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On finite products of π-decomposable subgroups

L. S. Kazarin, A. Mart́ınez-Pastor and M. D. Pérez-Ramos

1 Introduction

Throughout this paper all groups considered are finite. Within the study of
factorized groups one has frequently to consider trifactorized groups, that is,
groups of the form G = AB = AC = BC, where A, B, and C are subgroups
of G. That occurs for instance when aiming to get information on a normal
subgroup N of a factorized group G = AB, with A,B subgroups of G. In this
case, an important tool is to analize the structure of the so-called factorizer ofN ,
denoted X(N), which is the intersection of all factorized subgroups containing
N . (We recall that a subgroup S of G = AB is factorized if S = (A∩S)(B ∩S)
and A ∩ B ≤ S.) The mentioned subgroup X(N) turns to be a trifactorized
group; more precisely, X(N) = N(A∩BN) = N(B∩AN) = (A∩BN)(B∩AN)
(see [1]).

One of the classical results in the literature of finite trifactorized groups is
due to O. Kegel [14]. He proved that a finite group G = AB = AC = BC, which
is the product of two nilpotent subgroups A and B, is nilpotent (supersoluble),
provided that C is likewise nilpotent (supersoluble). A corresponding statement
holds when A and B are nilpotent, and C belongs to a saturated formation
containing all nilpotent groups, as proved by F. G. Peterson (see [1, Theorem
2.5.10]). It is worthwhile emphasizing that such a group is soluble, by the
renombrated theorem of Kegel and Wielandt on the solubility of a product of
two nilpotent groups.

Some criteria for the π-separability of a trifactorized group, for a set of
primes π, under assumptions of existence, conjugacy and dominance of Hall
π-subgroups, were also obtained by E. Pennington in [15] (see Theorem 2 and
Corollary 3 below). A much more deep result in the universe of all finite groups
was proved by L. S. Kazarin in [8] using the Classification of Finite Simple
Groups (CFSG): if the group G = AB = AC = BC is the product of three
soluble subgroups A, B, and C, then G is soluble. Later on, some related results
were obtained in [3], again in the universe of soluble groups, by considering some
well-known family of subgroup-closed saturated formations so called of nilpotent
type (see [5] for an account of such classes of groups).

In this paper we go further with the research on trifactorized groups, dealing
with π-decomposable groups. A group X is said to be π-decomposable for a set
of primes π, if X = Xπ ×Xπ′ is the direct product of a π-subgroup Xπ and a
π′-subgroup Xπ′ , where π′ stands for the complementary of π in the set of all
prime numbers. For any group X and any set of primes σ, we use Xσ to denote
a Hall σ-subgroup of X. In particular, Xp will denote a Sylow p-subgroup of
X, for a prime p.

For our purposes the following result is crucial:
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Theorem 1. ([13, Main Theorem]) Let π be a set of odd primes. Let the group
G = AB be the product of two π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ ×Bπ′ . Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

This theorem, whose proof uses CFSG, is part of a development carried
out in [9, 10, 12, 13] and motivated by the search for extensions of the above
mentioned theorem of Kegel and Wielandt (see also [11]). Theorem 1 is applied
now in this note to obtain new results on trifactorized groups within the general
universe of finite groups.

The notation is standard and is taken mainly from [6]. We also refer to this
book for the basic terminology and results about classes of groups. Moreover,
we refer to [17] for the elementary facts regarding π-separable groups, for a
set of primes π, used in the paper. In particular, we denote by lπ(G) the π-
length of a π-separable group G. If X,Y are subgroups of a group G, we denote
XY = 〈xy | x ∈ X, y ∈ Y 〉; in particular, XG is the normal closure of X in G.

2 Preliminary results

We will use frequently the following well-known result, whose proof is straight-
forward.

Lemma 1. Let the group G = AB be the product of the subgroups A and B.
Assume that D ⊆ A∩B and that D is a normal subgroup of B. Then DG ≤ A.

The next result is a reformulation of a useful one due to Kegel, and later on
improved by Wielandt, which appears in [1, Lemma 2.5.1] (see also [10, Lemma
2]).

