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Fifth Author
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1 Introduction

Many problems of applied sciences when modeled mathematically give rise to differential equa-
tions, boundary value problems and integral equations whose solutions are obtained by solving
nonlinear equations. Static and dynamical systems, optimization problems, Kinetic theory of
gases, etc. are other areas giving rise to thousands of such equations. These facts make it one
of the most important areas to be studied. Except for very simple types of problems which can
be solved analytically, iterations and their local convergence are used for them. Another equally
important is to obtain the radii of convergence balls and give hypothesis in order to enlarge
them. A number of researchers [4,5,11,14] have extensively studied this problem and a number
of methods are developed for solving them. It should be noted that the local convergence analysis
[1,6,16] use information around the solution.

Here, we consider approximating a solution x∗ of

G(x) = 0 (1.1)

where, G defined on a subset D of a Banach space X with values in a Banach space Y and having
Fréchet derivatives of appropriate orders. The quadratically convergent iteration known as the
Newton’s method for solving (1.1) is given by

xk+1 = xk −G
′
(xk)−1G(xk), k ≥ 0, (1.2)

where, x0 is the starting point and G
′
(xk)−1 is the inverse of G

′
(xk). Kantorovich [9] gives suffi-

cient conditions for its convergence. Higher order iterations involve the computation of derivatives
of higher orders which are either expensive or unbounded. The third order iterations used for
solving (1.1) are the Chebyshev’s, the Halley’s and Super-Halley’s methods obtained by taking
(α = 0), (α = 1

2 ) and (α = 1) and defined for k ≥ 0, by

xk+1 = xk − (1 +
1

2
(1− αHG(xk))−1HG(xk))G′(xk)−1G(xk), (1.3)

where, HG(xk) = G′(xk)−1G′′(xk)G′(xk)−1G(xk). The drawback of these methods is that they
require computation of G′′(x), which is either unbounded or difficult to compute. The local
convergence of an iteration of order five and six [10] for the modification of (1.3) given by [12] is
defined for k ≥ 0, by

yk = xk −G′(xk)−1G(xk),

zk = xk(I + (G(xk)− 2αG(yk))−1G(yk))G′(xk)−1G(xk),

xk+1 = zk + (G′(xk) + Ĝ′′(xk)(zk − xk))−1G(zk), (1.4)

where, x0 is the starting point, α ∈ [0, 1] and Ĝ′′(xk) = 2G(yk)G′(xk)2G(xk)−2. The deformed
Halley’s method is given for k ≥ 0, by

yk = xk −G
′
(xk)−1G(xk),

zk = xk + αG
′
(xk)−1G(xk),

Hk =
1

λ
G
′
(xk)−1[G

′
(xk + λ(zk − xk))−G

′
(xk)],

xk+1 = yk +
1

2
Hk

(
I − 1

2
Hk

)−1
(yk − xk), (1.5)
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where λ ∈ (0, 1], α ∈ R and x0 is the starting point. Its local convergence analysis is presented in
[13] under Hölder condition on F

′
. It avoids computation of G′′(x). Many other similar methods

avoiding G′′(x) are also described. Thus, higher order iterations have their own importance in
real life applications. For example, stiff system of equations which require quick convergence. The
local convergence discussed in [3] of a family of iterations of third order with Lipschitz continuous
G
′

is given by

yk = xk −G
′
(xk)−1G(xk),

xk+1 = xk −
θ2 + θ − 1

θ
G
′
(xk)−1G(xk)− 1

θ2
G
′
(xk)−1G(yk), k ≥ 0, (1.6)

where, θ ∈ R−{0} and x0 is the starting point. The local convergence of multi-point-parametric
Chebyshev-Halley-type methods of higher orders for solving (1.1) is discussed in [7] under Lips-
chitz continuous G

′
in Banach spaces. The local convergence of a modified Halley-Like method

of high convergence order under Lipschitz continuous G
′

is established in [8].
In this paper, the local convergence analysis of a parameter based iteration with Hölder con-

tinuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces.
It generalizes the local convergence analysis under Lipschitz continuous first derivative. The
main contribution is to show the applicability to those problems for which Lipschitz condition
fails without using higher order derivatives. An existence-uniqueness theorem along with the
derivation of error bounds for the solution is established. Different numerical examples including
nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are ob-
tained. A substantial improvement of these radii are found in comparison to some other existing
methods under similar conditions for all examples considered.

