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Abstract: 

This paper presents a collaborative framework to couple historical records with expert 

knowledge and criteria in order to define a Decision Support System (DSS) to support the 

seasonal operation of the reservoirs of the Jucar river system. The framework relies on the co-

development of a DSS tool that is able to explicitly reproduce the decision-making processes and 

criteria considered by the system operators. Fuzzy logic is used to derive the implicit operating 

rules followed by the managers based on historical decisions and expert knowledge obtained in 

the co-development process, combining both sources of information. Fuzzy regression is used to 

forecast future inflows based on the meteorological and hydrological variables considered by the 

system operators in their decisions on reservoir operation. The DSS was validated against 

historical records. The developed framework and tools offer the system operators a way to 

predefine a set of feasible ex ante management decisions, as well as to explore the consequences 

associated with any single choice. In contrast with other approaches, the fuzzy-based method 

used is able to embed inflow uncertainty and its effects in the definition of the decisions on the 

system operation. Furthermore, the method is flexible enough to be applied to other water 

resource systems. 

Introduction 

The operation of multireservoir systems requires complex decision-making processes, since they 

involve many variables, various (often conflicting) objectives and a considerable amount of 

uncertainty and risk (Oliveira and Loucks, 1997). System operators need to balance the decisions 

to address many objectives while complying with diverse constraints, agreements and traditions 

affecting water allocation and use (Lund and Guzman, 1999; Loucks and van Beek, 2005; 

Simonovic, 2009). Managers are therefore required to be experts in the water resource system 

they operate so they are able to recognize and match all the interests, pressures, constraints and 

available sources of information. 

Mutireservoir systems management has been extensively studied in the literature, usually 

employing computer simulation or optimization models, or combinations of both (Yeh, 1985; 

Simonovic, 1992; Wurbs, 1993; Oliveira and Loucks, 1997; Labadie, 1997 and 2004; Rani and 

Moreira, 2010). The mathematical representation of system operation has been addressed by 
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three different approaches in the literature: 1) using an optimization algorithm for real-time 

operation based on the system state and some forecasting tools; 2) developing a priori reservoir 

operating rules; and 3) building a representation of the implicit reservoir operating rules. The 

direct use of an optimization algorithm for real-time operation is marginal and only possible at 

short time horizons and in water resource systems in which the objective is unique and clearly 

defined, such as maximizing hydropower production or minimizing pumping costs (Teegavarapu 

and Simonovic, 2000; Castelletti et al., 2014; Caseri et al., 2015; Ficchi et al., 2016; Bauer-

Gottwein et al., 2016). The fixed reservoir operating rules are usually derived through “rules of 

thumb” (Lund and Guzman, 1999) and a combination of optimization (to predefine optimal 

rules) and simulation models (for testing, evaluating and improving the rules) (Sigvaldason, 

1976; Karamourz and Houck, 1982 and 1987; Karamouz et al., 1992; Andreu et al., 1996; Lerma 

et al., 2013; Aboutalebi et al., 2015). 

Alternatively, estimating the operating rules implicitly followed by the system operators requires 

incorporating their expert knowledge into a mathematical representation of the system. Some 

existing methodologies for this purpose include: data mining (e.g., Bessler et al., 2003; Hejazi 

and Cai, 2011), which determines the variables considered by the system operators and fits a 

mathematical expression for them; fuzzy logic (Shrestha et al., 1996; Bai and Tamjis, 2007), 

which defines operating rules by extracting them from the historical records; and reinforcement 

learning (Lee and Labadie, 2007; Corani et al., 2009; Castelletti et al., 2010 and 2013, Giuliani et 

al., 2016), which optimizes the system operation by learning from historical observations 

Despite the progress and the potential of mathematical models in reservoir operation, their use 

for real-time reservoir management is still limited (Labadie, 2004). On the contrary, the majority 

of the existing water resources systems are still managed based on fixed predefined rules, which 

specify the release for each reservoir based on the time of the year, state of the system and 

(sometimes) expected future hydrological conditions. One of the reasons for the use of these 

rules is that they are the result of a broader process, also including comprehensive negotiation 

and subsequent agreements on how to operate the system. Operating rules provide guidance to 

the system operators, but their judgement is still required in order to adapt them to the 

circumstances and the agreements with the users. In fact, system managers often deviate from 

these rules to adapt to specific conditions, objectives and constraints that may exist over time 

(Oliveira and Loucks, 1997). However, a joint modelling framework to reproduce the decision-

making process is still lacking. 