Lemma 2. Let the group G = AB be the product of the subgroups A and B and
let A0 and B0 be normal subgroups of A and B, respectively. If A0B0 = B0A0,
then Ag0B0 = B0A

g
0 for all g ∈ G.

Moreover, if A0 and B0 are π-groups for a set of primes π, and Oπ(G) = 1,
then [AG0 , B

G
0 ] = 1.

For a set of primes π, we recall that a π-separable group is a Dπ-group,
that is, every π-subgroup is contained in a Hall π-subgroup, and any two Hall
π-subgroups are conjugate in the group. We will use, without further reference,
the following fact on Hall subgroups of factorized groups, which is applicable to
π-separable groups (see [1, Lemma 1.3.2]).

Lemma 3. Let G = AB be the product of the subgroups A and B. Assume that
A and B have Hall π-subgroups and that G is a Dπ-group for a set of primes
π. Then there exist Hall π-subgroups Aπ of A and Bπ of B such that AπBπ is
a Hall π-subgroup of G.

We need specifically the following result, whose proof uses CFSG.

Lemma 4. ([16, Theorem 7.7]) Let G be a finite group, A�G, and π be a set
of primes. Then G is a Dπ-group if and only if A and G/A are Dπ-groups.
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3 Main Results

Our first results on trifactorized groups, Theorem 3 and Corollaries 1, 2, provide
an alternative approach to that of Pennington [15] concerning the π-separability
of trifactorized groups. A main goal is to avoid hypotheses of existence, conju-
gacy and dominance of Hall π-subgroups (Dπ-properties), in contrast to Pen-
nington’s results. This will follow as consequence of Theorem 3, which provides
the Dπ-property of a trifactorized group, as a first application of our Theorem 1.

We gather first the above-mentioned results of [15]. We recall that a group
G is π-closed for a set of primes π if the π-elements of G generate a normal
π-subgroup.

Theorem 2. ([15, Theorem, Corollary 2]) Let G = AB = AC = BC be a
Dπ-group with A and B π-closed subgroups and C a π-separable subgroup, , for
a set of primes π. Then:

1. G is π-separable and Oπ(C) ⊆ Oπ(G) and Oπ′(C) ⊆ Oπ,π′(G).

2. lπ(G) ≤ lπ(C) + 1 and lπ′(G) ≤ lπ′(C) + 1.

3. If A and B are also π′-closed (i.e. A and B are π-decomposable), then
lπ(G) = lπ(C) and lπ′(C) = lπ′(G) (and also Oπ′(C) ⊆ Oπ′(G)).

Theorem 3. Let π be a set of odd primes. Let the group G = AB = AC =
BC be the product of three subgroups A,B and C, where A = Aπ × Aπ′ and
B = Bπ × Bπ′ are π-decomposable groups, and C is a Dπ-group. Then G is a
Dπ-group.

Proof. We notice first that AπBπ is a Hall π-subgroup of G by Theorem 1.
We argue by induction on |G|. We notice that the hypotheses of the result

hold for factor groups. Hence whenever N is a nontrivial normal subgroup of G,
the inductive hypothesis implies that G/N is a Dπ-group. If in addition N is
a Dπ-group, then the result follows by Lemma 4. In particular we may assume
that Oπ(G) = Oπ′(G) = 1.

By Lemma 2 it follows that [AGπ , B
G
π ] = 1.

We consider now the case that Aπ 6= 1 and Bπ 6= 1. We notice that AGπ ∩
BGπ = 1. Otherwise, if N is a minimal normal subgroup of G contained in
AGπ ∩BGπ , then [N,N ] = 1, i.e. N is abelian and then either N ≤ Oπ(G) = 1 or
N ≤ Oπ′(G) = 1, a contradiction.

On the other hand,

AGπ = AAπAπ′BπBπ′
π = ABπ′

π = Aπ[Aπ, Bπ′ ] 6= 1,

and
BGπ = BBπBπ′AπAπ′

π = BAπ′
π = Bπ[Bπ, Aπ′ ] 6= 1.

