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Abstract 

This study aimed to compare the predictive power of grit and two cognitive 

ability tests of fluid and crystallized intelligence used for university 

admission on the success of college students in Turkey. Utilizing Cattell’s 

Investment Theory and Ackerman’s PPIK Theory of Adult Intelligence, we 

hypothesized that knowledge tests would be a better predictor of academic 

achievement in college than tests of fluid intelligence. We collected data from 

441 students enrolled in engineering, physical sciences, social sciences, and 

administrative sciences majors in a technical university. Our results based on 

hierarchical regression and dominance analyses provided support for our 

hypothesis. For science, technology, engineering and math (STEM) students, 

the test of crystallized intelligence not only was a better predictor of college 

GPA compared to the test of fluid intelligence but also explained incremental 

variance over and above the fluid intelligence test. For social-administrative 

sciences, the predictive powers of tests were equivalent to each other. We 

also found that the perseverance of effort dimension of grit was the best 

predictor of GPA. Our findings support the notions of the adult intelligence 

theories suggesting that domain knowledge is a better predictor of typical 

performance in adults.  
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1. Introduction 

Cognitive ability has been shown as a successful predictor of school and academic 

performance (e.g., Kuncel & Hezlett, 2007; Sackett et al., 2008). Nevertheless the 

predictive power of cognitive abilities tends to decline over the years from elementary 

school to college and graduate education (Kaufman, Johnson, & Liu, 2008; Lin & 

Humphreys, 1977; Postlethwaite, 2011). Cattell’s (1987) Investment Theory forms the basis 

for emphasizing that adults invest their general reasoning abilities, that is fluid intelligence-

Gf, into areas they are interested in and thus acquire knowledge that makes up another type 

of cognitive functioning known as crystallized intelligence (Gc) and that Gc and Gf are 

differentially related to academic success.  

Ackerman’s (1996) theory of intelligence-as-Process, Personality, Interests, and 

intelligence-as-Knowledge (PPIK) frames intelligence-as-knowledge as a more specialized 

form of accumulated knowledge (i.e., occupational or discipline-related) as compared to 

Gc, which develops from intelligence-as-process and also motivational resources such as 

vocational interests and domain-related personality proclivities. Ackerman suggested that 

assessments of intelligence-as-knowledge should incorporate separate measures for each 

occupational/discipline-related domains. Empirical research provide support for these 

theories, suggesting that in high school and adult samples, knowledge-based assessments 

have better predictive power as compared to process-oriented intelligence assessments. 

Such results are in line with the findings indicating that previous performance and 

achievement levels are indicators of future achievements (Oullette & Wood, 1998). In 

educational selection, researchers (e.g., Ackerman & Beier, 2006; Rolfhus & Ackerman, 

1999) suggest that higher weight should be given to knowledge measures rather than ability 

measures. Knowledge measures (e.g., grade point averages) are indicators of typical 

performance whereas ability measures represent maximal performance. Furthermore, Gc is 

a better predictor of domain knowledge than Gf. For example, in a recent meta-analysis 

(Postlethwaite, 2011), undergraduate GPA was better predicted by Gc (r = .36, ρ = .65), 

compared to Gf (r = .22, ρ = .44). 

Studies that focused on the predictive power of prior knowledge on undergraduate 

achievement showed consistent results. A meta-analysis (Richardson et al., 2012) reported 

a moderate effect size of high school GPA on undergraduate GPA (ρ = .41). High school 

GPA explained 21.4% of variance in first year college achievement of American students 

whereas SAT scores explained only 2.4% of the variance (Fu, 2012). Similarly, in a study 

conducted in Sweden, high school GPA was a better predictor of graduate GPA than the 

scores on SweSAT, an exam used for college admissions with content similar to that of the 

SAT in the United States (Cliffordson, 2008). In a German sample, Gf accounted for 5% of 

the variance in undergraduate GPA, whereas high school GPA and scores on knowledge 

tests added 22% incremental variance (Kunina et al., 2007). Recently, Ackerman and 
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colleagues (2013) found that the correlation of first-year undergraduate GPA with 

Advanced Placement exam scores, which assessed crystallized domain knowledge, was 

somewhat larger (r = .38) as compared to its correlation with SAT scores (r = .30). SAT-I, 

which is more heavily loaded with questions assessing fluid intelligence, was reported to 

add close to zero variance in predicting freshman GPA over and above the variance 

explained by high-school GPA and SAT-II (subject tests). Whereas the subject tests 

accounted for 22.3% of the variance (Geiser & Studley, 2002).  

