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On finite products of m-decomposable subgroups

L. S. Kazarin, A. Martinez-Pastor and M. D. Pérez-Ramos

1 Introduction

Throughout this paper all groups considered are finite. Within the study of
factorized groups one has frequently to consider trifactorized groups, that is,
groups of the form G = AB = AC = BC, where A, B, and C are subgroups
of G. That occurs for instance when aiming to get information on a normal
subgroup N of a factorized group G = AB, with A, B subgroups of G. In this
case, an important tool is to analize the structure of the so-called factorizer of N,
denoted X (N), which is the intersection of all factorized subgroups containing
N. (We recall that a subgroup S of G = AB is factorized if S = (ANS)(BN.S)
and AN B < S§.) The mentioned subgroup X (N) turns to be a trifactorized
group; more precisely, X (N) = N(ANBN) = N(BNAN) = (ANBN)(BNAN)
(see [1]).

One of the classical results in the literature of finite trifactorized groups is
due to O. Kegel [14]. He proved that a finite group G = AB = AC = BC, which
is the product of two nilpotent subgroups A and B, is nilpotent (supersoluble),
provided that C is likewise nilpotent (supersoluble). A corresponding statement
holds when A and B are nilpotent, and C' belongs to a saturated formation
containing all nilpotent groups, as proved by F. G. Peterson (see [1, Theorem
2.5.10]). It is worthwhile emphasizing that such a group is soluble, by the
renombrated theorem of Kegel and Wielandt on the solubility of a product of
two nilpotent groups.

Some criteria for the mw-separability of a trifactorized group, for a set of
primes 7, under assumptions of existence, conjugacy and dominance of Hall
m-subgroups, were also obtained by E. Pennington in [15] (see Theorem 2 and
Corollary 3 below). A much more deep result in the universe of all finite groups
was proved by L. S. Kazarin in [8] using the Classification of Finite Simple
Groups (CFSG): if the group G = AB = AC = BC is the product of three
soluble subgroups A, B, and C, then G is soluble. Later on, some related results
were obtained in [3], again in the universe of soluble groups, by considering some
well-known family of subgroup-closed saturated formations so called of nilpotent
type (see [5] for an account of such classes of groups).

In this paper we go further with the research on trifactorized groups, dealing
with m-decomposable groups. A group X is said to be m-decomposable for a set
of primes 7, if X = X, x X/ is the direct product of a m-subgroup X, and a
7’-subgroup X, where 7’ stands for the complementary of 7 in the set of all
prime numbers. For any group X and any set of primes o, we use X, to denote
a Hall o-subgroup of X. In particular, X, will denote a Sylow p-subgroup of
X, for a prime p.

For our purposes the following result is crucial:



Theorem 1. ([13, Main Theorem]) Let 7 be a set of odd primes. Let the group
G = AB be the product of two w-decomposable subgroups A = A X Ay and
B =B, x By. Then A;B, = B A, and this is a Hall w-subgroup of G.

This theorem, whose proof uses CFSG, is part of a development carried
out in [9, 10, 12, 13] and motivated by the search for extensions of the above
mentioned theorem of Kegel and Wielandt (see also [11]). Theorem 1 is applied
now in this note to obtain new results on trifactorized groups within the general
universe of finite groups.

The notation is standard and is taken mainly from [6]. We also refer to this
book for the basic terminology and results about classes of groups. Moreover,
we refer to [17] for the elementary facts regarding m-separable groups, for a
set of primes 7, used in the paper. In particular, we denote by I;(G) the m-
length of a m-separable group G. If X, Y are subgroups of a group G, we denote
XY = (zv |z € X,y €Y); in particular, X% is the normal closure of X in G.

2 Preliminary results

We will use frequently the following well-known result, whose proof is straight-
forward.

Lemma 1. Let the group G = AB be the product of the subgroups A and B.
Assume that D C AN B and that D is a normal subgroup of B. Then DE < A.

The next result is a reformulation of a useful one due to Kegel, and later on
improved by Wielandt, which appears in [1, Lemma 2.5.1] (see also [10, Lemma

2).

Lemma 2. Let the group G = AB be the product of the subgroups A and B and
let Ag and By be normal subgroups of A and B, respectively. If AgBy = ByAy,
then A§By = ByAj for all g € G.

