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Highlights: 

- Wave overtopping involves the structural response of the breakwater, whereas 

standard climatic or geometric variables do not consider the breakwater 

performance. 

- 274 wave overtopping small-scale tests were used to obtain new wave force 

and overturning estimators with 30%<rMSE<41%. 

- Horizontal wave forces and overturning moments are highly influenced by 

wave overtopping; the higher the wave overtopping rates, the lower the crown 

wall stability. 
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- Up-lift pressure is dependent on the foundation level; the higher the 

foundation level, the lower the up-lift pressure. 

- If wave overtopping is one order of magnitude higher, the wave forces and 

overturning moments on the crown wall increase between 11% and 60%, 

considerably reducing the crown wall stability. 

Abstract 

In this study, seven input variables are used to estimate wave forces on the crown 

wall, and explanatory variables are ranked using neural network techniques. 274 small-

scale 2D tests, including both wave overtopping and pressure on crown-wall 

measurements, were used to calibrate the wave force predictors. Wave overtopping 

(log Q) was the most relevant variable to estimate horizontal wave forces and 

overturning moments, while the relative foundation level (Fc/L0p) was the most 

relevant variable to estimate wave up-lift forces. The new wave force estimators 

showed prediction errors slightly higher than the formulas given in the literature, but 

using fewer parameters and explanatory variables. The range of application of the new 

formulas is 1.67< Rc/(γf Hm0)<6.55, 1.39< 𝜉𝜉0p<7.77, 0.36< γf Ru0.1%/Rc <1.41, 0.00<(Rc-

Ac)/Ch < 0.59, 2.64 <�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐< 6.54, 0.00< Fc/L0p<0.03 and -6.00<logQ<-2.78. Compared 

to pressure on crown walls, the mean wave overtopping rate is relatively easy to 

measure in small-scale tests and prototypes. The new estimators of wave forces on the 

crown wall can be used to indirectly calculate forces on models when only overtopping 

rates are measured. If wave overtopping is one order of magnitude higher, the wave 
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forces and overturning moments on the crown wall increase between 11% and 60%, 

considerably reducing the crown wall stability. 

1. Introduction 

The crest elevation affects construction costs, overtopping rates and the visual impact 

of the breakwater. The design of mound breakwaters must ensure lower overtopping 

discharge than the tolerable limits for port operations and structural stability. A 

concrete crown wall is commonly designed to increase the crest freeboard and 

decrease the consumption of quarry materials. The crown wall also improves the 

accessibility to the breakwater and must withstand wave loads and other forces. Fig. 1 

illustrates a cross section of a conventional mound breakwater with a crown wall and 

toe berm. 

 

Fig. 1. Conventional mound breakwater cross section.  

Rc is the crown wall crest freeboard; Ac is the armor crest freeboard; Gc is the armor 

crest berm width; cotα is the armor slope; h is the water depth in front of the 

breakwater; ht is the water depth at the toe of the breakwater; Bt is the width of the 

toe berm, and γf is the roughness factor to consider the type of armor.  
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Hamilton and Hall [1] noted that during exposure to moderate wave storms, the 

magnitude of the wave forces on the crown wall was roughly proportional to wave 

height. However, once the waves were large enough to generate significant wave 

overtopping rates, the wave forces on the crown wall seemed to have an upper limit 

that remained approximately constant and independent of the wave height.  

Pedersen [2] conducted a sound analysis of wave overtopping and wave forces on 

crown walls of mound breakwaters. When the overtopping rate was significant, wave 

forces increased roughly proportional to the square of the crown wall height. When 

the crown wall crest freeboard was high enough to prevent overtopping, forces 

maintained an approximate constant value.  

From the conceptual point of view, wave run-up over a slope may be considered a 

common cause for both wave overtopping and wave forces on crown walls. Wave 

overtopping and loads on crown walls are relevant if the virtual run-up is higher than 

the crown wall crest freeboard. Günback and Ergin [3], Pedersen [2] and Martín et al. 

[4] used virtual wave run-up to estimate wave forces on crown walls. It is obvious that 

wave forces on crown walls are related to the same variables that affect wave 

overtopping, such as the crown wall crest freeboard, crest berm width or type of 

armor. This study focuses attention on the explicit relationships between wave forces 

on crown walls and wave overtopping discharges. From the conceptual point of view, 

this study changes the virtual wave run-up for the wave overtopping as the key 

variable to estimate wave forces and overturning moments on the crown wall.  It is not 

possible to measure virtual run-up and, compared to wave forces on crown wall, 

overtopping discharge can be measured easily in small-scale tests and prototypes. 
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Therefore, the overtopping rate is a reasonable explanatory variable to estimate forces 

on the crown wall.  

The formulas given in the literature to estimate wave forces and overturning moments 

on crown walls do not explicitly consider certain parameters such as the core 

permeability which affects wave run-up and overtopping. Moreover, existing methods 

to estimate wave forces on crown walls show high dispersion on results when using 

different formulas (see Negro et al. [5]). Wave overtopping is a variable relatively easy 

to define and measure by researchers and practitioners with widely accepted 

prediction tools such as the CLASH Neural Network (see Van Gent et al. [6] and 

Deltares [7]).  

In this study, new formulas are developed to estimate wave forces on crown walls, 

based on the mean wave overtopping discharges, using 274 data from small-scale 2D 

tests conducted by Pedersen [2] and Molines [8]. The new formulas are valuable to 

design the crown geometry of mound breakwaters considering both overtopping 

discharges and crown wall stability. This paper is structured as follows. First, the 

literature related to wave overtopping and wave forces on crown walls is reviewed. 

Second, a list of possible explanatory variables for wave forces on crown walls is 

analyzed. Third, the experimental data are described in detail. Fourth, a neural 

network technique to develop new formulas is presented and the new wave force and 

overturning moment estimators are calculated. Fifth, the new formulas are compared 

with existing ones. Sixth, a sensitivity analysis is conducted and the influence of mean 

wave overtopping discharges on wave forces is characterized. Seventh, an example of 

application is provided and finally, general conclusions are drawn. 
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2. Literature review on wave overtopping and wave loads 

2.1  Wave overtopping on mound breakwaters 

Several prediction methods are given in the literature to estimate wave overtopping 

on mound breakwaters, from simple explicit formulas to complex neural network 

tools. Eq. (1) proposed by Van der Meer and Janssen [9] is a well-known formula in 

which dimensionless wave overtopping is dependent on the crown wall crest 

freeboard (Rc), the significant wave height at the toe (Hm0) and two reduction factors to 

account for the armor type and oblique wave attack (γf and γβ, respectively).   











⋅⋅−=

⋅ βγγ fm

c

m
H
R

Hg

q 16.2exp2.0
0

3
0

       (1) 

Pedersen [2] tested rock-, cube-, and Dolos-armored breakwaters with irregular waves. 

This author concluded that wider crest berms reduced wave overtopping. Eq. (2) 

summarizes the prediction method reported in Pedersen [2] with f(rocks)=f(Dolos)=1, 

f(cubes, 2-layer randomly placed)=3. 

𝑞𝑞

�𝑔𝑔𝐻𝐻𝑚𝑚0
3

= 3.2 · 10−5 𝐿𝐿0𝑚𝑚2

𝑇𝑇𝑚𝑚�𝑔𝑔𝐻𝐻𝑚𝑚0
3

𝐻𝐻𝑠𝑠5

𝑅𝑅𝑐𝑐3𝐴𝐴𝑐𝑐𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
· 𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)     (2) 

where Tm is mean wave period, L0m=gTm2/(2π) is the deepwater wavelength, Hs is the 

significant wave height at the toe, Ac, Rc, Gc and cotα are defined in Fig. 1. 