This paper combines the assessment of the implicit operating rules with the estimation of inflow 

projections in a single consistent framework resulting in a Decision Support System (DSS) for 

the seasonal operation of the Jucar River basin (Spain). To ensure a close reproduction of the real 

decision-making of the system operation, a continuous interaction between experts (system 

operators) and modellers is required. The system operators’ criteria and historical records are 

used together to elicit the implicit operating rules, including how future inflows are forecasted in 

the system. Fuzzy logic is used to capture the experts’ criteria, combine them with the historical 

records available and transform them into operating rules. Future inflows are estimated using 

fuzzy linear regression, integrating them with the elicited operating rules into a single DSS tool. 

This paper is structured as follows. In section 2 the methods used (fuzzy logic and fuzzy 

regression) are presented and their integration explained, together with the case study. In section 
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3 the Decision Support System for the Jucar River Basin operation is described and validated. 

The results obtained are presented in section 4. Finally, section 5 presents the conclusions of the 

research made. 

Methods and material 

Framework 

The objective of the framework is to define a DSS able to reproduce the operating rules and 

decision-making processes used in the management of a water resource system. To adequately 

assess the decision-making procedures, system operators should be involved in the configuration 

and development of the DSS from the very beginning (Loucks and van Beek, 2005). The key 

idea is to treat the experts not only as future users of the tool, but as co-developers of a 

mathematical model whose goal is to help their decision-making processes, rather than to replace 

their judgment. Figure 1 shows the framework used in the development of the DSS system. It 

represents a continuous collaboration between the system operators (the experts) and the 

researchers or modellers from the preliminary stages to the development of the DSS tool. 

 

Figure 1. Collaborative expert-researcher framework 

The framework consists of two parts: the definition of the operating rules (on the right) and the 

assessment of the variables (usually inflows) that need to be estimated in the decision-making 

processes (on the left). From the preliminary meetings, in which the system and its operation are 

discussed with the researchers or modellers, both parts are developed in parallel and then 

integrated into the DSS. Fuzzy rule-based systems (FRB) are used for the definition of the 
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implicit operating rules. The main FRB features and outputs are decided through interactions 

with the stakeholders validated with the historical records to ensure that they reproduce the real 

operation of the system. Fuzzy linear regression is used to forecast the variables used in the 

decision-making process. The explanatory variables are selected by expert criteria, and then a 

regression equation is fitted to each one and properly validated against the historical data.  

Fuzzy rule-based systems 

Fuzzy logic (Zadeh, 1965; Mamdani, 1974) has been widely used to mathematically represent 

expert criteria. It offers an approach easily understood by the system operators who are not 

familiar with it and/or with complex mathematical procedures, due to its ability to link language 

and mathematics (Simonovic, 2009; Şen, 2010). It is also an efficient way to capture and treat 

uncertainty, being able to propagate its effect through all the mathematical processes considered 

(Simonovic, 2009). A fuzzy rule can be expressed as an IF-THEN sentence: if input x is A and 

input y is B, then output z is C. A and B are the rule premises and C is the rule consequence, all 

of them expressed using fuzzy numbers linked to linguistic descriptors such as “low”, “regular”, 

“acceptable” or “excessive”. That linguistic assimilation makes it more understandable (Şen, 

2010). Under this framework, it is necessary to establish the degree in which a rule is followed, 

ranging between 0 (not followed) and 1 (definitely followed). Due to these features, fuzzy logic 

gets closer to reality, in which the true-or-false approach is hardly applicable (Şen, 2010). 

Besides, fuzzy logic model structures are based on human thinking, so they are easily understood 

by system operators (Dubrovin et al., 2002). 

A fuzzy inference system or fuzzy rule-based system (FRB) consists of a set of fuzzy rules that 

are triggered simultaneously to link inputs and outputs (Şen, 2010). FRB systems have been 

applied to reproduce the operating rules of water resources systems and have been observed to 

perform well (Shrestha et al., 1996; Russell and Campbell, 1996; Panigrahi and Mujumdar, 

2000; Dubrovin et al., 2002; Bai and Tamjis, 2007). They link key hydrological and water 

management variables (current storage, past inflows, current inflows, rainfall and so on) with 

water management decisions (target storage, release, deliveries to water demands, etc.). Figure 2 

indicates the steps in the development of a FRB: 1) Preliminary analysis; 2) Input variables 

characterization; 3) Fuzzy rules definition; 4) Output determination based on historical data, 

mathematical algorithms and/or expert criteria; 5) Training; 6) Validation; and 7) Inference, 

composed of several sub-stages, which correspond to the usage of the FRB system created. 
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Figure 2. FRB system development and operation flowchart 

Fuzzy regression for inflow forecasting 

Fuzzy regression aims at describing relationships between system variables that are imprecise 

and/or with scarce or inaccurate data, illustrating the degree of uncertainty associated with 

regressive procedures (Bardossy et al., 1990; Simonovic, 2009). It simulates the dependency of 

an output variable with respect to one or several input (explanatory) variables. Fuzzy numbers 

are used as parameters under this approach (Bardossy et al., 1990) The advantage of fuzzy 

regression is that it is a conceptually simple tool capable of capturing the uncertainty associated 

with the regression using fuzzy numbers (Simonovic, 2009). It has been applied in hydrology 

with several goals, such as the evaluation of the uncertainty associated to stage-discharge curves 

(Shrestha and Simonovic, 2010); the derivation of operating rules, as with standard regression 

(Mousavi et al., 2007); and the calibration of fuzzy rainfall-runoff models (Özelkan and 

Duckstein, 2001). 