Moreover, if Ay and By are w-groups for a set of primes w, and Or(G) =1,
then [A§, B = 1.

For a set of primes m, we recall that a m-separable group is a D,-group,
that is, every m-subgroup is contained in a Hall w-subgroup, and any two Hall
m-subgroups are conjugate in the group. We will use, without further reference,
the following fact on Hall subgroups of factorized groups, which is applicable to
m-separable groups (see [1, Lemma 1.3.2]).

Lemma 3. Let G = AB be the product of the subgroups A and B. Assume that
A and B have Hall w-subgroups and that G is a Dy-group for a set of primes
. Then there exist Hall mw-subgroups A, of A and By of B such that A, B, is
a Hall m-subgroup of G.

We need specifically the following result, whose proof uses CFSG.

Lemma 4. ([16, Theorem 7.7]) Let G be a finite group, A <G, and w be a set
of primes. Then G is a Dy-group if and only if A and G/A are Dy-groups.



3 Main Results

Our first results on trifactorized groups, Theorem 3 and Corollaries 1, 2, provide
an alternative approach to that of Pennington [15] concerning the m-separability
of trifactorized groups. A main goal is to avoid hypotheses of existence, conju-
gacy and dominance of Hall m-subgroups (D,-properties), in contrast to Pen-
nington’s results. This will follow as consequence of Theorem 3, which provides
the D -property of a trifactorized group, as a first application of our Theorem 1.

We gather first the above-mentioned results of [15]. We recall that a group
G is m-closed for a set of primes 7 if the m-elements of G generate a normal
m-subgroup.

Theorem 2. ([15, Theorem, Corollary 2]) Let G = AB = AC = BC be a
D, -group with A and B w-closed subgroups and C a mw-separable subgroup, , for
a set of primes w. Then:

1. G is m-separable and O (C) C Or(G) and O/ (C) C O~ (G).
2. I:(G)<I:(C)+1 and I,/ (G) < 1(C)+ 1.

3. If A and B are also ©'-closed (i.e. A and B are w-decomposable), then
I:(G) =1(C) and 1/ (C) = 1(G) (and also O (C) C O (QG)).

Theorem 3. Let 7 be a set of odd primes. Let the group G = AB = AC =
BC be the product of three subgroups A, B and C, where A = Ay X Ay and
B = B, X By are w-decomposable groups, and C is a D -group. Then G is a
D -group.

Proof. We notice first that A, B, is a Hall m-subgroup of G by Theorem 1.

We argue by induction on |G|. We notice that the hypotheses of the result
hold for factor groups. Hence whenever N is a nontrivial normal subgroup of G,
the inductive hypothesis implies that G/N is a D -group. If in addition N is
a D, -group, then the result follows by Lemma 4. In particular we may assume
that O, (G) = O./(G) = 1.

By Lemma 2 it follows that [AS, BS] = 1.

We consider now the case that A, # 1 and B, # 1. We notice that A N
BS = 1. Otherwise, if N is a minimal normal subgroup of G contained in
AS N BY, then [N, N] =1, i.e. N is abelian and then either N < O,(G) =1 or
N < O, (G) =1, a contradiction.

On the other hand,

A = A AwBrBur  ABw — A AL Bl £ 1,

and
BE = BPRPo A A B (B AL] 1.

Let H be a m-subgroup of G. We aim to prove that H < (A, B;)9 for some
g €q.
We apply induction on the factor groups G/AS and G/B¢, and may assume
that
H S Bﬂ‘AW [Aﬂ"v Bw’]



and
H S (AWBW[Bﬂ'uAW’])g = (ATK‘BTK‘[Bﬂ'?A‘IT’])b

for some g = ab with a € A, b € B, since B;[B, Ay/] is normal in G and A is
normal in A. Consequently,

H < (Bﬂ'Aﬂ[Aﬂ'7 BTr’]) N (Aﬂ'Bﬂ'[Bﬂ'7A‘IT'])b = ((Aﬂ'Bﬂ'[Aﬂ'7 BTF’]) N (Aﬂ'Bﬂ'[Bﬂ'?Aﬂ"]))b
= (Az B ([Ar, Bo/] N (Ax Bx[Br, Ax]))),

since A;[Ar, By] is normal in G and B is normal in B.