The arrangement of this paper is done as follows. Introduction forms Section 1. In Section 2,
the local convergence analysis of a family of iterations is established under Hölder condition on
G
′

in Banach spaces. The existence and uniqueness theorem is established. A number of different
numerical examples including a nonlinear Hammerstein integral equation from the kinetic theory
of gases are worked out in Section 3. The local convergence of the same family is studied with
the condition that involves M > 0 in Section 4. Finally, conclusions are included in Section 5.

2 Local convergence

A family of iterations [15] and its local convergence to solve (1.1) is established under Hölder
continuous G

′
. It is given for k ≥ 0, by

yk = xk − aG
′
(xk)−1G(xk),

zk = yk −G
′
(xk)−1G(yk),

xk+1 = zk −
(

1

a
G
′
(yk)−1 +

(
1− 1

a

)
G
′
(xk)−1

)
G(zk), (2.7)

where, a ∈ (−∞,∞)−{0} and x0 is the starting point. Its order of convergence is five for a = ±1,
otherwise it is fourth order. This is the extension of [2], where its local convergence is established
under Lipschitz continuous G

′
. Examples can be constructed for which Lipschitz condition fails

but Hölder condition holds on G
′
.

Example 1 Consider an integral equation given by

G(x)(s) = x(s)− 3

∫ 1

0

G1(s, t)x(t)5/4dt, (2.8)

with x(s) ∈ C[0, 1] and G1(s, t) is the Green function.
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Then,

‖G′(x)−G′(y)‖ ≤ 15

32
‖x− y‖1/4 . (2.9)

Clearly, Lipschitz condition fails on G
′

but Hölder condition holds for p = 1
4 . Let M1 > 0,

M2 > 0, p ∈ (0, 1]. Let BL(Y,X) represents the set of bounded linear operators from Y to X.
Assume the following

G(x∗) = 0, G
′
(x∗)−1 ∈ BL(Y,X),

‖G
′
(x∗)−1(G

′
(x)−G

′
(x∗))‖ ≤M1‖x− x∗‖p, (2.10)

‖G
′
(x∗)−1(G

′
(x)−G

′
(y))‖ ≤M2‖x− y‖p. (2.11)

Usually, a third assumption is used that can be written as

‖G
′
(x∗)−1G

′
(x)‖ ≤M, ∀ x ∈ B

(
x∗,

1

M
1/p
1

)
(2.12)

for M > 0 in several papers [7,13]. We have not used this condition in our work and found that
larger radius of the convergence balls are obtained.

Lemma 1 If G satisfies (2.10) and (2.11), then for all x ∈ D, p ∈ (0, 1] and t ∈ [0, 1], we get

‖G
′
(x∗)−1G

′
(x)‖ ≤ 1 +M1‖x− x∗‖p, (2.13)

‖G
′
(x∗)−1(G

′
(x∗ + t(x− x∗))‖ ≤ 1 +M1‖x− x∗‖p, (2.14)

‖G
′
(x∗)−1G(x)‖ ≤ (1 +M1‖x− x∗‖p)‖x− x∗‖. (2.15)

Proof Using (2.10), we get

‖G
′
(x∗)−1G

′
(x)‖ ≤ 1 + ‖G

′
(x∗)−1(G

′
(x)−G

′
(x∗))‖ ≤ 1 +M1‖x− x∗‖p.

and then

‖G
′
(x∗)−1(G

′
(x∗ + t(x− x∗)))‖ ≤ 1 +M1t

p‖x− x∗‖p ≤ 1 +M1‖x− x∗‖p.

To prove (2.15), we use mean value theorem, we get

‖G
′
(x∗)−1G(x)‖ = ‖G

′
(x∗)−1(G(x)−G(x∗))‖ ≤ ‖G

′
(x∗)−1G

′
(x∗ + t(x− x∗))(x− x∗)‖

≤ (‖1 +M1‖x− x∗‖p)‖x− x∗‖.

The following theorem gives the local convergence of (2.7).