Although any functional form can be used in fuzzy regression, the simplest way is to employ a 

fuzzy linear regression, as in Equation 1 (Simonovic, 2009). 


i

iixc~y~            (1) 

Where ỹ is the output variable, ci the coefficients and xi the input variables, which are the only 

ones that can take the form of non-fuzzy numbers. The resolution of the regression process 

requires determining the coefficients ci via an optimization problem. These numbers are usually 

taken as L-R (left-right) fuzzy numbers (Bardossy et al., 1990) to reduce the complexity of the 

optimization problem. These coefficients must be selected to minimize a measure of the 

uncertainty or vagueness associated with the regression. This can be defined in several ways, or 

“vagueness criteria” (Bardossy et al., 1990). In this paper the authors consider the average 
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vagueness, or average value of the support or width of all the fuzzy numbers ci, labelled as Sc. 

Furthermore, the resulting regression must be able to properly represent the observed 

relationship between the variables. There are two different mechanisms to establish the 

“goodness of fit” depending on whether the historical records of the output variable are fuzzy or 

non-fuzzy (Bardossy et al., 1990). For the latter, considering j vectors of input and output 

variables {ai, b}j, it can be assumed that the fuzzy regression offers an adequate fit if, for each 

vector, the historical record bj belongs to the output variable ỹ with a membership value µy(bj) 

equal or greater than a fixed value h (Eq. 2). 

 h)b(Thenac~y~Given jy~

i
j,iij         (2) 

In which h ranges from 0 to 1. As a result, the optimization problem required to fit the fuzzy 

coefficients can be expressed as in Equation 3 (Simonovic, 2009). 

h)b(

:tosubject

SMinimize

jy~

c


        (3) 

Case study: Jucar River basin (Spain) 

The Jucar river is one of the longest in Eastern Spain (Figure 3), flowing 497 km from the 

Iberian Mountains (Cuenca province), to the Mediterranean Sea (Valencia province), with a river 

basin area of 22,260 Km2. Annual precipitation ranges between 309 mm and 717 mm, with an 

average of 473 mm. Its precipitation pattern is typically Mediterranean: high rainfall in autumn 

(especially in October), with a second peak in April-May; with very little precipitation during 

summer. Its mean total annual discharge is 1,548 Mm3/year (CHJ, 2013), following the same 

pattern as rainfall. A significant percentage of the total river discharge (close to 70%) is provided 

by groundwater outflow via springs plus stream-aquifer interaction. The major regulation 

facilities (Figure 3) are the reservoirs of Alarcon (1,088 Mm3 useful storage), Contreras (429 

Mm3) and Tous (369 Mm3). There are 8 additional regulation facilities with useful storage 

greater than 1 Mm3, mostly devoted to hydropower production (CHJ, 2013). 
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Figure 3: Jucar River basin location map 

The annual mean consumptive demand in the Jucar River system is 1,505 Mm3 for the 2009-

2015 period (CHJ, 2013). By far the largest amount is for agricultural use (89%), followed by 

urban (9%) and industrial uses (2%). The most important urban districts supplied by the Jucar 

river correspond to the cities of Valencia, Albacete and Sagunto. Irrigated crops are concentrated 

in the lower basin, downstream of Tous, and in the middle basin, in the Mancha Oriental area. 

The latter is supplied from the Mancha Oriental aquifer, whose overdraft has caused a depletion 

of the Jucar river flows, with an inversion of the stream-aquifer interaction from gaining to 

losing river. In addition to these consumptive uses, the Jucar River basin holds 31 hydropower 

plants (with a total installed capacity of 1,272 MW). Furthermore, minimum environmental 

flows are set on 18 reaches located in the Jucar river and its tributaries (CHJ, 2013). 

Jucar River system operating rules 

The operation of the Jucar River system is subject to physical, environmental and legal 

constraints. In addition, traditional practices employed during its management must also be 

considered. The main physical constraints correspond to the reservoir, river and canal capacities. 