We claim that [A;, Bx/|N(AzBr[Br, Az]) is a m-group. Since A, B is a Hall
m-subgroup of G this will imply that H < (A, By ([Ar, Bx/]N(Ar Br[Br, Ax])))b =
(A;B;)?, as aimed.

Let ¢ € [Ar,Bx] N (AxBy[Br, Ar/]). Then ¢ = td for some t € A, B,
and d € [Bn,Ar]. Hence, t = cd™'. But [Aq, Bx] N [Br,Arx] = 1 and
[[Ar, Bx], [Br, Ax]] = 1, because A N BY = 1 and [AY, BS] = 1. Conse-
quently, it follows in particular that the order of ¢ divides the order of ¢, which
is a m-number. This proves the claim and the result in the case under consider-
ation.

In the case that A, = 1 and B,» = 1, the group G has Hall m-subgroups and
Hall 7’-subgroups, which implies that G is a D-group (cf. [2]).

Hence, we may assume without loss of generality that A, = 1, Ay # 1,
Bﬂ- 7& 1 and Bﬂ/ 7& 1.

Since G = AB = AC = BC and A, = 1, it is easy to deduce by order
arguments that B, < C. Hence, the facts that B, << B and G = BC imply, by
Lemma 1, that B¢ < C. Set N = BS. Since C is a D,-group, it follows that
N and so also G are D -groups, by Lemma 4, which concludes the proof. [

Corollary 1. Let w be a set of primes. Let the group G = AB = AC =
BC' be the product of three subgroups A, B and C, where A = A, X Ay and
B = B, X By are w-decomposable groups, and C is w-separable. Then G is
w-separable.

Moreover, O, (C) C Or(G) and 1:(G) = 1(C) (and also O (C) C O (Q)
and 1 (G) = 1 (C)).

Proof. We may assume that 7 # () and 7’ # (). Let 0 € {m, 7’} such that 2 ¢ o.
Then C is o-separable and so C' is a D,-group. By Theorem 3, G is a D,-group
and the result follows by Theorem 2. O

The following result is easily deduced.

Corollary 2. Let w be a set of primes. Let the group G = AB = AC = BC be
the product of three subgroups A, B and C. If A, B and C' are w-decomposable
groups, then G is m-decomposable.

It may be of interest to compare Corollary 2 with the following result, which
appears in [15] as a corollary of Theorem 2(1). Indeed, Corollary 2 may be also
seen as consequence of this following result together with Theorem 3.

Corollary 3. ([14, Satz 1], [15, Corollary 1]) Let G be a Dr-group. Then G is
w-closed if and only if there are subgroups A, B, and C of G, all w-closed and
satisfying G = AB = AC = BC.



The following example shows a trifactorized group G = AB = AC = BC
with subgroups A, B and C such that A and B are w-decomposable but G and
C' are not m-separable.

Example 1. Consider X = Alt(5) the alternating group of degree 5 and let
G=XxX.Let Y, Z < X with Y & Alt(4) and Z = C5 the cyclic group of
order5. Let A=Y xZ, B=7ZxY,and C = D(X) = {(z,z) |z € X} = A5 the
diagonal subgroup. Set m = {5}, so ' = {2,3}. Then G = AB = AC = BC, A
and B are m-decomposable groups but G and C' are not a m-separable.

We show next that under the hypotheses of Corollary 1 the 7-length of the
group G can be arbitrarily large.

Example 2. Consider P a nontrivial m-group and @) a nontrivial 7’-group, for
a set of primes . For every i > 1, we define inductively a group X; as follows:

X1=P, Xo=P~Q

Xi = Xi,1 ~ P, .XiJrl = Xl ~ Q, when 1 Z 3, ) Odd,
where R ~ S denotes the regular wreath product of R with S, for any pair of
groups R and S.

Consider X = X, for any positive integer n. Denote XM = X = X and
set G = XM x X@. Take X a o-Hall subgroup of X, for each o € {m, 7'}
and i = 1,2. Now let A = X{" x X&' B = X)) x Xx{¥ and ¢ = D(X) =
{(z,z) |z € X} = X the diagonal subgroup. Then G = AB = AC = BC, A
and B are m-decomposable groups, C and G are m-separable, and I;(G) = 1;(C)

n n+1

is either § or "=, depending respectively if n is even or odd.

