =(8m )é{}lnL )/2 i 0'57121536
ma o] (o] y W 2(lnL )/z ]

where L = N At/(m /m )%
W . o 2

b Number of Data Points, N = 1024 (512 sec)

¢ Number of Data Points, N

= 8192 (4096 sec)

Note:The theoretical sea spectrum is the same in all cases: PMK with peak fre-
i

guency
oy fc

0.0635 Hz, zerceth spectral momcnt'mo = 66.5 sq ft, and cutof
D
= 0.5 Hz

Forty realizations havebeen made. Time interval At = 0.5 sec

o