The environmental constraints are the minimum flows prescribed in certain river reaches, as well 

as the requirements of the Albufera wetland (a Ramsar protected wetland). The main legal 

constraint in the Jucar River system is the Alarcon Agreement, signed between the Spanish 

Ministry of the Environment (on behalf of the Jucar River Basin Management Authority, CHJ) 

and a users’ association, Unidad Sindical de Usuarios del Jucar (USUJ), which gathers together 

the users with the most senior water rights owning the Alarcon reservoir. With this agreement, 

the USUJ transferred its management to the CHJ, thus enabling the joint operation of all the 

Jucar river facilities. In exchange, a rule curve was established for the operation of the Alarcon 
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reservoir (CHJ, 2013). If its storage is below the curve, no surface deliveries can be arranged in 

the system except to the USUJ members, regardless of the storage in the rest of the system’s 

reservoirs. Under this situation, any user who wants to employ surface water from the Jucar river 

should undergo negotiations with USUJ in order to reach an agreement concerning the amount of 

water to be allocated and the economic compensation that USUJ should receive in exchange of 

the transferred surface water, which must be substituted by groundwater. 

Hydropower uses have, under the Spanish law and the Jucar River Basin Management Plan, less 

priority than urban and agricultural deliveries, so no release is made from any Jucar reservoir for 

the sole purpose of power generation. There are only three hydropower reservoirs with more than 

1 Mm3 of live storage, located immediately upstream of Tous, in series with each other and with 

Tous. Although the power company owning these reservoirs is able to balance their storages 

freely, it should release the same amount of water from the downstream dam as its upstream 

reservoir receives from Alarcon and Contreras. The rest of the hydropower reservoirs have little 

live storage, with no impact on the management of the system. 

Shaped by the constraints and rules previously outlined, as well as by the traditions, the CHJ 

Operation Office (in Spanish, Oficina de Explotación) and the Jucar River Reservoir Releases 

Commission (in Spanish, Comisión de Desembalse) decide on the seasonal operation of the 

system. The latter establishes the amount of resources to be allocated during the irrigation season 

(May-September), while the Operation Office balances them among the Jucar reservoirs, 

monitors the process and controls the reservoir refill during the rest of the year (October-April). 

Outside the irrigation season, the minimum environmental flows and the inflows associated with 

the lower sub-basin are enough to satisfy the demands. 

The criteria followed by the Operation Office when deciding how to balance the releases in the 

Jucar system consist of: 1) avoiding undesired spills from Tous; 2) increasing the flood pool to 

be kept empty in autumn; 3) not storing less than 40 Mm3 in Tous, as it is the reservoir closest to 

the users, having it empty would make them think that their supplies were in danger of not being 

fulfilled; 4) avoiding falling below the rule curve; and 5) trying to balance the Alarcon and 

Contreras storage. With regard to hydropower, no releases are arranged for the exclusive goal of 

energy generation, but the power companies are allowed to turbine all the resource they can use 

from the Jucar river streams (respecting the environmental requirements) and the CHJ is 

committed to not use the resource stored in the hydropower reservoirs unless strictly necessary. 

Decision Support System for the management of the Jucar river basin 

In order to support the seasonal operation of the Jucar River basin, it is necessary to estimate 

how much water should be allocated to the agricultural districts during the irrigation season, as 

well as how much should be released from each reservoir (balancing the storage) to guarantee 

the planned deliveries. These predictions would help the CHJ Operation Office in their decision-

making processes, since these assessments are currently made without the help of a DSS, which 

implies the absence of a homogeneous, systematic and robust decision framework in the process. 

The methods employed have been presented previously. A comprehensive description of all the 

stages required for its build-up is presented in the following sub-sections. 
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Model design based on experts’ feedback 

The major goal of the preliminary meetings with the experts was to obtain a clear picture of how 

the system is actually managed, to clarify the terms to be used in the process (avoiding potential 

misunderstandings), and to introduce fuzzy logic to the system operators in order to make them 

confident with the method. The management rules considered in the Jucar system were explained 

in the previous section. Prior to the irrigation season, the CHJ Operation Office predicts inflows 

using a deterministic forecast method based on the inflows observed in the last irrigation seasons 

and during the last months, precipitation projections for the irrigation season, rainfall during past 

irrigation seasons and expert knowledge. These projections are used to establish the amount of 

water initially expected to be delivered to the users during the irrigation season, which is 

discussed, modified if required and approved by the Reservoir Releases Commission. Then, the 

CHJ Operation Office determines how the water storage in Alarcon, Contreras and Tous should 

be balanced to guarantee the committed deliveries. During the irrigation season, the Operation 

Office establishes a release plan that is monitored, controlled, and modified if required, on a 

daily basis. 