Eq. (3) given by the EurOtop [10] manual uses the reduction factor Cr given by Besley 

[11] to include the influence of a permeable crest berm (Gc) on wave overtopping if 

Gc>3Dn50 (where Dn50 is the armor unit equivalent cube size length or nominal 

diameter).  
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Smolka et al. [12] measured wave overtopping and wave loads on the crown wall 

based on small-scale 2D tests with double-layer randomly-placed cube-armored and 

single- and double-layer Cubipod-armored mound breakwaters in non-breaking 

conditions. The overtopping formula proposed by Smolka et al. [12] is: 






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

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ξ 116.227.353.0exp2.0
0
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0

    (4) 

where ξ0p=tanα/[2πHm0/gTp2]1/2 is the Iribarren number corresponding to the peak 

period (Tp), γf [cube, 2-layer] = 0.50, γf [Cubipod, 1-layer] = 0.46 and γf [Cubipod, 2-

layer] = 0.44, Ac and Rc are defined in Fig. 1.  

Eq. (5) given by Van de Meer and Bruce [13] and EurOtop [14] improved the 

performance of Eq. (1) in the range 0<Rc/Hm0<0.5, for non-breaking conditions: 


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Van der Meer and Bruce [13] and EurOtop [14] noted that Eq. (5) provided overtopping 

estimations similar to Eq. (1), but better estimations for low and zero crown wall 

freeboards (Rc/Hm0<0.5).  

The CLASH Project [15] collected more than 10,000 overtopping experimental data and 

proposed a neural network tool (see Deltares [7]) to accurately predict wave 

overtopping for any kind of breakwater (see Van Gent et al. [6]). Molines and Medina 

[16] proposed an overtopping estimator given by Eq. (6) that emulated the behavior of 
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the CLASH Neural Network (see Van Gent et al. [6]) with explicit relationships between 

explanatory variables and wave overtopping discharges.  






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
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Where: 

𝝀𝝀𝟐𝟐 = �𝟏𝟏.𝟐𝟐𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎�𝝃𝝃𝟎𝟎,−𝟏𝟏�𝑹𝑹𝒄𝒄 𝑯𝑯𝒎𝒎𝟎𝟎⁄ �� (6b) 
𝝀𝝀𝟑𝟑 = [𝟏𝟏.𝟎𝟎 + 𝟐𝟐.𝟎𝟎𝒆𝒆𝒆𝒆𝒆𝒆(−𝟑𝟑𝟑𝟑𝑹𝑹𝒄𝒄 𝒉𝒉⁄ )]       
 (6c) 
𝝀𝝀𝟒𝟒 = 𝒎𝒎𝒎𝒎𝒎𝒎[𝟎𝟎.𝟗𝟗𝟗𝟗; (𝟎𝟎.𝟖𝟖𝟖𝟖 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝑮𝑮𝒄𝒄 𝑯𝑯𝒎𝒎𝟎𝟎⁄ )]      
 (6d) 

𝝀𝝀𝟓𝟓 = (𝟎𝟎.𝟖𝟖𝟖𝟖 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝑨𝑨𝒄𝒄 𝑹𝑹𝒄𝒄⁄ )         (6e) 

𝝀𝝀𝟔𝟔 = �𝒎𝒎𝒎𝒎𝒎𝒎
[𝟏𝟏; (𝟏𝟏.𝟐𝟐 − 𝟎𝟎.𝟓𝟓𝑹𝑹𝒄𝒄 𝒉𝒉⁄ )]    𝒊𝒊𝒊𝒊 𝑩𝑩𝒕𝒕 > 𝟎𝟎

𝟏𝟏                                                 𝒊𝒊𝒊𝒊 𝑩𝑩𝒕𝒕 = 𝟎𝟎       (6f) 





−−
−−

=
wavescrestedshortfor
wavescrestedlongfor

β
β

γ β 0058.01
0077.01

  valid for β≤60º     (6g) 

where ξ0,-1=tanα/[2πHm0/gT-1,02]1/2 is the Iribarren number corresponding to T-1,0=m-

1/m0, β is the angle of wave attack, and Rc, Ac, Gc, h, Bt are defined in Fig. 1.  

Molines and Medina [17] pointed out that the roughness factor absorbs the 

information not taken by the explanatory variables; a methodology to calibrate the 

roughness factor was proposed given a specific overtopping estimator and database. 

The roughness factors were calibrated for the formulas given by Eq. (1), Eqs. (3) to (5) 

and the CLASH Neural Network. In this study, these overtopping estimators are used 

with the optimum roughness factors calculated by Molines and Medina [17]. Eq. (6) is 

applied here using the optimum roughness factors calculated by Molines and Medina 

[16]. 



9 

 

Table 1 describes the explanatory variables used in Eqs. (1) to (6). Eq. (1) considers 

only 4 variables while Van Gent et al. [6] consider 11 variables; in all cases, the 

influence of Rc and Hm0 on wave overtopping is clear. 

Overtopping 
estimator 

Explanatory variables 
Rc Ac Gc h ht Bt cotα γf Hm0 Tm Tp β 

Eq. (1) X       X X   X 
Eq. (2) X X X    X  X X   
Eq. (3) X  X     X X   X 
Eq. (4) X X     X X X  X  
Eq. (5) X       X X   X 
Eq. (6) X X X X   X X X X  X 
CLASHNN X X X X X X X X X X  X 
Table 1. Explanatory variables to estimate wave overtopping rates. CLASHNN identifies 

the CLASH Neural Network (see Van Gent et al. [6]). 

2.2  Wave forces on crown walls 

Several prediction methods are given in the literature to calculate wave forces on 

crown walls, usually associated with a 0.1% probability of exceedance (see Negro et al. 

[18]); however, these methods show significant discrepancies (see Molines [19] and 

Negro et al. [5]).   

USACE [20] described the methods reported by Jensen [21] and Pedersen [2] to 

evaluate wave forces on crown walls. The formula of Jensen [21] given by Eq. (8) is 

easy to apply but depends on calibrating two coefficients (A1 and A2).  

𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏% = �𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐
𝐇𝐇𝒔𝒔
𝑨𝑨𝒄𝒄
� 𝝆𝝆𝝆𝝆𝑪𝑪𝒉𝒉𝑳𝑳𝟎𝟎𝟎𝟎         (8) 

where Fh0.1% is the horizontal wave force exceeded by 0.1% of the waves, Hs is the 

significant wave height at the toe, Ac is defined in Fig. 1, ρ is the water mass density, g 

is the gravity acceleration, Ch is the crown wall height, L0p is the deepwater wavelength 
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associated to Tp and A1, A2 are fitted coefficients which depend on the armor slope, 

wave obliquity, core permeability and crown geometry.  

Pedersen [2] conducted small-scale 2D tests to analyze wave loads on crown walls 

caused by irregular non-breaking waves. He tested double-layer randomly-placed rock 

and Dolos armors as well as double-layer flat- and randomly-placed cube armors. 

According to Pedersen [2] the type of armor did not significantly influence wave forces 

on crown walls. A conventional cross section similar to that depicted in Fig. 1 was 

tested with tests charactersitics: 1.1< 𝜉𝜉0𝑚𝑚 =tanα/[2πHm0/gTm2]1/2 < 4.2; 0.5<Hs/Ac<1.5; 

1<Rc/Ac<2.6; 0.3<Ac/Gc<1.1 and 1.5<cotα<3.5. Fig. 2 and Eq. (9) describe the formula 

given by Pedersen [2] to calculate wave forces on the crown wall. The wave virtual run-

up was estimated using Eq. (9g) given by Van der Meer and Stam [22]; the use of other 

virtual run-up formulas would lead to different fitted coefficients. 

 

Fig. 2. Variables used by Pedersen [2].  

𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏% = 𝟎𝟎.𝟐𝟐𝟐𝟐�𝑳𝑳𝟎𝟎𝒎𝒎
𝑮𝑮𝒄𝒄
�𝒑𝒑𝒎𝒎 ∙ 𝒚𝒚𝒆𝒆𝒆𝒆𝒆𝒆 ∙ 𝟏𝟏.𝟔𝟔 + 𝒑𝒑𝒎𝒎

𝟐𝟐
𝑽𝑽(𝑨𝑨𝒄𝒄 − 𝑭𝑭𝒄𝒄)�     (9a) 

𝑴𝑴𝑴𝑴𝟎𝟎.𝟏𝟏% = 𝟎𝟎.𝟓𝟓𝟓𝟓�(𝑨𝑨𝒄𝒄 − 𝑭𝑭𝒄𝒄) + 𝒚𝒚𝒆𝒆𝒆𝒆𝒆𝒆�𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏%                    (9b) 

𝑷𝑷𝑷𝑷𝟎𝟎.𝟏𝟏% = 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎𝒑𝒑𝒎𝒎         (9c) 

where: 
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𝑝𝑝𝑚𝑚 = 𝜌𝜌𝜌𝜌(𝑅𝑅𝑢𝑢0.1% − 𝐴𝐴𝑐𝑐)         (9d) 

𝑉𝑉 = �
𝑉𝑉2

𝑉𝑉1�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉2 < 𝑉𝑉1
1       𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉2 ≥ 𝑉𝑉1

          (9e) 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = min �0.5 ∗ 𝑅𝑅𝑢𝑢0.1%−𝐴𝐴𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠15º
cos (𝛼𝛼−15º)

; (𝑅𝑅𝑐𝑐 − 𝐴𝐴𝑐𝑐)�      (9f) 

𝑹𝑹𝒖𝒖𝟎𝟎.𝟏𝟏% = �
𝟏𝟏.𝟏𝟏𝟏𝟏𝑯𝑯𝒔𝒔𝝃𝝃𝟎𝟎𝒎𝒎  𝝃𝝃𝟎𝟎𝒎𝒎 ≤ 𝟏𝟏.𝟓𝟓
𝟏𝟏.𝟑𝟑𝟑𝟑𝑯𝑯𝒔𝒔𝝃𝝃𝟎𝟎𝒎𝒎𝟎𝟎.𝟓𝟓𝟓𝟓  𝝃𝝃𝟎𝟎𝒎𝒎 ≥ 𝟏𝟏.𝟓𝟓 with a maximum 𝑹𝑹𝒖𝒖𝟎𝟎.𝟏𝟏%

𝑯𝑯𝒔𝒔
≤ 𝟐𝟐.𝟓𝟓𝟓𝟓   

 (9g) 

where Fh0.1% is the horizontal wave force exceeded by 0.1% of the waves, Mh0.1% is the 

overturning moment generated by horizontal forces exceeded by 0.1% of the waves, 

Pb0.1% is the up-lift pressure at the seaward corner of the crown wall base exceeded by 

0.1% of the waves, Ru0.1% is the virtual wave run-up, Ac, Rc, Gc are defined in Fig. 2, Fc is 

the foundation level,  L0m=gTm2/(2π) is the deepwater wavelength, 

ξ0m=tanα/[2πHm0/gTm2]1/2 is the Iribarren number corresponding to mean period (Tm) 

and V1 and V2 are two coefficients dependent on the cross-section geometry (see Fig. 

2). 

Martín et al. [4] proposed a method to calculate wave forces on crown walls for the 

case of regular waves using the virtual wave run-up estimations given by Losada and 

Giménez-Curto [23]. The method is applicable to those crown walls of mound 

breakwaters that are not affected by impulsive wave pressures, i.e. those in which the 

waves are broken or run up on the slope. The tested cross-section was a model of the 

Príncipe de Asturias Breakwater at the Port of Gijón (Spain) with 120- and 90-tonne 

cubes randomly-placed in the armor and core, respectively, which is a relatively 

permeable structure compared to conventional mound breakwaters. Martín et al. [4] 

introduced the influence of the type of armor through coefficients calibrated using the 

virtual run-up estimations. 



12 

 

Nørgaard et al. [24] tested double-layer rock armored breakwaters and adapted 

Pedersen’s formula [2] for shallow water conditions by modifying the virtual run-up 

term. Nørgaard et al. [24] also proposed using H0.1% both in shallow and deep water 

conditions to represent the virtual run-up exceeded by 0.1% of the waves in 

Pedersen’s formula. These authors proposed calculating Ru0.1% given by Eq. (9g) using 

Hs/H0.1% =0.538 given by the Rayleigh distribution rather than the measured Hs.  Finally, 

Nørgaard et al. [24] proposed Eq. (10) to calculate wave forces on crown walls: 

𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏% = 𝟎𝟎.𝟐𝟐𝟐𝟐�𝑳𝑳𝟎𝟎𝒎𝒎
𝑮𝑮𝒄𝒄
�𝒑𝒑𝒎𝒎 ∙ 𝒚𝒚𝒆𝒆𝒆𝒆𝒆𝒆 ∙ 𝟏𝟏.𝟎𝟎𝟎𝟎 + 𝒑𝒑𝒎𝒎

𝟐𝟐
𝑽𝑽(𝑨𝑨𝒄𝒄 − 𝑭𝑭𝒄𝒄)�     (10a) 

𝑀𝑀ℎ0.1% = �(𝐴𝐴𝑐𝑐 − 𝐹𝐹𝑐𝑐) + 1
2
𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒0.40�0.21�𝐿𝐿0𝑚𝑚

𝐺𝐺𝑐𝑐
�𝑝𝑝𝑚𝑚 ∙ 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 1.00�+ 1

2
(𝐴𝐴𝑐𝑐 − 𝐹𝐹𝑐𝑐) 1

2
0.21�𝐿𝐿0𝑚𝑚

𝐺𝐺𝑐𝑐
(𝑝𝑝𝑚𝑚𝑉𝑉(𝐴𝐴𝑐𝑐 − 𝐹𝐹𝑐𝑐))0.95  (10b) 

𝑃𝑃𝑃𝑃0.1% = 1.00𝑉𝑉𝑝𝑝𝑚𝑚         (10c) 

where L0m, Gc, pm, yeff, V, Ac, Fc are defined in Fig. 2 and Eq. (9). The range of 

application of this formula is 2.3< 𝜉𝜉0𝑚𝑚< 4.9; 0.5<Hs/Ac<1.63; 1<Rc/Ac<1.7; 

0.58<Ac/Gc<1.21; 0.19<Hm0/h<0.55 and 0.02<Hm0/L0m<0.041. 

Recently, Molines [8] proposed Eq. (11) to estimate wave forces on crown walls. The 

horizontal force exceeded only by the highest 0.1% of the waves, Fh0.1%, and the 

maximum up-lift pressure generated by the wave that caused Fh0.1%, hereafter 

PbFh0.1%, were estimated. Eq. (11) used the roughness factor (γf) to take into account 

the influence of the type of armor on wave forces on crown walls.  
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Fig. 3. Variables used by Molines [8]. 

Molines [8] proposed the use of Eq. (9b) given by Pedersen [2] to estimate the 

overturning moments due to horizontal forces, and a conventional triangular pressure 

distribution to estimate the overturning moments due to the up-lift forces. 

𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏%
(𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝑪𝑪𝒉𝒉

𝟐𝟐)
= �−𝟏𝟏.𝟐𝟐𝟐𝟐 + 𝟏𝟏.𝟖𝟖𝟖𝟖 𝜸𝜸𝒇𝒇𝑹𝑹𝒖𝒖𝒖𝒖.𝟏𝟏%

𝑹𝑹𝒄𝒄
+ 𝟎𝟎.𝟗𝟗𝟗𝟗 (𝑹𝑹𝒄𝒄−𝑨𝑨𝒄𝒄)

𝑪𝑪𝒉𝒉
+ 𝟎𝟎.𝟏𝟏𝟏𝟏�𝑳𝑳𝒎𝒎

𝑮𝑮𝒄𝒄
�
𝟐𝟐

  (11a) 

𝑷𝑷𝑷𝑷𝑭𝑭𝑭𝑭𝟎𝟎.𝟏𝟏%

(𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝑪𝑪𝒉𝒉 )
= 𝟏𝟏

𝟎𝟎.𝟓𝟓
�−𝟎𝟎.𝟖𝟖𝟖𝟖 + 𝟎𝟎.𝟕𝟕𝟕𝟕 𝜸𝜸𝒇𝒇𝑹𝑹𝒖𝒖𝒖𝒖.𝟏𝟏%

𝑹𝑹𝒄𝒄
+ 𝟎𝟎.𝟒𝟒𝟒𝟒 (𝑹𝑹𝒄𝒄−𝑨𝑨𝒄𝒄)

𝑪𝑪𝒉𝒉
+ 𝟎𝟎.𝟏𝟏𝟏𝟏�𝑳𝑳𝒎𝒎

𝑮𝑮𝒄𝒄
− 𝟎𝟎.𝟗𝟗 𝑭𝑭𝒄𝒄

𝑪𝑪𝒉𝒉
�
𝟐𝟐

 (11b) 

where Ru0.1% is the virtual wave run-up calculated using Eq. (9g) given by Van der Meer 

and Stam [21], γf [cube, 2-layer] = 0.50; γf [Cubipod, 1-layer] = 0.46, γf [Cubipod, 2-

layer] = 0.44, Tm=T01=m0/m1 is the mean wave period, 𝜉𝜉0𝑚𝑚 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/�2𝜋𝜋𝐻𝐻𝑠𝑠 (𝑔𝑔𝑇𝑇𝑚𝑚2)⁄ ) , 

𝐿𝐿𝑚𝑚 = 𝑔𝑔𝑇𝑇𝑚𝑚2

2𝜋𝜋
𝑡𝑡𝑡𝑡𝑡𝑡ℎ �2𝜋𝜋ℎ

𝐿𝐿𝑚𝑚
� and Rc, Ac, Gc, Fc, Ch, Cb are defined in Fig. 3.  

Hereafter, the following notations are used:  

- Fh=Fh0.1%/(0.5ρgCh2) is the dimensionless horizontal force exceeded by 0.1% of the 

waves. 

- Pb=Pb0.1%/(0.5ρgCh) is the dimensionless up-lift pressure exceeded by 0.1% of the 

waves.  

- PbF=PbFh0.1%/(0.5ρgCh) is the dimensionless up-lift pressure simultaneous with Fh0.1%. 
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- Mh=Mh0.1%/(ρgCh3) is the dimensionless overturning moment due to horizontal forces 

exceeded by 0.1% of the waves. 

- MhF=MhFh0.1%/(ρgCh3) is the dimensionless overturning moment due to horizontal 

forces simultaneous with Fh0.1%.  

Mh0.1% and Pb0.1% may not necessarily be caused by the same wave as Fh0.1% whereas 

PbFh0.1% and MhFh0.1% are generated by the same wave as Fh0.1%. 

For single-peaked wave energy spectra with a spectral shape similar to JONSWAP 

spectra, Tp ≈ 1.2Tm. Assuming a Gaussian error distribution N(μ,σ2), the reliability of Eq. 

(11a) and Eq. (11b) was given by N(Fh, 0.282) and  N(PbF,0.0852), respectively. The 

ranges of application of Eq. (11) are 0.355< 
𝛾𝛾𝑓𝑓𝑅𝑅𝑢𝑢0.1%

𝑅𝑅𝑐𝑐
 < 0.938, 0.067< (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)

𝐶𝐶ℎ
 <0.589, 

3.134< �𝐿𝐿𝑚𝑚
𝐺𝐺𝑐𝑐

 <6.539 and 0.013< 𝐹𝐹𝑐𝑐
𝐶𝐶ℎ

 <0.267. 

Pedersen [2], Martín et al. [4] and Nørgaard et al. [24]  assumed pressure continuity 

between the horizontal pressure at the lowest point of the frontal vertical wall and the 

vertical pressure at the seaward corner of the crown wall base. Pedersen [2] and 

Nørgaard et al. [24] estimated the maximum up-lift forces using the horizontal 

pressure at the lowest point of the vertical wall exceeded by 0.1% of the waves, which 

may not necessarily happen at the same time as the horizontal force exceeded by 0.1% 

of the waves. Molines [8] noticed that overestimations up to three times are possible 

when comparing the calculated up-lift force assuming pressure continuity with the 

measured up-lift force from small-scale 2D tests. It is convenient to point out that the 

foundation level (Fc) has a relevant impact on the up-lift forces: the higher the 

foundation level, the lower the up-lift forces.  
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Table 2 summarizes the explanatory variables used in Eqs. (9) to (11). Eqs. (9) and (10) 

consider eight variables while Eq. (11) considers ten variables; in all cases, the 

influence of Rc, Ac, Gc, Ch, Cb, cotα, Hm0 and Tm on wave forces on crown walls is clear. 

Explanatory variables listed in Table 2 are similar to those in Table 1 to estimate mean 

wave overtopping discharges. 

Wave force 
estimator 

Explanatory variables 
Rc Ac Gc Fc Ch Cb cotα γf Hm0 Tm 

Eq. (9) X X X  X X X  X X 
Eq. (10) X X X  X X X  X X 
Eq. (11) X X X X X X X X X X 

Table 2. Explanatory variables to estimate wave forces on crown walls. 

Each wave causes a maximum horizontal wave force on the crown wall which is not 

simultaneous with the maximum up-lift force and overturning moments. Furthermore, 

the wave causing the maximum horizontal force on the crown wall may not be the 

same wave causing the maximum up-lift pressure or overturning moment. Eqs. (9) and 

(10), based on the methodology followed by Pedersen [2], provide the extreme forces 

and overturning moments exceeded by 0.1% of the waves to be considered for the 

design, regardless of the simultaneity of events. Eq. (11), based on the methodology of 

Molines [8], provides the extreme horizontal wave force exceeded by 0.1% of the 

waves and the corresponding maximum up-lift pressure and overturning moment 

generated by the same wave. 

3. Explanatory variables affecting wave forces on crown walls 

In this study, seven dimensionless variables were considered as candidate explanatory 

variables which may influence wave forces on crown walls: 
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1. X1=Rc/(γf Hm0) is the corrected dimensionless crown wall freeboard; it is the 

most common and widely accepted dimensionless variable estimating 

overtopping discharges (see Eqs. 1 to 6). The effect of armor roughness is taken 

into account using the roughness factor (γf). The higher the γf, the higher the 

virtual run-up and overtopping rates. 

2. X2= 𝜉𝜉0p= tanα/[2πHm0/gTp2]1/2 is Iribarren’s number or the breaker parameter; it 

determines the type of wave breaking on the slope. The influence of Iribarren’s 

number on the virtual run-up estimation and forces on crown walls is clearly 

described in Pedersen [2], Nørgaard et al. [24] and Molines [8].  

3. X3=γf Ru0.1%/Rc is the corrected relative virtual wave run-up; virtual wave run-up 

is widely used in the literature (see Eqs. 9 to 11) to estimate wave forces on 

crown walls.  In this study, Eq. (9g) is considered.  

4. X4= (Rc-Ac)/Ch is the wall protection ratio; it is widely accepted that forces on 

the wall section protected by the armor are lower than forces on the 

unprotected wall. When X4=0, Rc=Ac, the crown wall is completely protected by 

the armor. 

5. X5=�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 is the relative crest berm width; this includes the effect of crest 

berm width.  It is clear that wider crest berms lead to lower wave overtopping 

rates and lower forces on the crown wall.  

6. X6=Fc/L0p is the relative foundation elevation; the ratio between the foundation 

elevation of the crown wall and the deepwater wave length, X6,  is similar to 

that used in Eq. (11). A higher relative foundation elevation reduces forces on 
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the crown wall. Therefore, the ratio between Fc and L0p may significantly 

influence the up-lift forces. 

7. X7=logQ=log (q/�𝑔𝑔𝐻𝐻𝑚𝑚03  ) is the dimensionless measured mean wave 

overtopping rate; this is a variable widely used in the literature to linearize the 

measured dimensionless mean overtopping rate, and it is closely related to 

virtual wave run-up. 