Similar results pertaining to the relative differentiation of knowledge-based versus ability-

based measures of cognitive functioning have been reported in predicting graduate school 

success (e.g., Kilmen, 2007; Kuncel et al., 2001) and job success (e.g., Koczwara et al., 

2012). In line with the literature, in the present study we sought to investigate the predictive 

power of two tests used in the university entrance system in Turkey: YGS-a measure of 

intelligence-as-process- and LYS-a measure of intelligence-as-knowledge. We 

hypothesized that LYS would be a better predictor of undergraduate CGPA than YGS. We 

tested our hypothesis separately using two clusters of students based on their field of major 

(STEM and Social Sciences) because the content of LYS test for university admission is 

different for these clusters. More information on the tests is provided in the methods 

section. In the analyses, we also included grit as predictor of GPA because of previously 

reported associations with academic success (Duckworth et al., 2007; Duckworth & Quinn, 

2009).  

 

2. Method 

2.1. Participants and Procedure 

The sample included students at a technical university in Ankara. Upon obtaining IRB 

approval and participant consent, those who completed our online survey were offered 

course credit. Students who took the university placement exams (YGS and LYS) after 

2010 were eligible for participation. The final sample after data cleaning included 441 

students, with 231 enrolled in STEM majors and 210 enrolled in the social/administrative 

sciences. Sample characteristics for both clusters are reported in Table 1.  

2.2. Measures 

Participants manually entered their LYS and YGS exam scores. A link that directed the 

students to the score inquiry webpage was provided so that the students could provide 

objective and accurate scores. The YGS test is equivalent to a reasoning test such that 

questions only require very basic knowledge (such as arithmetic) and responding rests on 

reasoning abilities for novel problems. We utilized two types of YGS scores, one with 

higher weight on quantitative reasoning (YGS1) and one with higher weight on verbal 

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València
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reasoning (YGS3). YGS1 comprises 40% numeric, 30% science, and 30% Turkish verbal 

comprehension questions, whereas YGS3 comprises 20% numeric, 10% science, and 70% 

Turkish verbal comprehension questions (ÖSYM, 2014). The LYS test is a content-based 

test such that responding to questions requires relatively more advanced knowledge in 

different content domains such as mathematics, physics, history and so on. Depending on 

the major area the student is going for, different university admission tests are taken 

yielding different composite scores such as a Social-Math score or a Math-Science score. In 

the analyses, the MS score, which includes mathematics, geometry, physics, chemistry, and 

biology content domains, was used as the LYS score for the STEM cluster (LYS-MS). The 

SocM score, which includes mathematics, geometry, Turkish language and literature, and 

geography content domains, was utilized as the LYS score for the social and administrative 

sciences cluster (LYS-SocM). Participants also reported their cumulative GPA (CGPA) 

scores. For those participants who did not report their CGPAs, the latest CGPA was 

obtained from the university student information system with the students’ consent. 

Table 1. Demographic characteristics of the sample 

(N = 441) STEM 

Social Sciences/ 

Humanities 

Gender N (%)   

Women 85 (36.8) 141 (67.1.0) 

Men 146 (63.2) 68 (32.4) 

Departmental domain N (%)   

Engineering 176 (76.2)  

Physical sciences 55 (23.8)  

Administrative sciences (Business/Economics)  65 (31.0) 

Social sciences/Humanities  145 (69.0) 

 

The 9-item GRIT scale by Duckworth and Quinn (2009) was utilized for measuring 

students’ determination and passion for long-term goals, which was translated and back-

translated by two bilinguals for the present study. The scale has two dimensions, namely 

perseverance of effort and consistency of interest. Sample items are “I finish whatever I 

begin” (perseverance of effort) and “I often set a goal but later choose to pursue a different 

one” (consistency of interest, reverse-coded).  
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3. Results 

3.1. STEM cluster 

Descriptive statistics and variable inter-correlations for the STEM cluster are presented in 

Table 2. In this cluster, CGPA had small correlations with the reasoning test of YGS1 (r = 

.17, p < .001), and the content test of MS (r = .22, p < .001). Grit-perseverance of effort had 

a moderate significant correlation with CGPA (r = .30, p < .001).  

Table 2. Descriptive statistics and inter-correlations of the study variables for the STEM cluster 

 Mean SD Reasoning 

Test – Quant 

(YGS1) 

Content 

test    

(LYS-MS) 

Grit 

Effort 

Grit 

Interest 

CGPA 2.79 .59 .17** .22** .30** .17** 

Reasoning Test –

Quant (YGS1) 

434.59 37.32  .78** -.02 .01 

Content test (MS) 435.62 44.61   .08 -.04 

Grit Effort 4.03 .91   .78 .40** 

Grit Interest  3.29 .80    .61 

N = 231. Bold fonts are Cronbach’s alpha coefficients. Quant: 70% of test coverage is quantitative. 

*p < .05, **p < .01. 
 

The content LYS-MS scores alone added 2% of incremental variance over the reasoning 

YGS1 test in predicting CGPA (Fchange (1, 228) = 4.39, p = .04). When MS scores were 

included in the first step, it explained 5% variance and YGS scores did not explain a 

significant amount of incremental variance over MS scores (Fchange (1, 228) = .001, p = .97). 