Considering the main system features explained by the system operators, a river network flow 

was established, incorporating the input and decision variables they use in the operational 

decisions (Figure 4). The storage at the three reservoirs (Alarcon, Contreras and Tous) and the 

inflow from the four sub-basins (Alarcon, Contreras, Middle and Lower) are the input variables 

for the Jucar river seasonal operation. The historical inflows were calculated through water 

balances as done by the Operation Office. Three urban demands and eight irrigation demands are 

included. The deliveries to the agricultural demands with groundwater are not affected by the 

decisions of the Operation Office, so they were not included in the model. Groundwater was also 

not explicitly modelled since its exploitation does not directly influence the decisions on the 

seasonal operation of the surface reservoirs. The influential stream-aquifer interaction between 

the Mancha-Oriental aquifer and the upper Jucar is already implicit in the middle sub-basin 

inflow time series. The only aquifer explicitly modelled is Hoces del Cabriel, exclusively to 

mathematically represent the return of Contreras seepage losses to the Jucar river (CHJ, 2013). 

Deliveries to the Cofrentes Nuclear Power Plant must be fully guaranteed and, consequently, it 

was included as a constraint rather than a demand. Hydropower plants were not considered since 

they are not taken into account in the decision of releases, nor do they have the possibility of 

causing an impact on the Jucar river seasonal management, as indicated previously. The 

environmental flows considered in the model are those that directly constraint the seasonal 

management: minimum releases from Alarcon and Contreras reservoirs and outflows to the sea. 

Additionally, some links were added to the model to account for undesired spills from Tous and 

excessive amounts of water to the sea, as the Operation Office seeks to minimize both terms. 
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Figure 4: Schematic of the Jucar river system network 

Delivery and release FRB models 

In the Jucar river basin, the decision-making process involves two main milestones. First, the 

Reservoir Releases Commission decides, at the beginning of spring, how much water will be 

delivered to the users during the irrigation season (from May to September). After that, the 

reservoir operators (Operation Office) decide on how to balance the releases from the different 

reservoirs based on their storage and the predicted inflows to guarantee the planned deliveries. 

Accordingly, two FRB systems were built and linked to reproduce this decision-making process 

(Figure 5). On the one hand, the “Delivery FRB” aims to reproduce the decisions of the 

Reservoir Releases Commission, obtaining the releases from the downstream reservoir, Tous, 

based on the joint storage (Alarcon, Contreras and Tous storages) and the Lower sub-basin 

inflows, which together define the total amount of water available for downstream users. On the 

other hand, the “Release FRB·” represents the subsequent decision made by the Operation 

Office, establishing the percentage of the Tous releases that must be provided from each of the 

upstream reservoirs, Alarcon and Contreras. This decision is based on the storages in the three 

reservoirs and the forecasted Middle sub-basin inflows. The case of the deliveries to the city of 

Albacete and Mancha Oriental agricultural surface demands has some particularities: the 

deliveries of urban water to Albacete are always met and 33 Mm3 per irrigation season are 

delivered to the irrigation districts in Mancha Oriental as long as the Alarcon Agreement allows 

that. Therefore, there is no need to incorporate both demands as outputs of the FRB system. 
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Figure 5. Modelling framework integrating the two FRB systems 

The inputs of the Delivery FRB were characterized using five fuzzy numbers, combining 

together to form 25 rules. The output was defined as a non-fuzzy number. Moreover, the inputs 

of the Release FRB were characterized using three fuzzy numbers, combining together to form 

81 rules. Their output variables were defined as non-fuzzy numbers. The input characterization 

in the latter FRB was kept as simple as possible to avoid an excessive number of rules. Both the 

inputs and the outputs refer to the whole irrigation season (between May and September) as a 

single time step, so the decisions made by it need to be further downscaled in order to establish a 

release calendar, a step currently carried out and supervised by the Operation Office. 

Once the previous FRB structure was set, the proposed structure needs to be validated and the 

fuzzy inputs quantified. The formulation of the membership functions and rule bases was made 

based on both expert knowledge and historical data. Fuzzy membership estimation was based on 

the vertical method (Pedrycz et al., 2011) using two α-cuts (0 and 1), where each α-cut represents 

the interval formed by all the values that belong to a fuzzy number with a membership value 

equal or higher than α. The system operators addressed were asked about the intervals of the 

input variables that definitely belong or definitely do not belong to each fuzzy number. Then, a 

trapezoidal fuzzy number was set according to their answers (Figure 6). 
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Figure 6. Fuzzy inputs for the FRB systems 

Outputs defined for the FRB systems 

Regarding the Delivery FRB, historical records for the 2003-2013 period were used to establish 

the output (Tous releases). A variant of the weighted-counting algorithm was employed 

(Shrestha et al., 1996). The rules whose output could not be determined by the historical data 

(because that situation did not happen within the period of the historical observations) were 

given an output based on the expert knowledge from the Operation Office. Historical records 

were used as the main drivers of the Delivery FRB, as not enough members of the Reservoir 

Releases Commission could be approached. With regard to the Release FRB, the outputs were 

given by the experts from the Operation Office. A workshop was organized, during which they 

were given a set of possible management situations (combinations between reservoir storages 

and Middle sub-basin inflows) and asked for their decisions under these circumstances. Each 

answer was used to obtain the outputs of the Release FRB. 