It is well known that the Fitting subgroup of a product of two nilpotent
groups is factorized (see [1, Lemma 2.5.7]). As an application of Corollary 2,
we obtain the following generalization of that result for m-decomposable groups.
A particular case in the universe of finite soluble groups was obtained in [4,
Theorem 2].

Proposition 1. Let F be the class of all m-decomposable groups, for a set of
primes w. If G = AB is a w-separable group and A and B are F-groups, then
the F-radical Gx of G is a factorized subgroup, that is, Gr = (GFNA)(GxNB)
and AN B is contained in Gx. (Recall that Gr = O (G) x O (G).)

Proof. Assume that the result is not true and let G be a counterexample of
minimal order. Since G is w-separable, Gx = O,(G) x O (G) # 1, and the
choice of G implies that the F-radical L/Gr of the factor group G/Gr =
(AGr/Gr)(BGx/Gx) is factorized; in particular,

(AGr/Gr)N(BGr/GFr) < L/GF.

Set X = X(GF), the factorizer of G in G = AB. Therefore Gr < X =
AGr N BGx < L, and it holds:

L=(LNAGr)(LNBGF)=(LNA)Gr(LNB)C(LNA)X(LNB) =
=(LNA)(XNAXNB)(LNB)=(LNA)(LNB)CL,

that is, L = (LN A)(L N B).



If L were a proper subgroup of G, then by the minimal choice of G the
F-radical of L would be factorized with respect to the factorization L = (L N
A)YLNB). Bt ANB< X < L,andso ANB=(LNA)N(LNB) < Lz. Then
G = Ly would be also factorized with respect to G = AB, a contradiction.

Consequently, L = G and G/G# is an F-group, that is,

G/Gr = 0.(G/GF) x O/(G/GF).

Since A = A, X Ay and B = B, X By and G is w-separable, we deduce
by Lemma 3 that A,B, is a Hall m-subgroup of G, and A, B, is a Hall 7'-
subgroup of G. It follows now that A, B,Gr = Az B0, (G) and A B Gr =
An B O (G) are normal subgroups in G.

Now, applying Corollary 2, we get that

X =(ANBG#x)Gr = (BNAGx)Gr = (AN BGx)(BN AGx)

is an F-group, that is, X = X x X,.

Let o € {m,n'}. Since Gr = O,(G) x O (G) < X, we deduce in particular
that [X,,04(G)] = 1. Since G is m-separable, X, is contained in some Hall
o-subgroup of G. But every Hall g-subgroup of G has the form (A4,B,)! for
some t € O,/ (G), as A, B,0,/(G) <G, so it contains X,. Hence X, < O,(G).
Consequently, X = Gz, the final contradiction. O

The next example shows that the above result is not true if G is not a
m-separable group.

Example 3. Let N = Ly(2°%), ¢ the Frobenius automorphism of N and ¢ = ¢2,
which is an automorphism of N of order 3. Consider G = [N]{¢) the natural
semidirect product of N with (1/). We notice that |G| =2°-3*.5.7-13 and
also that Cg(¢) = La(22). Set 7 = {2,3,7,13}.

Then the group G can be factorized as G = AB, where A = Ng(G2) is
m-group, B = Ng(G13) = By X By 22 ([C13]C3) x Cs is m-decomposable, and
|[ANB| = 3. Hence, if F is the class of all m-decomposable groups, the F-radical
of G is Gr =1, and it is not factorized.

Theorem 4 below provides a stronger version to Corollary 2 for a trifactor-
ized group where two of the factors are m-decomposable and the third factor
is a subnormal subgroup. We will need the following previous result. For any
formation F and any group X, we denote by X7 the F-residual of X.

Lemma 5. Let F be a Fitting formation. If the group G = HK is the product
of two subnormal subgroups H and K, then G = HT K7 .

Proof. We argue by induction on dyg + dg, where dx denotes the subnormal
defect of X in G for each X € {H, K}, i.e. the smallest non-negative integer
dx such that there exists a series X = Xo < X1 < --- < X4, = G of subgroups
of G. If H and K are normal subgroups of G (dg + dx < 2) the result follows
by [6, II, Lemma 2.12]. Without loss of generality assume that H is not normal
in G and let H < H < G. We notice that H = H(H N K), and deduce, by
inductive hypothesis, that G* = HZ KT and H” = Hf(ﬁ N K)*. Since F is
closed under taking subnormal subgroups, it follows that (H N K)” < K7, and
so G = HY K7, as aimed. O



Theorem 4. Let m be a set of primes. Let the group G = AB = AC = BC
be the product of three subgroups A, B and C, where A = Ay X A and B =
B X By are m-decomposable groups, and C' is a subnormal subgroup of G. If
F is the class of all m-decomposable groups, then GF = C7 .