Let H be a π-subgroup of G. We aim to prove that H ≤ (AπBπ)g for some
g ∈ G.

We apply induction on the factor groups G/AGπ and G/BGπ , and may assume
that

H ≤ BπAπ[Aπ, Bπ′ ]
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and
H ≤ (AπBπ[Bπ, Aπ′ ])g = (AπBπ[Bπ, Aπ′ ])b

for some g = ab with a ∈ A, b ∈ B, since Bπ[Bπ, Aπ′ ] is normal in G and Aπ is
normal in A. Consequently,

H ≤ (BπAπ[Aπ, Bπ′ ]) ∩ (AπBπ[Bπ, Aπ′ ])b = ((AπBπ[Aπ, Bπ′ ]) ∩ (AπBπ[Bπ, Aπ′ ]))b

= (AπBπ([Aπ, Bπ′ ] ∩ (AπBπ[Bπ, Aπ′ ])))b,

since Aπ[Aπ, Bπ′ ] is normal in G and Bπ is normal in B.
We claim that [Aπ, Bπ′ ]∩(AπBπ[Bπ, Aπ′ ]) is a π-group. Since AπBπ is a Hall

π-subgroup ofG this will imply thatH ≤ (AπBπ([Aπ, Bπ′ ]∩(AπBπ[Bπ, Aπ′ ])))b =
(AπBπ)b, as aimed.

Let c ∈ [Aπ, Bπ′ ] ∩ (AπBπ[Bπ, Aπ′ ]). Then c = td for some t ∈ AπBπ
and d ∈ [Bπ, Aπ′ ]. Hence, t = cd−1. But [Aπ, Bπ′ ] ∩ [Bπ, Aπ′ ] = 1 and
[[Aπ, Bπ′ ], [Bπ, Aπ′ ]] = 1, because AGπ ∩ BGπ = 1 and [AGπ , B

G
π ] = 1. Conse-

quently, it follows in particular that the order of c divides the order of t, which
is a π-number. This proves the claim and the result in the case under consider-
ation.

In the case that Aπ = 1 and Bπ′ = 1, the group G has Hall π-subgroups and
Hall π′-subgroups, which implies that G is a Dπ-group (cf. [2]).

Hence, we may assume without loss of generality that Aπ = 1, Aπ′ 6= 1,
Bπ 6= 1 and Bπ′ 6= 1.

Since G = AB = AC = BC and Aπ = 1, it is easy to deduce by order
arguments that Bπ ≤ C. Hence, the facts that Bπ C B and G = BC imply, by
Lemma 1, that BGπ ≤ C. Set N = BGπ . Since C is a Dπ-group, it follows that
N and so also G are Dπ-groups, by Lemma 4, which concludes the proof.

Corollary 1. Let π be a set of primes. Let the group G = AB = AC =
BC be the product of three subgroups A,B and C, where A = Aπ × Aπ′ and
B = Bπ × Bπ′ are π-decomposable groups, and C is π-separable. Then G is
π-separable.

Moreover, Oπ(C) ⊆ Oπ(G) and lπ(G) = lπ(C) (and also Oπ′(C) ⊆ Oπ′(G)
and lπ′(G) = lπ′(C)).

Proof. We may assume that π 6= ∅ and π′ 6= ∅. Let σ ∈ {π, π′} such that 2 /∈ σ.
Then C is σ-separable and so C is a Dσ-group. By Theorem 3, G is a Dσ-group
and the result follows by Theorem 2.

The following result is easily deduced.

Corollary 2. Let π be a set of primes. Let the group G = AB = AC = BC be
the product of three subgroups A,B and C. If A,B and C are π-decomposable
groups, then G is π-decomposable.

It may be of interest to compare Corollary 2 with the following result, which
appears in [15] as a corollary of Theorem 2(1). Indeed, Corollary 2 may be also
seen as consequence of this following result together with Theorem 3.