FRB inference and validation 

The FRB systems were validated to verify that their outcomes are in proper agreement with the 

current seasonal operating decisions (observed releases, streamflows and demand deliveries). In 

contrast with the procedures often followed in the development of operating rules, there is no 

training stage. This means that no objective function is used to modify the FRB systems, which 

are directly validated against historical records. The absence of training is due to the use of 

expert knowledge in the definition of the FRB systems and their outputs. Modifying them would 

imply losing the point of view of system operators, which is not desired. Therefore, only a 

validation stage was carried out; if the FRB systems were found to not be valid, then their 

definition process would need to be restarted (see Figure 1, Figure 2). 
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Their validation was made using a mathematical simulation algorithm, STIG, that takes into 

account the system network (depicted in Figure 4) for allocating water at each time step. The 

FRB systems were combined with the simulation algorithm. Each time stage, the inference 

procedure is applied for both FRB systems to obtain the target releases from the three reservoirs. 

These are then included in the simulation algorithm in the form of constraints that force its 

reservoir releases. The simulation model calculates then the streamflows and deliveries resulting 

from the target releases. 

The resulting model was run with a monthly time step. Since we are dealing with reservoir 

seasonal operation for irrigation, the scheme presented is applicable to the irrigation season (May 

to October). Outside of the irrigation season the system operation is simpler: the only releases 

correspond to the minimum rates to fulfil the few winter irrigation demands plus the ecological 

flows and deliveries for urban water supply. In order to match the time scales between the model 

(monthly) and the FRB systems (seasonal), the seasonal decisions were disaggregated over time 

as follows. First, a curtailment coefficient to the releases from Tous was calculated as the 

division between the target release (obtained from the Delivery FRB) and the total downstream 

demand during the irrigation season. Then, this percentage was applied to each month to curtail 

the releases from Tous. The distribution of these monthly releases among the various 

downstream demands is made by the simulation model. 

The model was validated for the 2003-2013 period, comparing its outputs with the observed 

reservoir storages and releases (Figure 7). The storages in Alarcon and Contreras are fairly 

reproduced by the model, given the high R-squared (0.97 and 0.96) and Nash-Sutcliffe efficiency 

(NSE, 0.92 and 0.96) coefficients. Despite not achieving the same performance, the goodness-of-

fit for the Tous storage fit is adequate (R2 = 0.72 and NSE = 0.68). Furthermore, the outflows 

from Tous seem to be well-fitted (R2 = 0.81 and NSE = 0.78) to the historical observations. 

Consequently, it can be stated that the FRB systems are capable of correctly balancing the 

storage between the three reservoirs and reproducing the releases to the downstream demands 

from Tous. 

 

Figure 7. Validation for reservoir storages and releases 
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The validation process included other variables such as streamflow in different reaches and 

demand deliveries. Regarding river discharge, the R-squared coefficients ranged between 0.37 

and 0.81, with an average value of 0.59. On the other hand, the validation for demand deliveries 

offered R-squared coefficients between 0.62 and 0.81, with an average value of 0.75. These 

results were discussed with the system operators. Since the model yielded adequate results 

compared with the historical records, both FRB systems were considered to be valid for their 

purpose, together providing a reliable representation of the actual operation of the Jucar River 

system. 

Seasonal inflow forecasting using fuzzy linear regression 

In order to build a Decision Support System (DSS) capable of making ex ante assessments of 

release decisions, it is necessary to establish a way to predict inflows during the irrigation 

season. To do so, an inflow forecast mechanism was developed for the Jucar river. A fuzzy linear 

regression equation was fitted to the inflow in each of the four sub-basins. Such a procedure is 

able to accommodate the experts’ choice of variables in the estimation of future inflows, is 

conceptually simple and illustrates the uncertainty associated with the regression, since the 

output is a fuzzy number. In addition, it is able to provide suitable results even when available 

observations are scarce. In order to set up the regression equations for each sub-basin, the system 

operators pointed out different variables they consider when making inflow projections, such as 

rainfall in the past months (up to two years prior to the start of the irrigation season) and inflows 

in the past months. Then, a statistical correlation analysis between these variables and the 

inflows was used to select a final set of explanatory variables per sub-basin. The variables 

selected were: 

 For the Alarcon sub-basin: rainfall during the previous months (October to April) and 

inflow during the previous months (October to April) 

 For the Contreras sub-basin: rainfall during the previous months (October to April) and 

inflow during the previous months (October to April) 