Proof. We may assume that 7 is a set of odd primes.

First notice that the class F of all m-decomposable groups is a Fitting for-
mation. Suppose the result is not true and let G be a group of minimal order
among the groups X having two m-decomposable subgroups H and K and a
subnormal subgroup L such that G = HK = HL = KL and G7 # L.

Then there exist two m-decomposable subgroups A and B of G and a sub-
normal subgroup C of G such that G = AB = AC = BC and G7 # C7. We
choose C with |C| maximal. We split the proof into the following steps:

1. GF = CT N for every minimal normal subgroup N of G, C¥ < G, and
Coreq(CT) = 1.

Let N be a minimal normal subgroup of G. Since (G/N)” = G* N/N, the
minimal choice of G implies that G"N = C* N. Moreover, C¥ < G7, which
implies that G = CF(G7 N N). Since GF # C7, we have that G" "N = N
and so N < G7. Then G = C7 N, and also Coreg(C”) = 1. Moreover, since
C7 is a subnormal subgroup of G, N normalizes C* (cf. [6, A, Lemma 14.3]),
which implies that C¥ < G7.

2. If there are two different minimal normal subgroups, then they are abelian.

Assume that Nj, No are minimal normal subgroups, N; # Ns. By Step
1, GF = CF Ny = CT Ny. Since [Ny, No] = 1, we deduce that N/ < C7 for
i =1,2. Since Coreg(C”) = 1 it follows that Ny and Ny are abelian.

3. Gr=0,(G) x O (G) < C.

Suppose now that C' is a proper subgroup of CGx. Since G = AB =
A(CGr) = B(CGF), CGF is a subnormal subgroup of G and |C| < |CG x|, it
follows by the maximality of C that G* = (CG#)”. Now applying Lemma 5
we get G7 = C7, a contradiction. Therefore C' = CGx and so G < C.

4. Gr = 0:(G) X O (G) # 1. Let o € {m «'} such that O,(G) # 1.
Moreover, O,/ (G) = 1.

Assume that O, (G) = 1 and O,/ (G) = 1. We know that A, B, is a subgroup
of G by Theorem 1. Then Lemma 2 implies that [AY, B¢] = 1. Consequently,
from this fact together with Step 2, we can deduce that, if A, # 1 and B, # 1,
then there is an abelian minimal normal subgroup, and so a normal p-subgroup,
for a prime p, which is a contradiction. Therefore, we may assume w.l.o.g. that
Ar=1and B; # 1. Since G = AB = AC = BC, by order arguments it follows
that B, < C. Moreover, B, << B and G = BC, which imply, by Lemma 1, that
BY < C. Then there is a minimal normal subgroup N of G contained in C, and
G7 = CFN < C. Hence GF/C7 = N/(NNC7) € F. We notice that N is a
non-abelian minimal normal subgroup, and so it is a direct product of copies of a
non-abelian simple group. But NNCY is a direct product of simple components
of N, because it is a normal subgroup of N. It follows that NV is a «’-group, and
so N < O./(G) =1, a contradiction. Therefore, Gr = O(G) x O (G) # 1.

The last statement follows because G¥ /C7 = N/(NNCY) for every minimal
normal subgroup N of G.



5. GF < 0,(G); if there is a minimal normal subgroup, which is elementary
abelian p-group for a prime p, then G has the same properties. Moreover, G
is o-separable (and o’-separable).

Let N be a minimal normal subgroup of G, N < O,(G). Since G = CT N,
we have that G¥/C7 = N/(N N C7F). Then 07 (G”) < Coreg(C”) = 1, which
implies that G7 is a o-group. If there is a minimal normal subgroup, which is
elementary abelian p-group for a prime p, analogous arguments prove that G7
has the same properties. Moreover, it follows now that GG is o-separable, as it
is so G/G7.