Corollary 3. ([14, Satz 1], [15, Corollary 1]) Let G be a Dπ-group. Then G is
π-closed if and only if there are subgroups A, B, and C of G, all π-closed and
satisfying G = AB = AC = BC.
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The following example shows a trifactorized group G = AB = AC = BC
with subgroups A, B and C such that A and B are π-decomposable but G and
C are not π-separable.

Example 1. Consider X = Alt(5) the alternating group of degree 5 and let
G = X × X. Let Y,Z ≤ X with Y ∼= Alt(4) and Z ∼= C5 the cyclic group of
order 5. Let A = Y ×Z, B = Z×Y , and C = D(X) = {(x, x) |x ∈ X} ∼= A5 the
diagonal subgroup. Set π = {5}, so π′ = {2, 3}. Then G = AB = AC = BC, A
and B are π-decomposable groups but G and C are not a π-separable.

We show next that under the hypotheses of Corollary 1 the π-length of the
group G can be arbitrarily large.

Example 2. Consider P a nontrivial π-group and Q a nontrivial π′-group, for
a set of primes π. For every i ≥ 1, we define inductively a group Xi as follows:

X1 = P, X2 = P ∼ Q
Xi = Xi−1 ∼ P , Xi+1 = Xi ∼ Q, when i ≥ 3, i odd,

where R ∼ S denotes the regular wreath product of R with S, for any pair of
groups R and S.

Consider X = Xn for any positive integer n. Denote X(1) = X(2) = X and

set G = X(1) × X(2). Take X
(i)
σ a σ-Hall subgroup of X, for each σ ∈ {π, π′}

and i = 1, 2. Now let A = X
(1)
π × X(2)

π′ , B = X
(1)
π′ × X(2)

π and C = D(X) =
{(x, x) |x ∈ X} ∼= X the diagonal subgroup. Then G = AB = AC = BC, A
and B are π-decomposable groups, C and G are π-separable, and lπ(G) = lπ(C)
is either n

2 or n+1
2 , depending respectively if n is even or odd.

It is well known that the Fitting subgroup of a product of two nilpotent
groups is factorized (see [1, Lemma 2.5.7]). As an application of Corollary 2,
we obtain the following generalization of that result for π-decomposable groups.
A particular case in the universe of finite soluble groups was obtained in [4,
Theorem 2].

Proposition 1. Let F be the class of all π-decomposable groups, for a set of
primes π. If G = AB is a π-separable group and A and B are F-groups, then
the F-radical GF of G is a factorized subgroup, that is, GF = (GF ∩A)(GF ∩B)
and A ∩B is contained in GF . (Recall that GF = Oπ(G)×Oπ′(G).)

Proof. Assume that the result is not true and let G be a counterexample of
minimal order. Since G is π-separable, GF = Oπ(G) × Oπ′(G) 6= 1, and the
choice of G implies that the F-radical L/GF of the factor group G/GF =
(AGF/GF )(BGF/GF ) is factorized; in particular,

(AGF/GF ) ∩ (BGF/GF ) ≤ L/GF .

Set X = X(GF ), the factorizer of GF in G = AB. Therefore GF < X =
AGF ∩BGF ≤ L, and it holds:

L = (L ∩AGF )(L ∩BGF ) = (L ∩A)GF (L ∩B) ⊆ (L ∩A)X(L ∩B) =

= (L ∩A)(X ∩A)(X ∩B)(L ∩B) = (L ∩A)(L ∩B) ⊆ L,

that is, L = (L ∩A)(L ∩B).
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If L were a proper subgroup of G, then by the minimal choice of G the
F-radical of L would be factorized with respect to the factorization L = (L ∩
A)(L∩B). But A∩B ≤ X ≤ L, and so A∩B = (L∩A)∩ (L∩B) ≤ LF . Then
GF = LF would be also factorized with respect to G = AB, a contradiction.

Consequently, L = G and G/GF is an F-group, that is,

G/GF = Oπ(G/GF )×Oπ′(G/GF ).

