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Abstract

This paper deals with the explicit determination of the first probability density function of the solution stochastic
process to random autonomous first-order linear systems of difference equations under very general hypotheses. This
finding is applied to extend the classical stability classification of the zero-equilibrium point based on phase portrait to
the random scenario. An example illustrates the potentiality of the theoretical results established and their connection
with their deterministic counterpart.
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1. Introduction1

The aim of this paper is twofold. Firstly, to determine the first probability density function (1-PDF) of the solution2

stochastic process (SP) of random autonomous first-order linear systems of difference equations of arbitrary size, say3

m. Secondly, to extend the main deterministic results on stability for planar systems (m = 2) to the random scenario.4

This paper is heavily inspired in our previous contribution [1], but having two main differences. Firstly, we deal here5

with random difference equations instead of random differential equations. Secondly, we will provide a comprehensive6

probabilistic stability classification of the zero-equilibrium point of random planar homogeneous systems rather than7

just to illustrate the classification with one example. The interest of our analysis is expected to reach a large audience8

for two main reasons. On the one hand, our study provides a generalization to the random framework of deterministic9

autonomous difference equations, which have mathematical interest by themselves. Indeed, for instance, these class10

of equations become after discretizating autonomous differential equations. On the other hand, it is well-known that11

autonomous difference equations are adequate choice when modelling many real phenomena. Therefore, it is expected12

that the consideration of randomness into autonomous difference equations will provide more realistic models in13

applications. To justify the latter assertion, it is convenient to point out that in dealing with real models the data14

(initial conditions and coefficients) are usually fixed after physical experiments, thus containing measurement errors.15

Therefore, it is more appropriate to consider data as random variables (RVs) rather than deterministic constants. To16

the best of our knowledge, most of the extant literature has focussed on the study of stochastic difference equations17

where the uncertainty is considered by means of special classes of SPs like markovian processes or, even more specific18

as the white noise process (the formal derivative of the Wiener process, also termed brownian motion). This latter19

case restricts itself the uncertainty to gaussian processes with irregular sample behaviour since the trajectories of the20

Wiener process are nowhere differentiable. Important results in this respect are included in the recent book [2]. In [3]21

the mean square exponential stability of impulsive stochastic difference equations are studied. Under this approach,22

the 1-PDF of the solution SP is rarely computed but its mean and variance. The case where randomness is considered23

by means of a wide class of probability distributions, including the gaussian but having milder sample behaviour,24
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leads to random difference equations. Some recent contributions that consider this class of uncertainty in difference25

equations are [4, 5, 6], for example. It is worthy to point out that in [5, 6], besides computing the mean and the26

variance, the 1-PDF of the solution SP is also determined.27

As it shall be seen later, our approach is based on the application of the Random Variable Transformation (RVT)28

technique [7]. This technique has also been successfully applied to determine the solution SP of scalar random29

differential equations [8, 9], for example. It is important to emphasize that solving a random differential/difference30

equation means to compute not only its solution SP but also to determine its main statistical functions, such as the31

mean and the variance. Although many important biparametric distributions like gaussian, beta, gamma, etc., are32

characterized by these two statistical moments, another as λ-distributions, Pareto distributions, etc., are not. Thus, it33

is more desirable to determine the 1-PDF, since from it all one-dimensional statistical moments of the solution SP can34

be straightforwardly computed. This allows us to compute significant statistical information including the symmetry35

and kurtosis and confidence intervals as well.36

The outline of the paper is as follows. In Section 2 the 1-PDF of general random autonomous first-order linear37

homogeneous systems of difference equations is determined explicitly. In Section 3, a comprehensive probabilistic38

classification of the equilibrium point for planar systems is given. In Section 4 an example illustrating the main39

theoretical results established in Section 3 is exhibited. Conclusions are drawn in Section 5.40

2. Computing the 1-PDF41

The goal of this section is to compute an explicit formula for the 1-PDF of random autonomous first-order homo-42

geneous linear systems of difference equations43

Xn+1 = AXn, n ≥ 0, A = [Ai j], 1 ≤ i, j ≤ m, (1)

where Ai j, 1 ≤ i, j ≤ m, and Xi0, 1 ≤ i ≤ m, that define the starting seed X0 = [X10, . . . , Xm0]>, are h = m + m2

absolutely continuous RVs defined in a complete probabilistic space (Ω,F,P). It is assumed that these RVs have the
following joint PDF

f0(x0, a) = f0(x10, . . . , xm0, a11, . . . , am1, . . . , a1m, . . . , amm).