X7 not only is dependent on X1 to X6, but it is also a variable related to other 

structural characteristics (filter and core permeability, etc.) affecting virtual run-up 

and forces on crown walls. X7 is the only variable that may take into consideration 

the structural response of the breakwater in physical model tests, whereas X1 to X6 

are climatic or geometric variables which do not consider the breakwater 

performance. Fig. 4 shows a scheme of the dependency of wave overtopping and 

wave forces on crown walls, on selected explanatory variables (X1 to X6) and on 

other explanatory variables (X8 to Xn) such as core and filter permeability. X7=logQ 

is relatively easy to measure in small-scale tests and may be used to estimate wave 

forces on crown walls. 
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Fig. 4. Scheme of estimation of wave forces on crown walls. 

4. Database of wave forces on crown walls 

111 experimental tests with Q=q/(gHm03)0.5>10-6  and Fc[m]≥0 used by Pedersen [2] and 

163 experimental tests used by Molines [8] are considered in this study to analyze the 

relationship between the candidate explanatory variables detailed in Section 3 and the 

dimensionless horizontal, up-lift forces, and overturning moments. Table 3 provides 

the ranges of the candidate variables of Pedersen [2] and Molines [8] tests.  

Variable Pedersen [2] tests: 111 Molines [8] tests: 163 

[Min., Max.] [Min., Max.] 

Rc/(γf Hm0) [1.671, 5.555] [2.634, 6.547] 
𝜉𝜉0p [1.386, 5.744] [2.645, 7.766] 
γf Ru0.1%/Rc [0.438, 1.410] [0.355, 0.938] 
(Rc-Ac)/Ch [0.000, 0.545] [0.067, 0.589] 
�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 [2.638, 4.551] [3.399, 6.539] 
Fc/L0p [0.000, 0.013] [0.000, 0.030] 
Log Q [(-5.611), (-2.786)] [(-6.000), (-2.956)] 
Table 3. Pedersen [2] and Molines [8] datasets. 

(Physical model tests) 
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The relative Mean Squared Error (rMSE) given by Eq. (12) is used here to measure the 

goodness of fit of the estimator “e” when applied to target or observed data “o” (i = 

1,2,…,N). rMSE is the proportion of variance not explained by the estimator “e”. The 

lower the rMSE, the better. 

( ) ( ) ( )

( )YoVarN

YoYe

YoVar
YoMSE

YorMSE

N

i
ii

e
e ⋅

−
==
∑
=1

2

)(
     (12) 

where “e” refers to the estimator; Ye and Yo are the estimated and target 

dimensionless output variables, respectively; N is the total number of data and i is the 

data index (i=1,2,….,N).  

Fig. 5 illustrates the performance of estimations given by Eqs. (9) and (11) to Pedersen 

[2] and Molines [8] data within their application ranges.  
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Fig. 5. Comparison between measured and estimated dimensionless horizontal 
forces (a and b), overturning moments (c and d) and up-lift pressures(e and f) 
on crown walls for Eqs. (9) and (11). Pedersen’s [2] dataset is referred to as AAU 
and Molines’ [8] dataset is referred to as UPV. 
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5. Methodology to develop the new formulas 

A neural network (NN) is a multiparametric model which is able to capture complex 

nonlinear relationships between input explanatory variables and output variables 

(wave forces and moments on crown walls). Although a NN is a “black-box” and it is 

not easy to see any clear relationship between input and output variables, it is 

relatively easy (see Garrido and Medina [25] and Molines and Medina [16]) to find 

conventional explicit relationships between input and output variables when using the 

NN as a simulator. In this study, NN models are used to detect relationships between 

input and output variables to develop new formulas to estimate wave forces and 

overturning moments on crown walls. 

5.1  General outline 

Given the Pedersen [2] and Molines [8] datasets described in Section 4 and the seven 

candidate explanatory variables (X1 to X7) described in Section 3, a NN structure was 

considered with one input layer up to seven neurons (Ni=1 to 7), one hidden layer with 

seven neurons (Nh=7) and one output neuron (No=1) (see Fig. 6). The NN structures 

were referred to as INiHNhONo. Each NN was trained using the Early Stopping criterion 

to prevent overlearning (see MATLAB® [26]). 70%, 15% and 15% of the data were 

randomly selected for training, validating and testing, respectively. The number of free 

parameters of each NN model is given by P= No + Nh(Ni+ No +1); Table 4 shows the 

number of training data (T) and the number of free parameters (P) corresponding to 

the wave forces and overturning moments on the crown wall. Overlearning is likely to 

occur when P/T≥1; the Early Stopping criterion leads to rapid interruption of the 
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training process in those cases. The number of neurons in the hidden layer was Nh=7 to 

keep P/T<1 in the worst case (I7H7O1). 

 Fh0.1% Pb0.1%, Mh0.1% PbFh0.1%, MhFh0.1% 

N (# data) 274 111 163 
T (# training data)  192 78 115 
Ni (# input neurons) 1 to 7 
Nh (# hidden neurons) 7 
No (# output neurons) 1 
P (# parameters) 22 to 64 
P/T 11% to 33% 28% to 82% 19% to 56% 
Table 4. Number of data and number of parameters for each wave force. 

First, the process of ranking the relevance of each input variable started by selecting 

the I1H7O1 structure, with one single input variable. A NN model was trained for each 

one of the candidate variables (X1 to X7) used as a single input variable. The input 

variable associated with the I1H7O1 model with the minimum rMSEI1H7O1 (test data) 

was the most relevant explanatory variable. However, the NN training result was 

dependent on the data selected for training, validating and testing. In order to 

overcome the uncertainty associated to data selection, 1000 random resamples of the 

initial dataset were generated. The candidate variable Xj that showed the lowest 

rMSEI1H7O1(test data) in most of the 1000 resamples was selected as the best 

explanatory variable. The uncertainty in selecting Xj was described by the 5%, 50% and 

95% percentiles of rMSEI1H7O1(test data). 

Second, the I2H7O1 structure was considered for the NN model, fixing one input 

neuron with the first selected variable Xj and varying the second input with each 

candidate variable not previously selected (X1….Xj-1,Xj+1….X7). The second input variable 

associated with the I2H7O1 model with the minimum rMSEI2H7O1 (test data) was the 
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second most relevant explanatory variable. This method was repeated with I3H7O1, 

I4H7O1, etc. The process finished when all the candidate variables were included in 

the final I7H7O1 NN. The order of selecting the input variables indicated the ranking of 

relevance of explanatory variables. Fig. 6 shows the NN structures I1H7O1 and I2H7O1. 

  

Fig. 6. Two NN structures: a) I1H7O1 and b) I2H7O1. 

When the explanatory variables were ranked, simulations were conducted with the NN 

models to develop new estimators of wave forces on the crown wall. The flow-chart in 

Fig. 7 summarizes the methodology used for this study. 

b) a) 
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Fig. 7. Flow-chart to develop the NN models to estimate wave forces on the 
crown wall. 

5.2  Estimation of horizontal wave force: Fh=Fh0.1%/(0.5ρgCh
2). 

Table 5 and Fig. 8 show the 5%, 50% and 95% percentiles of the rMSEINiH7O1 (test data), 

the 90% confidence interval (CI) of the rMSEINiH7O1(test data), and the rMSE 
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corresponding to Eqs. (9) and (11) with solid and dotted red lines, respectively. The 

variable X7=logQ was selected first as the most relevant variable in 96% of the cases; 

logQ explained approximately 59% of the variance of the dimensionless horizontal 

wave forces, Fh. X2=ξ0p, X4=(Rc-Ac)/Ch and X1=Rc/(γf Hm0) were significant additional 

explanatory variables which explained an additional 20% of the variance of Fh. 

 Number of input variables (Ni) in the INiH7O1 model 

1 2 3 4 
Selected variable (Xj) X7=logQ X2=ξ0p X4=(Rc-Ac)/Ch X1= Rc/(γf Hm0) 

rMSE INiH7O1 (test data) 
5% 27.5% 20.3% 14.4% 11.9% 

50% 40.8% 30.7% 24.8% 19.8% 
95% 56.3% 47.4% 41.5% 40.4% 

Table 5. Ranking of the relevant variables affecting dimensionless horizontal wave 

force, Fh. 