Theorem 1 Let x∗ ∈ D and a ∈] 45 ,
5
4 [ such that (2.10)-(2.11) are satisfied and B(x∗, ρ) ⊆ D,

where, the radius ρ is to be determined. Starting with x0 ∈ B(x∗, ρ), the sequence {xk} generated
from (2.7) belongs to B(x∗, ρ) and converges to x∗. The following hold for k ≥ 0

‖yk − x∗‖ ≤ l1(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ, (2.16)

‖zk − x∗‖ ≤ l2(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ, (2.17)

‖xk+1 − x∗‖ ≤ l3(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ, (2.18)

where the functions l1, l2 and l3 are to be defined. If there exists R ∈ [ρ, ( 1+p
M1

)1/p) such that

B(x∗, R) ⊆ D, then x∗ is unique in B(x∗, R).
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Proof Using (2.10) and suppose that ‖x0 − x∗‖p < 1
M1

, then

‖G
′
(x∗)−1(G

′
(x0)−G

′
(x∗))‖ ≤M1‖x0 − x∗‖p < 1.

Thus, by Banach Lemma, G
′
(x0)−1 exists and

‖G
′
(x0)−1G

′
(x∗)‖ ≤ 1

1−M1‖x0 − x∗‖p
. (2.19)

Therefore, y0 and z0 are well defined. For k = 0, (2.7) gives

y0 − x∗ = −G
′
(x0)−1

(
G(x0)−G

′
(x0)(x0 − x∗)

)
+ (1− a)G

′
(x0)−1G(x0)

= −G
′
(x0)−1G

′
(x∗)

∫ 1

0

G
′
(x∗)−1[G

′
(x∗ + t(x0 − x∗))−G

′
(x0)](x0 − x∗)dt

+ (1− a)G
′
(x0)−1G

′
(x∗)

∫ 1

0

G
′
(x∗)−1G

′
(x∗ + t(x0 − x∗))(x0 − x∗)dt

Taking norm and using (2.11) and (2.19), we get

‖y0 − x∗‖ ≤ ‖G
′
(x0)−1G

′
(x∗)‖

∥∥∥∥∫ 1

0

G
′
(x∗)−1[G

′
(x∗ + t(x0 − x∗))−G

′
(x0)](x0 − x∗)dt

∥∥∥∥
+ |1− a|‖G

′
(x0)−1G

′
(x∗)‖

∥∥∥∥∫ 1

0

G
′
(x∗)−1G

′
(x∗ + t(x0 − x∗))(x0 − x∗)dt

∥∥∥∥
≤ 1

1−M1‖x0 − x∗‖p

[
M2

1 + p
‖x0 − x∗‖p + |1− a|(1 +M1‖x0 − x∗‖p)

]
‖x0 − x∗‖

= l1(‖x0 − x∗‖)‖x0 − x∗‖, (2.20)

where,

l1(u) =
1

1−M1up

(
M2

1 + p
up + |1− a|(1 +M1u

p)

)
.

Let m1(u) = l1(u) − 1. Then, m1(0) = |1 − a| − 1 < 0 if a ∈ (0, 2) and m1

(
( 1
M1

)1/p
)
→ +∞.

Therefore, m1(u) has at least one root in
(

0, ( 1
M1

)1/p
)

and let ρ1 be the smallest root. Thus

0 < ρ1 <

(
1

M1

)1/p

, (2.21)

and

0 ≤ l1(u) < 1,∀ u ∈ [0, ρ1). (2.22)

Therefore, by using (2.20) and (2.22), we get

‖y0 − x∗‖ ≤ l1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖.

Again, from (2.7) for k = 0, and using (2.15) and (2.19), we get

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖G
′
(x0)−1G

′
(x∗)‖ ‖G

′
(x∗)−1G(y0)‖,

≤
(

1 +
1 +M1‖y0 − x∗‖p

1−M1‖x0 − x∗‖p

)
‖y0 − x∗‖

≤
(

1 +
1 +M1 (l1(‖x0 − x∗‖))p ‖x0 − x∗‖p)

1−M1‖x0 − x∗‖p

)
l1(‖x0 − x∗‖)‖x0 − x∗‖

= l2 (‖x0 − x∗‖) ‖x0 − x∗‖, (2.23)
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where,

l2(u) =

(
1 +

1 +M1(l1(u))pup

1−M1up

)
l1(u).