As usually, in this latter expression we have written the deterministic quantities, like a, in lower case to avoid44

any confusions with RV, which will be denoted by capital letters, A. For random vectors/matrices we will use45

bold letters, A. Hereinafter, we will assume that the random matrix A is invertible in the probabilistic sense, i.e.,46

P [{ω ∈ Ω : det (A(ω)) , 0}] = 1. Notice that this hypothesis is not restrictive since Ai j are assumed to be absolutely47

continuous RVs.48

Let us observe that the solution of (1) is given by Xn = AnX0. For the sake of consistency with the notation of49

our previous work, we will apply the RVT technique as stated in Th.1 of [1]. With this aim, let us fix n > 0 and50

denote by ei = [0, . . . , 0, 1, 0, . . . , 0]> the i-th canonical vector of size m, 1 ≤ i ≤ m. Additionally, let us also define51

the transformation r : Rh → Rh, and the inverse mapping of r, s = r−1, whose components are given by52 

y1 = r1(x0, a) = anx0,
y2 = r2(x0, a) = ae1 = a1,
...

...
...

...
...

...
...

ym = rm(x0, a) = aem−1 = am−1,
ym+1 = rm+1(x0, a) = aem = am.

⇒



x0 = s1(y1, . . . , ym+1) =
[
y2, . . . , ym+1

]−n y1,
a1 = s2(y1, . . . , ym+1) = y2,
...

...
...

...
...

am−1 = sm(y1, . . . , ym+1) = ym,
am = sm+1(y1, . . . , ym+1) = ym+1.

(2)
Notice that in (2) ai represents the i-th column of the matrix a = A(ω), ω ∈ Ω. Now, we compute the Jacobian, which53

is defined by the following determinant54

Jh = det



[
y2, . . . , ym+1

]−n 0m · · · · · · 0m

0m Im
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0m

0m · · · · · · 0m Im


h×h

= det
([

y2, . . . , ym+1
]−n

)
= (det

([
y2, . . . , ym+1

])
)−n = (det(a))−n , 0,
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where 0m and Im are the null and the identity matrix of size m, respectively. Therefore, applying Th.1 of [1], we obtain55

the joint PDF of the random vector [Y1, . . . ,Ym+1]56

fY1,...,Ym+1 (y1, . . . , ym+1) = f0
([

y2, . . . , ym+1
]−n y1, y2, . . . , ym+1

) ∣∣∣det
([

y2, . . . , ym+1
])∣∣∣−n

. (3)

As the solution of the IVP (1) is given by the first component of the random vector [Y1, . . . ,Ym+1], in order to compute57

the PDF of the solution, Xn, first we must marginalize expression (3) with respect to Y2, . . . ,Ym+1, and secondly to58

express the result in terms of the data. This yields59

f1(x, n) =

∫
Rm2

f0
(
a−nx, a1, . . . , am

)
|det (a)|−n da11 · · · dam1 · · · da1m · · · damm. (4)

3. Random planar autonomous first-order linear systems: A probabilistic classification of the equilibrium60

point61

This section is devoted to classify, from a probabilistic standpoint, the equilibrium point of the random system of62

difference equations (1), when m = 2. Observe that our analysis is restricted to the homogeneous case where the only63

equilibrium point is the random null vector, Xe = 0. Nevertheless, the non-homogeneous case, Xn+1 = AXn + B, can64

be reduced to the homogeneous one, just taking into account the equation (1) can be centered about Xe = (Im−A)−1B.65

Indeed, this can be done because the probability that the RV λ = 1 be an eigenvalue of A is zero. The case m = 266

in the random matrix difference equation (1) corresponds to random planar systems. In the deterministic context, it67

is well-known that important results related to stability of the zero-equilibrium point have been established for planar68

systems. This section is addressed to extend the classical stability classification of the zero-equilibrium Xe = [0, 0]>69

to the random scenario. As it shall see later, our approach leads to a nice generalization, in a probabilistic sense, that70

retains the well-known deterministic results when probabilistic events associated to that classification happens with71

probability one. Naturally, as it also occurs in the deterministic case, the classification depends on the characteristic72

roots, λ1 and λ2, associated to the random matrix equation (1) with m = 2. These roots can be expressed in terms of73

the trace and the determinant of the random matrix A:74

λ2 − tr(A)λ + det(A) = 0, λi =
tr(A) ±

√
(tr(A))2 − 4det(A)

2
, i = 1, 2.