 
 

Fig. 8. Influence of the number of input variables (Ni) on the rMSE of Fh.  

Analyzing Pedersen [2] and Molines [8] experimental data, Fig. 9a shows the 

predictions of the I1H7O1 model as function of X7=logQ, where an approximate linear 

relationship can be observed between logQ and Fh. Eq. (13a) fits the predictions 
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shown in Fig. 9a with median rMSE Eq. (13)=43%; Eq. (13) is an explicit estimator of 

horizontal wave forces on crown walls.  

𝐹𝐹ℎ = 𝐹𝐹ℎ0.1%
(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ

2)
= 3.6 + 0.6 · 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙      (13a) 

Assuming a Gaussian error distribution, the 90% CI associated to the estimations given 

by Eq. (13a) is calculated with  

𝐹𝐹ℎ ± 0.63                                                                                               (13b) 

Fig. 9b shows the predictions of the I2H7O1 model as a function of X7=logQ and X2=ξ0p, 

where an approximate linear relationship depending on X2=ξ0p is observed between 

logQ and Fh. Eq. (14) fits the predictions shown in Fig. 9b with median rMSE Eq. 

(14)=37%. 

𝐹𝐹ℎ = 𝐹𝐹ℎ0.1%
(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ

2)
= �0.27 · ln�𝜉𝜉0𝑝𝑝� + 0.1�(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 6) + 0.23   (14a) 

Assuming a Gaussian error distribution, the 90% CI associated to the estimations 

provided by Eq. (14a) is given by  

𝐹𝐹ℎ ± 0.59          (14b) 

Figs. 9c and 9d shows two examples of the predictions of the I3H7O1 model as a 

function of X7=logQ, X2=ξ0p, and X4=(Rc-Ac)/Ch. Eq. (15) fits the predictions shown in Fig. 

9c and 9d with median rMSE Eq. (15)=35%.  

𝐹𝐹ℎ = 𝐹𝐹ℎ0.1%
(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ

2)
= ��0.27 · ln�𝜉𝜉0𝑝𝑝� + 0.1�(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 6) + 0.23� �0.5 · (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)

𝐶𝐶ℎ
+ 1� − 0.15  (15a) 
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Assuming a Gaussian error distribution, the 90% CI associated to the estimations 

calculated with Eq. (15a) is given by  

 𝐹𝐹ℎ ± 0.57          (15b) 

  

  
Fig. 9. Dimensionless horizontal wave forces, Fh, predicted with models: I1H7O1 (a);  

I2H7O1 (b) and I3H7O1 (c and d).  

Fig. 10 shows the goodness of fit of Eq. (15) with median rMSEEq.(15)=35%. Eq. (15) is 

more complex than Eqs. (13) and (14), but less complex than Eqs. (9) and (11) with 

rMSEEq.(9)=26% and rMSEEq.(11)=26%. 
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Fig. 10. Eq. (15) dimensionless horizontal force estimation and 90% CI compared to 

measured dimensionless horizontal force. Pedersen’s [2] dataset is referred to as AAU 

and Molines’ [8] dataset is referred to as UPV.  

5.3  Estimation of up-lift pressure: Pb=Pb0.1% /(0.5ρgCh) . 

Table 6 and Fig. 11 show the 5%, 50% and 95% percentiles of the rMSEINiH7O1 (test 

data), the 90% CI of the rMSEINiH7O1(test data), and the rMSE corresponding to Eq. (9) 

with a solid red line. The variable X7=logQ was selected first as the most relevant 

variable in 61% of the cases; logQ explained approximately 45% of the variance of the 

dimensionless up-lift wave pressures, Pb. X4=(Rc-Ac)/Ch was also a significant 

explanatory variable which explains an additional 22% of the variance of Pb. 

 Number of input variables (Ni) in the INiH7O1 model 

1 2 3 4 
Selected variable (Xj) X7=logQ X4=(Rc-Ac)/Ch X5=�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 X6=Fc/L0p 

rMSE INiH7O1 (test data) 5% 38.3% 19.5% 12.6% 10.2% 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Fh
 (E

q.
15

) e
st

im
at

ed

Fh measured

UPV

AAU

rMSE=35%

90%CI=±0.57



29 

 

50% 54.2% 32.2% 24.1% 22.2% 
95% 77.5% 59.1% 54.8% 48.4% 

Table 6. Ranking of the relevant variables affecting dimensionless up-lift pressures, Pb. 

 

Fig. 11. Influence of the number of input variables (Ni) on the rMSE of Pb. 

Analyzing Pedersen [2] experimental data, the simulations of the I1H7O1 model as a 

function of X7=logQ showed an approximate linear relationship with Pb. Eq. (16) with 

median rMSE Eq. (16)=54% is proposed to estimate Pb. 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃0.1%

(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ )
= 4.3 + 0.52 · 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙      (16a) 

Assuming a Gaussian error distribution, the 90% CI associated to the estimations given 

by Eq. (16a) is calculated with  

𝑃𝑃𝑃𝑃 ± 0.74                                                                                              (16b) 

Estimations given by Eq. (16) might be improved by considering the second best 

additional variable listed in Table 4, X4= (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)
𝐶𝐶ℎ

. Simulations conducted with the I2H7O1 

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

rM
SE

IN
iH

7O
1

(t
es

t d
at

a)

Ni

Median
CI 90 %
Eq. (9)



30 

 

model lead to estimations of Pb given by Eq. (17) with median rMSE Eq. (17)=40%<<rMSE 

Eq. (9)=91% . 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃0.1%

(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ )
= 0.9 + �0.4 · (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)

𝐶𝐶ℎ
+ 0.6� · (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 6)    (17a) 

Assuming a Gaussian error distribution, the 90% CI associated to the estimations given 

by Eq. (17a) is calculated with  

𝑃𝑃𝑃𝑃 ± 0.64           (17b) 

5.4  Estimation of up-lift pressure: PbF= PbFh0.1% /(0.5ρgCh). 

Table 7 and Fig. 12 illustrate the 5%, 50% and 95% percentiles of the rMSEINiH7O1 (test 

data), the 90% CI of the rMSEINiH7O1(test data), and the rMSE provided by Eq. (11) with 

a dotted red line. The variable X6= Fc/L0p was selected first as the most relevant 

variable in 88% of the cases; Fc/L0p explained approximately 81% of the variance of the 

dimensionless up-lift wave forces, PbF. X7=logQ was also a significant explanatory 

variable which explained an additional 6% of the variance of PbF. 

 Number of input variables (Ni) in the INiH7O1 model 

1 2 3 4 
Selected variable (Xj) X6=Fc/L0p  X7=logQ  X5=�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 X4=(Rc-Ac)/Ch 

rMSE INiH7O1 (test data) 
5% 9.7% 6.4% 5.9% 6.0% 

50% 18.7% 12.4% 11.4% 11.8% 
95% 35.1% 21.2% 19.7% 19.8% 

Table 7. Ranking of the relevant variables affecting dimensionless up-lift pressures, PbF. 
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Fig. 12. Influence of the number of input variables (Ni) on the rMSE of PbF. 