Let m2(u) = l2(u)− 1. Then, m2(0) = 2|1− a| − 1 < 0 if a ∈ ( 1
2 ,

3
2 ) and m2(ρ1) =

1+M1ρ
p
1

1−M1ρ
p
1
> 0.

Therefore, m2(u) has at least one root in (0, ρ1) and let ρ2 be the smallest root. Thus,

0 < ρ2 < ρ1, (2.24)

and

0 ≤ l2(u) < 1,∀ u ∈ [0, ρ2). (2.25)

Using (2.23) and (2.25), we get

‖z0 − x∗‖ ≤ l2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖.

Using y0 ∈ D and (2.10), we get

‖G
′
(x∗)−1(G

′
(y0)−G

′
(x∗))‖ ≤M1‖y0 − x∗‖p ≤M1‖x0 − x∗‖p < 1,

Therefore, by Banach Lemma, G
′
(y0)−1 exists and

‖G
′
(y0)−1G

′
(x∗)‖ ≤ 1

1−M1‖y0 − x∗‖p
. (2.26)

Therefore,

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+

∥∥∥∥(1

a
G
′
(y0)−1 + (1− 1

a
)G
′
(x0)−1

)
G(z0)

∥∥∥∥
≤ ‖z0 − x∗‖+

(
1

|a|
‖G
′
(y0)−1G

′
(x∗)‖+

∣∣∣∣1− 1

a

∣∣∣∣ ‖G′(x0)−1G
′
(x∗)‖

)
‖G
′
(x∗)−1G(z0)‖

≤
[
1 +

(
1

|a|
1

1−M1‖y0 − x∗‖p
+

∣∣∣∣1− 1

a

∣∣∣∣ 1

1−M1‖x0 − x∗‖p

)
(1 +M1‖z0 − x∗‖p)

]
‖z0 − x∗‖ (2.27)

≤
[
1 +

(
1

|a|
1

1−M1‖y0 − x∗‖p
+

∣∣∣∣1− 1

a

∣∣∣∣ 1

1−M1‖x0 − x∗‖p

)
(

1 +M1(l2(‖x0 − x∗‖)p‖x0 − x∗‖p)
)]
l2(‖x0 − x∗‖)‖x0 − x∗‖ (2.28)

= l3(‖x0 − x∗‖)‖x0 − x∗‖,

where,

l3(u) =

[
1 +

(
1

|a|
1

1−M1(l1(u))pup
+

∣∣∣∣1− 1

a

∣∣∣∣ 1

1−M1up

)
(1 +M1(l2(u))pup)

]
l2(u).

Let m3(u) = l3(u)− 1. Then,

m3(0) =

[
1 +

(
1

|a|
+

∣∣∣∣1− 1

a

∣∣∣∣)] l2(0)− 1 < 0
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if a ∈] 45 ,
5
4 [ and m3(ρ2) =

[(
1
|a|

1
1−M1(l1(ρ2))pρ

p
2

+
∣∣1− 1

a

∣∣ 1
1−M1ρ

p
2

)
(1 +M1ρ

p
2)
]
> 0. Therefore,

m3(u) has at least one root in (0, ρ2) and let ρ be the smallest root. Therefore,

ρ < ρ2 < ρ1 <

(
1

M1

)1/p

, (2.29)

and

0 ≤ l3(u) < 1,∀ u ∈ [0, ρ). (2.30)

Therefore, for a ∈] 45 ,
5
4 [, we have

0 < ρ < ρ2 < ρ1 <

(
1

M1

)1/p

.

By using (2.27) and (2.30), we have

‖x1 − x∗‖ ≤ l3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < ρ.