 For the Middle sub-basin: rainfall during the previous months (October to April) and 

inflow during the previous month (April) 

 For the Lower sub-basin: rainfall during the previous months (October to April), inflow 

during the previous months (October to April) and inflow during the previous month 

(April)  

Due to the scarcity of data (complete data sets were only available for the past 10 irrigation 

seasons) the number of independent variables was kept as low as possible. Consequently, spatial 

cross-correlations were not analysed (Table 1). Statistical correlation analysis showed that 

inflows in the upstream sub-basins (Alarcon and Contreras) have a stronger dependency on the 

explanatory variables (0.70 – 0.85 correlation coefficients), while the relationship between 

variables downstream is weaker (0.45 – 0.85 correlation coefficients). In fact, the Lower sub-

basin linear regression was defined with three explanatory variables due to the weak correlations 

observed. The fuzzy coefficients of the regression were fitted using 8 years of observations 

(2003-2010), keeping the remaining two (2011-2012) to validate the regression. A membership 

threshold value (h) of 0.25 was considered since higher values would enlarge the width of the 
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fuzzy outputs too greatly. Figure 8 shows the historical records (depicted using circular markers 

joined by dashed lines) versus the fuzzy results. As expected, the vagueness (grey tones) is 

higher in the regression of the lower sub-basin (with lower statistical correlations), while the 

others show similar vagueness levels. In any case, most observations fall into the region of non-

pale grey tones, which makes the adjustment acceptable considering the scarce data. 

Table 1. Correlation analysis results 

Variable 
Sub-

basin 

Inflows May - Sept 

Alarcon Contreras Middle Lower 

Rainfall 

May–

Sept 

Alarcon 0.42 - - - 

Contreras - 0.31 - - 

Middle - - 0.07 - 

Lower - - - 0.35 

Inflows 

Oct–

Apr 

Alarcon 0.69 - - - 

Contreras - 0.87 - - 

Middle - - 0.80 - 

Lower - - - 0.49 

Rainfall 

Oct–Apr 
Alarcon 0.68 - - - 

Contreras - 0.85 - - 

Middle - - 0.60 - 

Lower - - - 0.53 

Inflow 

April 
Alarcon 0.65 - - - 

Contreras - 0.89 - - 

Middle - - 0.87 - 

Lower - - - 0.47 

 

 

Figure 8. Results from the fuzzy linear regression of inflow by sub-basin; grey areas correspond 

to the output values: the darker the tone, the higher the membership value of the output 
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DSS tool and results 

Once validated, the FRB systems and the fuzzy regression equations were combined in a single 

tool. The resulting DSS is able to make projections regarding future inflows, likely management 

decisions and their consequences. In order to be able to combine both procedures, the FRB 

systems were adapted to work with fuzzy inputs. The introduction of the inflows as fuzzy inputs 

was made using a fuzzy input decomposition scheme (Jones et al., 2009). This scheme consists 

in decomposing the fuzzy inputs into non-fuzzy values, using them as inputs for the FRB 

systems and building the fuzzy outputs via inverting the decomposition on the FRB output 

values. After calculating these outputs, their consequences (storages at the end of the irrigation 

season and water available for consumption downstream of Tous) were estimated using fuzzy 

arithmetic (for more details see Simonovic, 2009). End-of-season storages were calculated as the 

initial storage (non-fuzzy) plus the inflows (fuzzy) minus the outflows (fuzzy). Water available 

for usage in the lower Jucar was defined as the summation of the release from Tous (fuzzy) and 

the Lower sub-basin inflow (fuzzy). 

The DSS was divided into two sub-tools to properly accommodate the two stages found in the 

seasonal operation of the Jucar river: the system state projections and the decisions regarding 

reservoir releases. The projections on the future possible system states in response to any 

possible decision is calculated by the predictive tool (Figure 9). Furthermore, the consequences 

associated with a specific decision are assessed by the decision-making tool (Figure 10). The 

first tool identifies a subset of likely decisions regarding the consequences that could be found 

for the entire possible decision set, while the latter determines the consequences of a particular 

decision. 

 

Figure 9. DSS predictive tool; includes predicted inflows, reservoir releases, end-of-period 

storages and water availability in the lower Jucar 
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Figure 10. DSS decision-making tool; includes predicted inflows, reservoir releases, end-of-

period storages and water availability in the lower Jucar 

The usage of the DSS starts with the predictive tool, in order to locate possible release decisions 

in response to the previewed inflows. In that tool, the user introduces the initial system state 

(reservoir storages at the end of April) and the meteorological and hydrological variables for 

predicting inflows (past rainfall and inflows). The tool calculates fuzzy estimations of the future 

inflows and shows them to the user (Figure 9). Automatically, it computes likely reservoir 

releases inferring them from the FRB systems, obtains the end-of-season storages using fuzzy 

arithmetic and estimates the water availability in the lower Jucar via fuzzy arithmetic. Since all 

these outputs obtained are fuzzy, the user has an estimation of the uncertainty associated to the 

inflows and how it affects the release decisions and the final storages. 