Since A = Aπ × Aπ′ and B = Bπ × Bπ′ and G is π-separable, we deduce
by Lemma 3 that AπBπ is a Hall π-subgroup of G, and Aπ′Bπ′ is a Hall π′-
subgroup of G. It follows now that AπBπGF = AπBπOπ′(G) and Aπ′Bπ′GF =
Aπ′Bπ′Oπ(G) are normal subgroups in G.

Now, applying Corollary 2, we get that

X = (A ∩BGF )GF = (B ∩AGF )GF = (A ∩BGF )(B ∩AGF )

is an F-group, that is, X = Xπ ×Xπ′ .
Let σ ∈ {π, π′}. Since GF = Oπ(G)×Oπ′(G) ≤ X, we deduce in particular

that [Xσ, Oσ′(G)] = 1. Since G is π-separable, Xσ is contained in some Hall
σ-subgroup of G. But every Hall σ-subgroup of G has the form (AσBσ)t for
some t ∈ Oσ′(G), as AσBσOσ′(G) �G, so it contains Xσ. Hence Xσ ≤ Oσ(G).
Consequently, X = GF , the final contradiction.

The next example shows that the above result is not true if G is not a
π-separable group.

Example 3. Let N = L2(26), φ the Frobenius automorphism of N and ψ = φ2,
which is an automorphism of N of order 3. Consider G = [N ]〈ψ〉 the natural
semidirect product of N with 〈ψ〉. We notice that |G| = 26 · 34 · 5 · 7 · 13 and
also that CG(ψ) ∼= L2(22). Set π = {2, 3, 7, 13}.

Then the group G can be factorized as G = AB, where A = NG(G2) is
π-group, B = NG(G13) = Bπ × Bπ′ ∼= ([C13]C3) × C5 is π-decomposable, and
|A∩B| = 3. Hence, if F is the class of all π-decomposable groups, the F-radical
of G is GF = 1, and it is not factorized.

Theorem 4 below provides a stronger version to Corollary 2 for a trifactor-
ized group where two of the factors are π-decomposable and the third factor
is a subnormal subgroup. We will need the following previous result. For any
formation F and any group X, we denote by XF the F-residual of X.

Lemma 5. Let F be a Fitting formation. If the group G = HK is the product
of two subnormal subgroups H and K, then GF = HFKF .

Proof. We argue by induction on dH + dK , where dX denotes the subnormal
defect of X in G for each X ∈ {H,K}, i.e. the smallest non-negative integer
dX such that there exists a series X = X0 C X1 C · · · C XdX = G of subgroups
of G. If H and K are normal subgroups of G (dH + dK ≤ 2) the result follows
by [6, II, Lemma 2.12]. Without loss of generality assume that H is not normal
in G and let H < Ĥ C G. We notice that Ĥ = H(Ĥ ∩ K), and deduce, by
inductive hypothesis, that GF = ĤFKF and ĤF = HF (Ĥ ∩K)F . Since F is
closed under taking subnormal subgroups, it follows that (Ĥ ∩K)F ≤ KF , and
so GF = HFKF , as aimed.
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Theorem 4. Let π be a set of primes. Let the group G = AB = AC = BC
be the product of three subgroups A,B and C, where A = Aπ × Aπ′ and B =
Bπ × Bπ′ are π-decomposable groups, and C is a subnormal subgroup of G. If
F is the class of all π-decomposable groups, then GF = CF .

Proof. We may assume that π is a set of odd primes.
First notice that the class F of all π-decomposable groups is a Fitting for-

mation. Suppose the result is not true and let G be a group of minimal order
among the groups X having two π-decomposable subgroups H and K and a
subnormal subgroup L such that G = HK = HL = KL and GF 6= LF .

Then there exist two π-decomposable subgroups A and B of G and a sub-
normal subgroup C of G such that G = AB = AC = BC and GF 6= CF . We
choose C with |C| maximal. We split the proof into the following steps:

1. GF = CFN for every minimal normal subgroup N of G, CF C GF , and
CoreG(CF ) = 1.

Let N be a minimal normal subgroup of G. Since (G/N)F = GFN/N , the
minimal choice of G implies that GFN = CFN . Moreover, CF ≤ GF , which
implies that GF = CF (GF ∩N). Since GF 6= CF , we have that GF ∩N = N
and so N ≤ GF . Then GF = CFN , and also CoreG(CF ) = 1. Moreover, since
CF is a subnormal subgroup of G, N normalizes CF (cf. [6, A, Lemma 14.3]),
which implies that CF C GF .