Therefore, the theorem holds for k = 0. Replacing x0, y0, z0 and x1 by xk, yk, zk, xk+1 in the
similar way, we get the inequalities (2.16)-(2.18) for k = 0, 1, 2, . . .. Since ‖xk+1 − x∗‖ ≤ ‖xk −
x∗‖ < ρ, we get xk+1 ∈ B(x∗, ρ). Since l3(u) is an increasing function in [0, ρ), so we have

‖xk+1 − x∗‖ ≤ l3(u)‖xk − x∗‖ ≤ l3(u)l3(‖xk−1 − x∗‖)‖xk−1 − x∗‖
≤ l3(u)2l3(‖xk−2 − x∗‖)‖xk−2 − x∗‖ ≤ . . . ≤ l3(u)k+1‖x0 − x∗‖.

Since l3(u) < 1 ∀ u ∈ [0, ρ). Therefore, lim
k→∞

xk = x∗ as lim
k→∞

l3(u)k+1 = 0. To prove uniqueness

part, let y∗ ∈ B(x∗, ρ), y∗ 6= x∗ with G(y∗) = 0. Let T =

∫ 1

0

G
′
(y∗+ t(x∗− y∗))dt. Using (2.10),

we get

‖G
′
(x∗)−1(T −G

′
(x∗))‖ ≤

∫ 1

0

M1‖y∗ + t(x∗ − y∗)− x∗‖pdt ≤ M1

1 + p
‖x∗ − y∗‖p =

M1

1 + p
Rp < 1,

therefore, T−1 exists by Banach Lemma. Then, from the identity

0 = G(x∗)−G(y∗) = T (x∗ − y∗),

we obtain x∗ = y∗.

3 Numerical examples

In this section, examples are solved to demonstrate the applicability of our methodology.

Example 2 Consider the function G defined on D = [− 1
2 ,

5
2 ] by

G(x) =

{
x3 lnx2 + x5 − x4, x 6= 0

0, x = 0
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Table 1: Values of parameters

Examples a λ α

2 1 0.75 −0.9951
3 1 0.5 −1
4 0.987 0.05 −1.5
5 1 0.5 −1

The derivatives of G are

G
′
(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

G
′′
(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

G
′′′

(x) = 6 lnx2 + 60x2 − 24x+ 22.

Clearly, G
′′′

is unbounded on D. By applying Theorem 1 with x∗ = 1 and p = 1, we get
M1 = M2 = 96.6628. Taking a = 1, we get

ρ = 0.002818 < ρ2 = 0.004205 < ρ1 = 0.006896.

Example 3 Consider the nonlinear Hammerstein type integral equation given by

G(x)(s) = x(s)− 5

∫ 1

0

s t x(t)3/2dt, (3.31)

with x(s) in C[0, 1].

So, we obtain p = 0.5, x∗ = 0, M1 = 15
4 and M2 = 15

4 . By applying Theorem 1 with a = 1, we
get

ρ = 0.003342 < ρ2 = 0.008489 < ρ1 = 0.025599.

Example 4 Define G on D = [1, 3] by

G(x) =
2

3
x

3
2 − x

Then, x∗ = 9
4 , p = 0.5, G

′
(x∗)−1 = 2, M1 = 1 and M2 = 2. Taking a = 0.9870, we get

ρ = 0.015674 < ρ2 = 0.050026 < ρ1 = 0.176951.

Example 5 Consider the function G defined on D = B(0, 1) for x = (x1, x2, x3)t by

G(x) =

(
ex1 − 1,

e− 1

2
x22 + x2, x3

)t
.

For x∗ = (0, 0, 0), we obtained K0 = e− 1 and K1 = e. Taking a = 0.5, we get

ρ = 0.118532 < ρ2 = 0.187710 < ρ1 = 0.324947.

The parameters used by methods (2.7) and (1.5) are listed in Table 1. We have also compared
the radius of convergence ball of present method (2.7) with existing method (1.5) and are listed
in Table 2. It can be easily observed that the larger radius of convergence ball is obtained by our
approach.
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Table 2: Comparison of radius of a ball

Examples Method (2.7) Method (1.5)

2 0.002818 1.9× 10−6

3 3.3× 10−3 5.3× 10−4

4 0.015674 0.002724
5 0.118532 0.003621

4 Local convergence analysis with condition 2.12

In this section, we establish the local convergence of (2.7) with condition (2.12). For this, we

define the following functions on the interval

[
0, 1

M
1/p
1

)
given by

h1(u) =
1

1−M1up

(
M2

1 + p
up +M |1− a|

)
.

h2(u) =

(
1 +

1

1−M1up

)
h1(u),

=

(
1 +

1

1−M1up

)
1

1−M1up

(
M2

1 + p
up +M |1− a|

)
.

h3(u) =

(
1 +M

(
1

|a|
1

1−M1m1(u)pup
+

∣∣∣∣1− 1

a

∣∣∣∣ 1

1−M1up

))
h2(u).

n2(u) = h2(u)− 1.

n3(u) = h3(u)− 1.