Analyzing Molines [8] experimental data, the simulations of the I1H7O1 model as a 

function of X6= Fc/L0p showed an approximate potential relationship with PbF. Eq. (18) 

with median rMSE Eq. (18)=30% is proposed to estimate PbF. rMSE Eq. (18)=30% is higher 

than rMSE Eq. (11)=13% but using only one single explanatory variable. 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝐹𝐹ℎ0.1%

(0.5𝜌𝜌𝜌𝜌𝐶𝐶ℎ )
= 0.02 · � 𝐹𝐹𝑐𝑐

𝐿𝐿0𝑝𝑝
�
−1/2

      (18a) 

Assuming a Gaussian error distribution, the 90 % CI associated to the estimations 

given by Eq. (18a) is calculated with  

𝑃𝑃𝑃𝑃𝑃𝑃 ± 0.45          (18b) 

5.5  Estimation of overturning moments: Mh=Mh0.1% /(ρgCh3) . 

Table 8 and Fig. 13 illustrate the 5%, 50% and 95% percentiles of the rMSEINiH7O1 (test 

data), the 90% CI of the rMSEINiH7O1(test data), and the rMSE provided by Eq. (9) with a 

solid red line. The variable X7=logQ was selected first as the most relevant variable in 
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67% of the cases; logQ explained approximately 54% of the variance of the 

dimensionless overturning moments, Mh. X4=(Rc-Ac)/Ch was also a significant 

explanatory variable which explained an additional 22% of the variance of Mh. 

 Number of input variables (Ni) in the INiH7O1 model 

1 2 3 4 
Selected variable (Xj) X7=logQ X4=(Rc-Ac)/Ch X5=�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 X2=ξ0p 

rMSE INiH7O1 (test data) 
5% 30.2% 10.0% 6.7% 6.4% 

50% 46.2% 23.8% 16.6% 16.6% 
95% 68.2% 45.4% 39.7% 83.4% 

Table 8. Ranking of the relevant variables affecting dimensionless overturning 

moments, Mh. 

 

Fig. 13. Influence of the number of input variables (Ni) on the rMSE of Mh. 

Analyzing Pedersen [2] experimental data, the simulations of the I1H7O1 model as a 

function of X7=logQ showed an approximate linear relationship with Mh. Eq. (19) with 

median rMSE Eq. (19)=54% is proposed to estimate Mh 

𝑀𝑀ℎ = 𝑀𝑀ℎ0.1%
(𝜌𝜌𝜌𝜌𝐶𝐶ℎ

3)
= 0.7 + 0.11 · 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙      (19a) 
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Assuming a Gaussian error distribution, the 90% CI associated to the estimations 

provided by Eq. (19a) is given by  

𝑀𝑀ℎ ± 0.14                                                                                              (19b) 

Estimations given by Eq. (19a) might be improved by considering the second best 

additional variable listed in Table 8, X4= (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)
𝐶𝐶ℎ

. Simulations conducted with the I2H7O1 

model lead to estimations of Mh given by Eq. (20) with median rMSE Eq. (20)=34% higher 

than rMSE Eq. (9)=26% but using only two explanatory variables. 

𝑀𝑀ℎ = 𝑀𝑀ℎ0.1%
(𝜌𝜌𝜌𝜌𝐶𝐶ℎ

3)
= 0.15 + �0.3 · (𝑅𝑅𝑐𝑐−𝐴𝐴𝑐𝑐)

𝐶𝐶ℎ
+ 0.09� · (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 5)    (20a) 

Assuming a Gaussian error distribution, the 90% CI associated to the estimations given 

by Eq. (20a) is calculated with 

𝑀𝑀ℎ ± 0.12           (20b) 

5.6  Estimation of overturning moments: MhF=MhFh0.1% /(ρgCh
3) . 

Table 9 and Fig. 14 illustrate the 5%, 50% and 95% percentiles of the rMSEINiH7O1 (test 

data), the 90% CI of the rMSEINiH7O1(test data), and the rMSE provided by Eq. (12) with 

a dotted red line. The variable X7=logQ was selected first as the most relevant variable 

in 79% of the cases; logQ explained approximately 60% of the variance of the 

dimensionless overturning moments, MhF. X4=(Rc-Ac)/Ch was also a significant 

explanatory variable which explained an additional 6% of the variance of MhF. 
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 Number of input variables (Ni) in the INiH7O1 model 

1 2 3 4 
Selected variable (Xj) X7=logQ X4=(Rc-Ac)/Ch X3=γf Ru0.1%/Rc X5=�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐 

rMSE INiH7O1 (test data) 
5% 22.1% 19.0% 18.8% 18.5% 

50% 39.4% 34.3% 36.3% 31.8% 
95% 61.2% 56.7% 51.9% 52.6% 

Table 9. Ranking of relevant variables affecting dimensionless overturning moments, 

MhF. 

 

Fig. 14. Influence of the number of input variables (Ni) on the rMSE of MhF. 

Analyzing Molines [8] experimental data, the simulations of the I1H7O1 model as a 

function of X7=logQ showed an approximate linear relationship with MhF. Eq. (21) with 

median rMSE Eq. (21)=43.3% is proposed to estimate MhF. rMSE Eq. (21)=43% is lower than 

rMSE Eq. (11)=46%. 

𝑀𝑀ℎ𝐹𝐹 = 𝑀𝑀ℎ(𝐹𝐹ℎ0.1%)

(𝜌𝜌𝜌𝜌𝐶𝐶ℎ
3)

= 1.08 + 0.18 · 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙      (21a) 
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Assuming a Gaussian error distribution, the 90% CI associated to the estimations given 

by Eq. (21a) is calculated with  

𝑀𝑀ℎ𝐹𝐹 ± 0.19         (21b) 

6. Wave forces on crown walls using predicted wave overtopping 

The predictions of the wave force estimations in this study were highly dependent on 

the overtopping discharges. If wave overtopping measurements were not available, 

wave forces on crown walls could be calculated using Eqs. (1) to (6) or the CLASH 

Neural Network to estimate wave overtopping. Table 10 shows the median rMSE on 

measured logQ and dimensionless wave forces using Eqs. (13), (16), (18), (19) and (21) 

with overtopping predictions given by Eqs. (1) to (6) and the CLASH Neural Network. 

Eqs. (13), (16), (18), (19) and (21) used only one explanatory variable, logQ or Fc/L0p. 

Table 10 indicates the source of data, estimated dimensionless variable (logQ, Fh, Pb, 

PbF, Mh or MhF), input variable and equation number to estimate wave forces, 

median rMSE of wave force estimation based on wave overtopping estimators given by 

Eqs. (1) to (6) and the CLASH Neural Network, and rMSE of wave force estimations 

using Eqs. (9) and (11). The far right column in Table 10 shows the median rMSE of 

predicted wave forces and moments on the crown wall using the I1H7O1 model (test 

data) used to develop Eqs. (13), (16), (18), (19) and (21). 
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I1
H7

O
1 

AAU & 
UPV 𝑙𝑙𝑙𝑙𝑙𝑙(Q) - >1 >1 0.71 0.39 >1 0.37 0.22 - - - - 

AAU & 
UPV Fh logQ      

Eq.(13) 0.88 >1 0.82 0.41 0.93 0.44 0.40 0.26 0.34 0.26 0.41 

AAU Pb logQ       
Eq.(16) >1 >1 >1 0.63 >1 0.67 0.58 0.91 0.91 - 0.54 

UPV PbF Fc/L0p       
Eq.(18) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 - - 0.13 0.19 

AAU Mh logQ         
Eq.(19) 0.97 0.92 0.94 0.53 >1 0.60 0.49 0.26 0.37 - 0.46 

UPV MhF logQ           
Eq.(21) 0.59 >1 0.56 0.35 0.65 0.49 0.46 - - 0.46 0.39 

Table 10. Median rMSE corresponding to different wave overtopping and wave force 

estimators. Pedersen’s [2] dataset is referred to as AAU and Molines’ [8] dataset is 

referred to as UPV. 