If we denote by V1(ω) = tr(A(ω)) and V2(ω) = det(A(ω)), for each ω ∈ Ω, the classification can be represented75

by means of Figure 1. Then taking advantage of the previous determination of the 1-PDF of the solution SP of (1),76

given by (4), we can compute the probability that the zero-equilibrium or critical point belongs to one of the following77

states: a stable (node or sink/spiral), an unstable (node or source/spiral) or a saddle point. Observe the case that the78

zero-equilibrium point be a center, an improper stable node or an improper unstable node have been neglected because79

they are associated to the events A1, A2 and A3 defined by80

A1 = {ω ∈ Ω : det(A(ω)) = 1, |tr(A(ω))| ≤ 2},
A2 = {ω ∈ Ω : (tr(A(ω)))2 = 4 det(A(ω)), |tr(A(ω))| < 2},
A3 = {ω ∈ Ω : (tr(A(ω)))2 = 4 det(A(ω)), |tr(A(ω))| > 2},

respectively, which can happens with probability zero since Ai j, 1 ≤ i, j ≤ 2, are assumed to be absolutely continuous81

RVs. Below, these probabilities are completely specified. It is important to point out that, in contrasts to what happens82

in the deterministic scenario where the equilibrium point can only belong to one state of the previous list, in the83

random context the situation is different since the zero-equilibrium point can have different states but each one with84

different probabilities.85

• Stable node: Psn =

∫ 0

−2

∫ v2
1
4

−1−v1

fV1,V2 (v1, v2) dv2 dv1 +

∫ 2

0

∫ v2
1
4

−1+v1

fV1,V2 (v1, v2) dv2 dv1.86

• Stable spiral: Pss =

∫ 2

−2

∫ 1

v2
1
4

fV1,V2 (v1, v2) dv2 dv1.87
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Figure 1: Graphical representation of the stability classification of the zero-equilibrium point to the random matrix difference equation (1) with
m = 2 (random planar systems). Each relevant region has a label corresponding to: I (unstable spiral); II (unstable node or source); III (stable
spiral); IV (stable node or sink) and V (saddle point). The magenta point has been obtained from the matrix a of the averaged system (12) associated
to the random system (1) with m = 2 and the random inputs given by (7)–(8). The blue-red confidence regions have been determined from (6).

• Unstable node: Pun =

∫ −2

−∞

∫ v2
1
4

−1−v1

fV1,V2 (v1, v2) dv2 dv1+

∫ ∞

2

∫ v2
1
4

−1+v1

fV1,V2 (v1, v2) dv2 dv1+

∫ −1

−∞

∫ −1−v2

1+v2

fV1,V2 (v1, v2) dv1 dv2.88

• Unstable spiral: Pus =

∫ ∞

1

∫ 2
√

v2

−2
√

v2

fV1,V2 (v1, v2) dv1 dv2.89

• Saddle point: Ps =

∫ 0

−∞

∫ −1−v1

−1+v1

fV1,V2 (v1, v2) dv2 dv1 +

∫ ∞

0

∫ −1+v1

−1−v1

fV1,V2 (v1, v2) dv2 dv1.90

All these probabilities depend on the PDF, fV1,V2 (v1, v2), of the random vector (V1,V2) = tr((A), det(A)). Applying91

Th1. of [1], that is to say, the RVT method, we can determine fV1,V2 (v1, v2). To this end, let us define the following92

mapping, r : R4 −→ R4, whose inverse is the mapping s : R4 −→ R4 given by93


v1 = r1(a11, a21, a12, a22) = a11 + a22,
v2 = r2(a11, a21, a12, a22) = a11a22 − a12a21,
v3 = r3(a11, a21, a12, a22) = a12,
v4 = r4(a11, a21, a12, a22) = a22,

⇒


a11 = s1(v1, v2, v3, v4) = v1 − v4,

a21 = s2(v1, v2, v3, v4) = −
v2 − (v1 − v4)v4

v3
,

a12 = s3(v1, v2, v3, v4) = v3,
a22 = s4(v1, v2, v3, v4) = v4.