2. If there are two different minimal normal subgroups, then they are abelian.

Assume that N1, N2 are minimal normal subgroups, N1 6= N2. By Step
1, GF = CFN1 = CFN2. Since [N1, N2] = 1, we deduce that N ′i ≤ CF for
i = 1, 2. Since CoreG(CF ) = 1 it follows that N1 and N2 are abelian.

3. GF = Oπ(G)×Oπ′(G) ≤ C.

Suppose now that C is a proper subgroup of CGF . Since G = AB =
A(CGF ) = B(CGF ), CGF is a subnormal subgroup of G and |C| < |CGF |, it
follows by the maximality of C that GF = (CGF )F . Now applying Lemma 5
we get GF = CF , a contradiction. Therefore C = CGF and so GF ≤ C.

4. GF = Oπ(G) × Oπ′(G) 6= 1. Let σ ∈ {π, π′} such that Oσ(G) 6= 1.
Moreover, Oσ′(G) = 1.

Assume that Oπ(G) = 1 and Oπ′(G) = 1. We know that AπBπ is a subgroup
of G by Theorem 1. Then Lemma 2 implies that [AGπ , B

G
π ] = 1. Consequently,

from this fact together with Step 2, we can deduce that, if Aπ 6= 1 and Bπ 6= 1,
then there is an abelian minimal normal subgroup, and so a normal p-subgroup,
for a prime p, which is a contradiction. Therefore, we may assume w.l.o.g. that
Aπ = 1 and Bπ 6= 1. Since G = AB = AC = BC, by order arguments it follows
that Bπ ≤ C. Moreover, Bπ C B and G = BC, which imply, by Lemma 1, that
BGπ ≤ C. Then there is a minimal normal subgroup N of G contained in C, and
GF = CFN ≤ C. Hence GF/CF ∼= N/(N ∩ CF ) ∈ F . We notice that N is a
non-abelian minimal normal subgroup, and so it is a direct product of copies of a
non-abelian simple group. But N ∩CF is a direct product of simple components
of N , because it is a normal subgroup of N . It follows that N is a π′-group, and
so N ≤ Oπ′(G) = 1, a contradiction. Therefore, GF = Oπ(G)×Oπ′(G) 6= 1.

The last statement follows because GF/CF ∼= N/(N∩CF ) for every minimal
normal subgroup N of G.
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5. GF ≤ Oσ(G); if there is a minimal normal subgroup, which is elementary
abelian p-group for a prime p, then GF has the same properties. Moreover, G
is σ-separable (and σ′-separable).

Let N be a minimal normal subgroup of G, N ≤ Oσ(G). Since GF = CFN ,
we have that GF/CF ∼= N/(N ∩CF ). Then Oσ(GF ) ≤ CoreG(CF ) = 1, which
implies that GF is a σ-group. If there is a minimal normal subgroup, which is
elementary abelian p-group for a prime p, analogous arguments prove that GF

has the same properties. Moreover, it follows now that G is σ-separable, as it
is so G/GF .

6. G = GσGσ′ , GF ≤ Gσ �G, GFGσ′ �G, GF = (GFGσ′)F .

This follows by Step 5 and Lemma 5.

7. The final contradiction.

If Aσ′ = 1, then we may take Gσ′ = Bσ′ ≤ C, which implies that GFGσ′ ≤ C
and so GF = (GFGσ′)F ≤ CF , a contradiction. Analogously Bσ′ = 1 is not
possible and we have that Aσ′ 6= 1, Bσ′ 6= 1 and Oσ′(G) = 1. Again we have
by Lemma 2 that [AGσ′ , BGσ′ ] = 1, and together with Step 2, we can consider a
minimal normal subgroup N ≤ BGσ′ which is abelian. In particular, [AGσ′ , N ] = 1.