The CLASH Neural Network provided the best overtopping estimations for Pedersen [2] 

and Molines [8] data, and the best wave force and overturning moment estimations 

based on wave overtopping. The rMSE of wave force and moment estimations using 

the predicted overtopping discharges given by the CLASH Neural Network were only 

slightly higher than those corresponding to the specific formulas given by Eqs. (9), (10) 

and (11) to calculate wave forces on the crown wall. The reliability of estimated wave 

forces and moments on the crown wall using Eqs. (13) to (21) based on measured logQ 

depends on the accuracy of wave overtopping predictions.   
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Eqs. (13), (16), (18), (19) and (21) allow for an easy estimation of wave forces on crown 

walls based on logQ and Fc/L0p. They make it clear that higher dimensionless 

overtopping rates inevitably generate higher dimensionless wave forces on crown 

walls.  Using measured logQ, the new wave force and overturning moment estimators 

have 30%<rMSE<54%, slightly higher than 26%<rMSE<91% from the formulas given by 

Pedersen [2], 34%<rMSE<91% from the formulas given by Nørgaard et al. [24] and 

13%<rMSE<46% from the formulas given by Molines [8]. The new estimators based on 

logQ  have fewer parameters, are easier to use and can use logQ recorded from small-

scale tests or prototypes which implicitly take into account core permeability and 

other structural characteristics not considered in the predicting formulas. 

7. Sensitivity to wave overtopping of wave forces and overturning 

moments on crown walls 

The wave forces and moments on crown walls are sensitive to wave overtopping. In 

this section the force estimators, Eqs. (13), (16), (18), (19) and (21), are analyzed. Fig. 

15 illustrates the variation in dimensionless wave forces on the crown wall depending 

on wave overtopping discharges. The slopes of the lines in Fig. 15 are 

dFh/d(logQ)=0.60; dPb/d(logQ)=0.52; dMh/d(logQ)=0.11 and dMhF/d(logQ)=0.18. PbF 

is highly dependent on Fc/L0p and only slightly dependent on logQ (see Table 7) 
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Fig. 15. Sensitivity of dimensionless wave forces on crown walls to wave overtopping 

discharges. 

If wave overtopping is one order of magnitude higher, the wave forces and overturning 

moments on the crown wall Fh, Pb, Mh and MhF increase 60%, 52%, 11% and 18%, 

respectively. For the preliminary design, Fig. 15 can be used as a design graph to 

estimate Fh0.1%, Pb0.1%, Mh0.1%, and MhFh0.1% using only dimensionless mean wave 

overtopping discharges, logQ, and crown wall height, Ch. To estimate PbFh0.1%, Eq. (18) 

requires using Fc/L0p and Ch. 

8. Example of application 

Eqs. (13), (16), (18), (19) and (21) allow for the analysis of the influence of geometrical 

changes in the cross section of a mound breakwater on wave forces on crown walls. 

Analyzing a case similar to that described by EurOtop [10], with parameters (see Fig. 

1): β=0o; Hm0(m)=5; T-1,0(s)=9; Rc(m)=5; Ac(m)=4; Gc(m)=5; Fc(m)=1; cotα=1.5; γf [cube, 

2Layers, randomly-placed] =0.53 and h(m)=12 with toe berm (Bt (m)=4 and ht(m)=9), 
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the overtopping discharge predicted by the CLASH Neural Network is q(l/s/m)=85. Two 

scenarios are considered in Fig. 16 to reduce overtopping discharges in the initial 

design: (1) higher crown wall freeboard (Rc) and (2) wider armor crest berm (Gc). Fig. 

16 illustrates the variation in wave overtopping and Fh0.1% with Eq.(13) and Pb0.1% with 

Eq.(16) for both scenarios. Fig. 16a shows that increasing Rc considerably reduces wave 

overtopping while it greatly increases wave forces on crown walls. Fig. 16b shows that 

increasing Gc reduces both wave overtopping and wave forces on crown walls. 

  

Fig. 16. Sensitivity to overtopping rates and wave forces on crown walls of a) increasing 

Rc and b) increasing Gc. CLASHNN identifies the CLASH Neural Network (see Van Gent et 

al. [6]). 

Although dimensional horizontal force Fh0.1% increases when Rc increases, 

dimensionless horizontal force given by Eq. 11 decreased as well as logQ. 

9. Conclusions 

This study describes a neural network methodology to rank the influence of seven 

candidate input variables, including dimensionless wave overtopping discharge (logQ), 

to estimate dimensionless wave forces and overturning moments on crown walls. This 

0

100

200

300

400

500

600

700

800

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00
0 2 4 6 8 10 12 14 16

Fh
0.

1%
(k

N
/m

) a
nd

 P
b 0

.1
%

(k
N

/m
2 )

 

Q
=q

/(
gH

m
03 )

1/
2

Higher Rc(m)

CLASH NN

Eq. (13)

Eq. (16)

0

20

40

60

80

100

120

140

160

180

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00
0 2 4 6 8 10 12 14 16

Fh
0.

1%
(k

N
/m

) a
nd

 P
b 0

.1
%

(k
N

/m
2 )

 

Q
=q

/(
gH

m
03 )

1/
2

Wider Gc(m)

CLASH NN

Eq. (13)

Eq. (16)

a) b) 



40 

 

methodology was applied to 274 small-scale tests carried out by Pedersen [2] and 

Smolka et al. [12] to propose new estimators given by Eqs. (13) to (21). The new 

formulas obtained in this study predict wave forces and overturning moments 

corresponding to the methodologies of Pedersen [2] and Molines [8] but using only a 

few explanatory variables. The range of application of the new formulas is 1.67< Rc/(γf 

Hm0)<6.55, 1.39< 𝜉𝜉0p<7.77, 0.36< γf Ru0.1%/Rc <1.41, 0.00<(Rc-Ac)/Ch < 0.59, 2.64 

<�𝐿𝐿𝑚𝑚/𝐺𝐺𝑐𝑐< 6.54, 0.00< Fc/L0p<0.03 and -6.00<logQ<-2.78. 

The mean dimensionless wave overtopping discharge, logQ, was the most relevant 

explanatory variable to estimate wave forces on the crown wall. Using the neural 

network I1H7O1 model, logQ explained between 45% and 60% of the variance in wave 

forces and overturning moments. Up-lift pressures (PbF) were highly influenced by the 

foundation level, Fc/L0p, which explained 81% of the variance in the data. 

Using the results from 274 wave overtopping tests, the new wave force and 

overturning moment estimators have a relative Mean Squared Error 30%<rMSE<54%, 

slightly higher than 26%<rMSE<91%, 34%<rMSE<91% and 13%<rMSE<46% of formulas 

given by Pedersen [2],  Nørgaard et al. [24] and Molines [8], respectively. 

When wave overtopping measurements are not available, overtopping predictions can 

be used to estimate wave forces, but new formulas are better applied when 

overtopping rates are measured in small-scale tests or prototypes. In this study, Eqs. 

(13), (16), (18), (19) and (21) were used with overtopping predictions given by Eqs. (1) 

to (6) and the CLASH Neural Network. The CLASH Neural Network provided the best 

prediction of logQ with rMSE=22%. Using the CLASH Neural Network, the median rMSE 
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of wave forces and moments Fh, Pb, PbF, Mh and MhF were 0.40, 0.58, 0.30, 0.49 and 

0.46, respectively.  

From a conceptual point of view, the new formulas to estimate wave forces and 

overturning moments on crown walls proposed in this study, use the mean 

overtopping discharge to replace the virtual run-up as the key explanatory variable. 

To measure forces on crown walls is relatively costly both at prototype and in small-

scale tests; on the contrary, overtopping discharges are much easier to measure at any 

scale. Prototypes usually show larger than expected overtopping rates in some 

sections; the new formulas can help designers to re-analyze the hydraulic stability of 

existing crown walls based on local observations of overtopping.  

The sensitivity indexes were dFh/d(logQ)=0.60, dPb/d(logQ)=0.52, dPbF/d(logQ)≈0, 

dMh/d(logQ)=0.11, and dMhF/d(logQ)=0.18. Based on Eqs. (13) to (21), variations in 

logQ between designed and constructed mound breakwaters lead to variations in 

wave forces on the crown wall; in those cases, the stability of the crown wall should be 

re-analyzed. Eqs. (13) to (21) can be used to better estimate wave forces and 

overturning moments on crown walls when overtopping rates are measured in small-

scale tests or prototypes. Considering a wider database and additional individual 

overtopping measurements, the new formulas may be significantly improved in the 

future to estimate forces on crown walls. 
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