It is easy to check that the Jacobian of s is J4 = −1/v3 , 0. Therefore, the joint PDF of random vector (V1,V2) =94

(tr(A), det(A)) is given by95

fV1,V2 (v1, v2) =

∫ ∞

−∞

∫ ∞

−∞

fA11,A21,A12,A22

(
v1 − a22,−

v2 − (v1 − a22)a22

a12
, a12, a22

)
1
|a12|

da12 da22, (5)

being96

fA11,A21,A12,A22 (a11, a21, a12, a22) =

∫ ∞

−∞

∫ ∞

−∞

f0 (x10, x20, a11, a21, a12, a22) dx10dx20. (6)

4. An illustrative example97

The aim of this section is to illustrate the theoretical results previously established by means an example. This98

includes the interpretation of the phase portrait in the context of random planar systems of the form (1) with m = 299
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and the previous probabilistic stability classification of the zero-equilibrium point. We will consider that the random100

vector input101

Z = (X10, X20, A11, A21, A12, A22), Z ∼ N(~µ,Σ) (7)

where the mean, ~µ, and the variance-covariance matrix, Σ, are,102

~µ =



2
2

−0.125
−0.962
0.692
0.925


, Σ = 1

4000



55 5 20 1 1 4
5 20 5 10 2 4

20 5 10 7 1 4
1 10 7 30 2 4
1 2 1 2 25 5
4 4 4 4 5 10


. (8)

In Fig. 2 it is shown the phase portrait for different fixed times instants, n ∈ {0, 1, 2, 3}, together with the PDF of the103

solution SP in two of these time instants (n ∈ {2, 3}). In the planar phase portrait, the mean E[Xin], i = 1, 2, and the104

confidence regions DXn (1 − α) ⊂ R2 at different fixed levels of confidence, α ∈ {0.50, 0.90} ∈ (0, 1), for n = {2, 3},105

have been plotted. These statistical quantities have been computed by means of the following expressions106

E[X1n] =

∫
R2

x1 f1(x1, x2; n) dx1dx2, E[X2n] =

∫
R2

x2 f1(x1, x2; n) dx2dx1, (9)

107

1 − α =

∫∫
DXn (1−α)

f1(x1, x2; n) dx1dx2, DXn (1 − α) = {(x1, x2) : f1(x1, x2; n) = k}, (10)

where, in agreement with (4),108

f1(x1, x2; n) =

∫
R4

f0

((
a11 a12
a21 a22

)−n (
x1
x2

)
, a11, a21, a12, a22

)
|a11a22 − a12a21|

−n da11da12d21d22. (11)

As it has been indicated previously, the zero-equilibrium point can behaves different classification in the random109

context with different probabilities. Based upon our analysis, these probabilities can be quantified. In our example,110

the probability that the null random point [0, 0]> be either a saddle point, a stable node/sink or a unstable node is 0.111

While the probability of being a stable spiral is 0.999995 and the probability of being a unstable spiral is 0.000005.112

The fact that the equilibrium point is more likely a stable spiral than an unstable spiral is heavily connected with the113

deterministic theory. Indeed, let us consider the averaged problem associated to (1)114

xn+1 = a xn, n ≥ 0, a =

[
−0.125 0.692
−0.962 0.925

]
, (12)

and starting value x0 = [2, 2]>. Observe that a and x0 correspond to the expectation or average defined in (8). For the115

deterministic problem (12) one gets116

tr(a)2 − 4det(a) = 0.82 − 4 0.55 = −1.56 < 0, −1 + det(a) = −1 + 0.55 = −0.45 < 0.

Therefore, the equilibrium point [0, 0]> is a stable spiral. In Fig. 1 we have plotted the magenta point (det(a), tr(a)) =117

(0.55, 0.8) and the confidence regions (blue-red rings) at 50% and 90% confidence levels, respectively. We observe118

this plot is in agreement with the probabilistic results previously shown.119

5. Conclusions120

Taking advantage of the so-called Random Variable Transformation technique, in this paper we have determined121

the first probability density function of the solution stochastic process of a random autonomous first-order linear sys-122

tems of difference equations under very general hypotheses (statistical dependence among the random input data and123

a wide class of randomness are allowed). From this key information, we have provided a nice probabilistic general-124

ization of classical results for the important particular case of planar systems. This includes the exact quantification125
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Figure 2: Left: Phase portrait of random system of difference equations (1) with m = 2 where the random input vector Z has the gaussian
multivariate distribution given in (7)–(8). The solid line connects the mean and the rings represent confidence regions at 50% and 90% confidence
levels at every value of n ∈ {0, 1, 2, 3}. Center and Right: PDFs of the solution SP at n = 2 and n = 3, respectively, together with the corresponding
confidence regions.

of the probabilities associated to each possible states to the zero-equilibrium point. The study comprises the impor-126

tant case of random autonomous linear difference equations of order m as a particular case just taking the random127

coefficient matrix as the so-called companion matrix. Besides, the results established in this paper have a great po-128

tential regarding applications since many physical models can be properly described by random linear systems of129

difference equations. In addition, the study of many random autonomous nonlinear models require the application of130

linearization to conduct their mathematical analysis.131
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