By Lemma 3 there exists a Hall σ′-subgroup of C, say Cσ′ , such that Aσ′Cσ′

is a σ′-Hall subgroup of G. Since N is an elementary abelian group and Cσ′

acts coprimely on N , we can apply Maschke’s Theorem (cf. [6, A, Theorem
11.5]) to deduce that the Cσ′ -invariant subgroup CF ∩ N has a Cσ′ -invariant
complement in N , say H. Moreover, since CoreG(CF ) = 1, it holds that H 6= 1.
So GF = CFN = CFH with CF ∩H = 1.

Now notice that Cσ′GF/CF ≤ C/CF is an F-group. But Cσ′GF/CF =
Cσ′HCF/CF ∼= Cσ′H, because CF ∩ Cσ′H = 1. This means that Cσ′H is
an F-group, and so H centralizes Cσ′ . Since [N,Aσ′ ] = 1, it follows that H
centralizes Gσ′ = Aσ′Cσ′ , which is a Hall σ′-subgroup of G. In particular,
H ×Gσ′ ∈ F .

Since GF = CFH is an elementary abelian subgroup by Step 5, again by
Maschke’s Theorem, there exists a complement of H in GF , say T , which is Gσ′ -
invariant. But then, by Step 6, we have that GF = (GFGσ′)F = (THGσ′)F ≤
T , which is a proper subgroup of GF , the final contradiction.

Remark. Example 1 shows that the statement in Theorem 4 does not remain
true if the subgroup C fails to be subnormal.

As a particular case of Theorem 4 we recover the following extension of
Kegel’s result quoted in the introduction, which appears in [3]:

Corollary 4. Let the finite group G = AB = AC = BC be the product of three
subgroups A, B, and N , where N is subnormal in G. If A and B are nilpotent,
then the nilpotent residual of G coincides with the nilpotent residual of N . In
particular, the nilpotent residual of N is normal in G.

One might expect that the result of Peterson ([1, Theorem 2.5.10]) men-
tioned in the introduction should generalize to a corresponding positive result
by replacing the class of nilpotent groups by a class of π-decomposable groups
for a set of primes π. The following example shows that this is not the case,
also if the factor C is assumed to be a π-separable normal subgroup and the
saturated formation to contain all π-decomposable groups.
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Example 4. Let π be a set of primes. Assume that the group G = AB =
AC = BC is the product of three subgroups A,B and C, where A = Aπ ×Aπ′

and B = Bπ × Bπ′ are π-decomposable groups, and C is a π-closed normal
subgroup of G. If F is a saturated formation containing the class of all π-
decomposable groups, the next example shows that it is not true in general that
G ∈ F whenever C ∈ F .

Let the groups T = 〈t〉 ∼= C7, Y = 〈y〉 ∼= C3, X = 〈x〉 ∼= C2, and consider
the natural action of Y × X ∼= Aut(T ) on T as automorphism group; more
precisely, ty = t2, tx = t−1. Let TY X be the corresponding semidirect product.
We consider now an irreducible and faithful TY X-module V over the field of 5
elements (cf. [6, B, Theorem 10.3]), and form G = V TY X the corresponding
semidirect product.

Take π to be the set of all odd primes, so π′ = {2}, A = V TY which is a
π-group, B = Y X which is a π-decomposable group, and C = V TX which is a
π-closed normal subgroup of G. We notice that G = AB = AC = BC.

We observe that, by [6, IV, Proposition 1.3)], the class of groups

H = (G | AutG(S) ∈ (C2, E2′) for all 7-chief factor S of G)

is a formation, where (C2, E2′) denotes the class of groups which either are
isomorphic with C2 or belong to E2′ , the class of groups of odd order.

We consider now F = LF(f) the saturated formation locally defined by the
formation function f given in the following way:

f(p) = H, for every prime p 6= 2,

f(2) = E2, the class of 2-groups.

It is easy to see that the class of all π-decomposable group is contained in F .
Moreover, it holds that C ∈ F but G /∈ F .
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