Taking ρ1 =

(
1−M |1−a|
M2
1+p+M1

) 1
p

and M |1− a| < 1, we get

0 ≤ h1(u) < 1 ∀ u ∈ [0, ρ1).

If (1 +M)M |1− a| < 1, then n2(0) = (1 +M)M |1− a| − 1 < 0 and

n2

(
1

M1/p

)
= M

(
M2

(1 + p)M
1/p
1

+M |1− a|

)
> 0.

Therefore, n2(u) has at least one root in

(
0, 1

M
1/p
1

)
. Let ρ2 be the smallest root of n2(u). Also

n2(ρ1) > 0 and ρ1 <
1

M1/p . Therefore,

0 < ρ2 < ρ1

and

0 ≤ h2(u) < 1 ∀ u ∈ [0, ρ2).

If (
1 +

M

|a|
(1 + |1− a|)

)
(1 +M)M |1− a| < 1,
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then, h3(0) < 0 and h3(ρ2) > 0. Thus n3(u) has a root in (0, ρ2). Let ρ be the smallest root of
n3(u). Therefore

ρ < ρ2 < ρ1

and

0 ≤ h3(u) < 1 ∀ u ∈ [0, ρ).

The following theorem describes the local convergence of (2.7). The proof is omitted because it
is nearly same as Theorem 1

Theorem 2 Let M1 > 0, M2 > 0, M > 0 and a ∈ (−∞,∞) − 0 be the given parameters. Let
x∗ ∈ D such that for all x, y ∈ D, the following assumptions hold

M |1− a| < 1,

(1 +M)M |1− a| < 1,(
1 +

M

|a|
(1 + |1− a|)

)
(1 +M)M |1− a| < 1,

‖G
′
(x∗)−1(G

′
(x)−G

′
(x∗))‖ ≤M1‖x− x∗‖p,

‖G
′
(x∗)−1(G

′
(x)−G

′
(y))‖ ≤M2‖x− y‖p,

‖G
′
(x∗)−1G

′
(x)‖ ≤M ∀ x ∈ B

(
x∗,

1

M
1/p
1

)
, B (x∗, ρ) ⊆ D

Then, the sequence the {xk} generated by (2.7) belongs to B(x∗, ρ) and converges to x∗. The
following hold for k ≥ 0

‖yk − x∗‖ ≤ h1(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ,

‖zk − x∗‖ ≤ h2(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ,

‖xk+1 − x∗‖ ≤ h3(‖xk − x∗‖)‖xk − x∗‖ < ‖xk − x∗‖ < ρ,

If there exists R ∈ [ρ, ( 1+p
M1

)1/p) such that B(x∗, R) ⊆ D, then x∗ is unique in B(x∗, R).

Table 3: Comparison of radius of a ball by our method with and without M

Examples M Our method without M Our method with M

2 101.5578 0.002818 1.9× 10−6

3 4.75 3.3× 10−3 1.23× 10−4

4 2(
√
3− 1) 0.015674 0.007803

5 e 0.118532 0.045945

It can be easily observed from the Table 3 that our method gives larger radius of convergence
without using M in comparison with those with M . However, in special case like G(x) = sinx,
we obtain larger radius ρ = 0.28755 with M = 1 and ρ = 0.272419 without M because we use
1 +M1‖x− x∗‖p as a bound for M .
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5 Conclusions

Local convergence of a family of iterations for solving nonlinear equations is described using
Hölder continuous first derivative in Banach spaces. An existence-uniqueness theorem along with
error bounds for the solution is given. Different numerical examples including nonlinear Hammer-
stein equation are solved. The radii of balls of convergence for them are obtained. A substantial
improvement of these radii are found in comparison to some other existing methods under similar
conditions for all examples considered.
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