When the grit dimensions were added in the final step, they together explained an 

additional 9% variance over the reasoning and content test scores. When all variables were 

included in the regression, they explained 13.6% variance in CGPA and grit-perseverance 

of effort was the only significant predictor (β = .26, p < .001). Relative importance of test 

types and grit (perseverance of effort) on academic achievement was studied with the 

dominance analysis approach (Azen & Budescu, 2003; Budescu, 1993). Dominance 

analysis was preferred over a one-shot regression analysis in order to take account of 

variable inter-correlations, as the MS and YGS1 test scores are highly correlated (r = .78). 

The reasoning test of YGS shared 2% of variance with CGPA, the content test of MS 

shared 3% of variance with CGPA, and finally perseverance of effort shared 9% of variance 

with CGPA. Variables’ contributions to the shared variance were 12% for the reasoning 

test, 22% for the content test, and 67% for grit. The hypothesis, which stated that the 
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content test indicative of a knowledge-based assessment would have a larger relative 

contribution to the prediction of CGPA as compared to a reasoning test, was supported.  

 

3.2. Social-administrative sciences cluster 

Descriptive statistics and variable inter-correlations for the social-administrative sciences 

cluster are presented in Table 3. In this cluster, CGPA had a nonsignificant correlation with 

the reasoning test of YGS1 (r = .08, p = .27) and small significant correlations with YGS3 

(r = .14, p = .04) and the content test of LYS-SocM (r = .15, p = .03). Grit-perseverance of 

effort had a greater significant correlation with CGPA (r = .25, p < .001).  

Table 3. Descriptive statistics and intercorrelations of the study variables for the 

social/administrative sciences cluster 

 Mean SD YGS1 YGS3 LYS-

SocM 

Grit 

Effort 

Grit 

Interest  

CGPA 2.78 .68 .08 .14*  .15* .25** .16* 

Reasoning Test - 

Quant (YGS1) 

350.68 49.68  .67** .50** -.06 .00 

Reasoning Test -

Verbal (YGS3) 

395.04 30.26   .55** .05 .12 

Content test 

(LYS-SocM) 

391.52 41.61    .05 .00 

Grit Effort 3.86 .83    .72 .44** 

Grit Interest 3.16 .80     .65 

N = 210. Bold fonts are Cronbach’s alpha coefficients. Quant: 70% of test coverage is quantitative; Verbal: 70% 

of test coverage is verbal. *p < .05, **p < .01. 

 

In the social-administrative sciences cluster CGPA was more strongly correlated with 

YGS3, which rests on reasoning with verbal content, than YGS1 which measures reasoning 

with quantitative content. However, since YGS3 test has a higher load of knowledge 

content based on the test manual, it is not suitable for testing our hypothesis, which 

compares Gf and Gc measures. Therefore, for dominance analysis we utilized YGS1 scores 

as the reasoning test score. For space purposes, the dominance analysis results for YGS3 

are not presented here and are available upon request. YGS1 shared less than 1% variance 

with CGPA, the content test SocM shared 2% variance with CGPA, and grit (perseverance 

of effort) shared 6% of variance with CGPA. Variables’ contributions to the explained 

variance in CGPA were 5% for the reasoning test, 20% for the content test, and 75% for 
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grit. The relative contribution of the knowledge-based test score was four 4 times than that 

of the reasoning test score. Again, perseverance of effort was the best predictor of academic 

success. 

 

4. Discussion 

Using data collected from both STEM and social sciences students, we found support for 

our hypotheses that college success is better predicted by Gc than Gf measures. 

Specifically, for both samples, the knowledge-based test explained greater variance in 

CGPA than the reasoning test. Our findings offer further contribution to the literature, 

which reported that intelligence-as-knowledge measures are better predictors of academic 

success than intelligence-as-process measures (e.g., McManus et al., 2011; Postlethwaite, 

2011). We also provide further support to Ackerman’s PPIK theory and Cattell’s 

Investment theory. It is also important to note that perseverance of effort dimension of the 

grit scale performed as the best predictor among all variables in both samples. This finding 

is in line with the previous studies which found that grit explained incremental variance 

over IQ scores (e.g., Duckworth et al., 2007) and that non-cognitive variables are important 

in investing ability-related resources in effortful pursuits (Ackerman, 1996).  

Our study is not without its limitations. Our findings are not conclusive for the Turkish 

exam system because of the limited sample sizes and participant profile. It should be noted 

that the data collection is ongoing and the results reported here are preliminary. When the 

sample size is enlarged with sufficient representation of various majors, multilevel methods 

can be utilized to test the relative contributions of crystalized and fluid intelligence on 

academic success for students from different domains.  
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