6. G=G,G,, GT <G, 4G, GTG, 4G, GF = (GFG,)7T.

This follows by Step 5 and Lemma 5.

7. The final contradiction.

If Ay, = 1, then we may take G, = B, < C, which implies that GG, < C
and so G7 = (G7G,/)” < C7, a contradiction. Analogously B, = 1 is not
possible and we have that A,» # 1, B, # 1 and O,/ (G) = 1. Again we have
by Lemma 2 that [A,, BS] = 1, and together with Step 2, we can consider a
minimal normal subgroup N < BS which is abelian. In particular, [AS, N] = 1.

By Lemma 3 there exists a Hall o’-subgroup of C, say C,/, such that A, C,
is a ¢o’-Hall subgroup of G. Since N is an elementary abelian group and Cl,-
acts coprimely on N, we can apply Maschke’s Theorem (cf. [6, A, Theorem
11.5]) to deduce that the C,/-invariant subgroup C7 N N has a C,-invariant
complement in N, say H. Moreover, since Coreg(C7) = 1, it holds that H # 1.
So GF =CFN=C7H with C" NH = 1.

Now notice that C,.G7/CT < C/C7 is an F-group. But C,.G”/CT =
CUrHCF/Cf ~ (O, H, because CF N C, H = 1. This means that C, H is
an JF-group, and so H centralizes C,/. Since [N, A,/] = 1, it follows that H
centralizes G,» = A, Cys, which is a Hall ¢’-subgroup of G. In particular,
Hx G, € F.

Since G¥ = C/ H is an elementary abelian subgroup by Step 5, again by
Maschke’s Theorem, there exists a complement of H in G7, say T, which is G-
invariant. But then, by Step 6, we have that G* = (G7G,/)” = (THG)” <
T, which is a proper subgroup of G7, the final contradiction. O

Remark. Example 1 shows that the statement in Theorem 4 does not remain
true if the subgroup C fails to be subnormal.

As a particular case of Theorem 4 we recover the following extension of
Kegel’s result quoted in the introduction, which appears in [3]:

Corollary 4. Let the finite group G = AB = AC = BC be the product of three
subgroups A, B, and N, where N is subnormal in G. If A and B are nilpotent,
then the nilpotent residual of G coincides with the nilpotent residual of N. In
particular, the nilpotent residual of N is normal in G.

One might expect that the result of Peterson ([1, Theorem 2.5.10]) men-
tioned in the introduction should generalize to a corresponding positive result
by replacing the class of nilpotent groups by a class of m-decomposable groups
for a set of primes 7. The following example shows that this is not the case,
also if the factor C is assumed to be a m-separable normal subgroup and the
saturated formation to contain all m-decomposable groups.



Example 4. Let m be a set of primes. Assume that the group G = AB =
AC = BC is the product of three subgroups A, B and C, where A = A, x A
and B = B, X B, are m-decomposable groups, and C' is a m-closed normal
subgroup of G. If F is a saturated formation containing the class of all -
decomposable groups, the next example shows that it is not true in general that
G € F whenever C € F.

Let the groups T = (t) 2 C7, Y = (y) = C5, X = (x) = C4, and consider
the natural action of ¥ x X = Aut(T) on T as automorphism group; more
precisely, t¥ = t2, t* =t~1. Let TY X be the corresponding semidirect product.
We consider now an irreducible and faithful 7Y X-module V' over the field of 5
elements (cf. [6, B, Theorem 10.3]), and form G = VI'Y X the corresponding
semidirect product.

Take 7 to be the set of all odd primes, so 7/ = {2}, A = VTY which is a
m-group, B = Y X which is a m-decomposable group, and C' = VT X which is a
m-closed normal subgroup of G. We notice that G = AB = AC = BC.

We observe that, by [6, IV, Proposition 1.3)], the class of groups

H = (G| Autg(S) € (Cq, &) for all T-chief factor S of G)

is a formation, where (Cy, &) denotes the class of groups which either are
isomorphic with Cs or belong to &/, the class of groups of odd order.

We consider now F = LF(f) the saturated formation locally defined by the
formation function f given in the following way:

f(p) = H, for every prime p # 2,
f(2) = &, the class of 2-groups.

It is easy to see that the class of all m-decomposable group is contained in F.
Moreover, it holds that C € F but G ¢ F.
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