To facilitate the interpretation of the fuzzy numbers obtained by the predictive tool, a visual code 

attached to linguistic descriptors was used. These descriptors are “unthinkable” (µ=0), 

“exceptional” (0≤µ≤0.25), “strange” (0.25≤µ≤0.50), “feasible” (0.50≤µ≤0.75) and “likely” 

(µ≥0.75). They are the primary metrics for comparing release decisions, and locating and sorting 

the operating options by likelihood. Any ex ante decision falling within the “feasible” and 

“likely” zones would be in line with the expected inflows and the current system operating rules. 

Decisions inside the “exceptional” and “strange” areas would be initially inconsistent with the 

forecasted inflows and/or the current operating rules. Decisions falling in the “unthinkable” zone 

should not be considered at all, since they clearly depart from the expectations at the start of the 

irrigation season. Consequently, the user has an immediate estimation of which are the most 

likely decisions, being able to quickly rank them according to their acceptability. The usage of 

common-knowledge linguistic descriptors and visual codes facilitates that comparison, as well as 

making it easier to show it to stakeholders or decision-makers not familiar with the tool. Another 

advantage is that the tool screens all the possible values of the release decisions, so all the 

alternatives are analysed. Furthermore, the tool estimates the expected end-of-season storages 

and water availability downstream of Tous for any operating decision. Consequently, it allows 

the user to determine if any discretional decision or additional measure (like groundwater 
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pumping) should be considered to save surface water or increase the downstream users’ supply. 

As an example, if the water availability in the lower Jucar river offers low values within the 

“feasible” and “likely” intervals, then more water than initially indicated should be released from 

the reservoirs or complemented with groundwater pumping. Similarly, if the Tous reservoir 

presented lower storages within the previous intervals, then more water than preview should be 

released from upstream to prevent it from becoming empty. 

Despite ranking any possible release decision according to its acceptability, the predictive tool 

does not pick any single one as the best. On the contrary, a set of promising alternatives is 

provided, so they can be used as the starting point for negotiation processes. Consequently, no 

additional metrics were employed to perform finer decision rankings. The decision-making tool 

(Figure 10) was included to facilitate the estimation of the consequences obtained by a single 

decision. In that tool, the user introduces a single decision (releases from Alarcon, Contreras and 

Tous, as well as water deliveries to Albacete and Mancha Oriental crops), and immediately finds 

out its likely consequences (end-of-season storages and water available downstream Tous). The 

decision-making tool also shows the inflow forecasts and the reservoir releases previously 

obtained by the predictive tool, in order to easily determine how the decision introduced was 

ranked by it. Although it would be expected that the decision made would be one that had 

obtained a good rank (“likely” or “feasible”) through the predictive tool, any decision can be 

typed in, thus enabling any alternative to be explored. The decision-making tool implements the 

same fuzzy arithmetic operations as the predictive tool, but replacing the calculated releases by 

the values introduced by the user. In that way, the tool immediately shows the user the possible 

consequences of the proposed releases, ranked by their likeability, thus the impacts of the applied 

operating decisions can be quickly determined. If these are found to be inadequate, another 

decision can be typed in and its consequences are automatically shown by the tool. 

Discussion and Conclusions 

This paper presents a collaborative framework to couple historical records and expert 

knowledge/criteria in the definition of a Decision Support System (DSS) to support the Jucar 

river seasonal management. Fuzzy logic is used to estimate the operating rules implicitly 

followed by the Jucar River basin managers, employing fuzzy regression to forecast future 

inflows based on past meteorological and/or hydrological variables. The tool offers the experts a 

way to preview which decisions would be a priori adequate, as well as to estimate the likely 

consequences of any decision they want to examine. 

Although the framework presented was designed for and applied in the Jucar River system, it can 

be extrapolated to any other basin. In this paper, the method is presented jointly with its 

application to the case study, as it was shaped and built in a continuous fashion during meetings 

with the Jucar River system managers. Developing such a continuous building mechanism is 

vital for the success of the tool, since new insights on how the system and its management work 

are gained during the process and thus incorporated in the final outcome. 

As pointed out by the experts (system managers) during the process, the main reasons why they 

were satisfied with the resulting tool were: 1) it implements specific features and variables that 

system operators consider for the actual operation, 2) they were able to properly understand how 

the approach works despite the initial lack of familiarity with fuzzy logic, 3) the simple lay out 
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and usage of the approach, and 4) that the approach does not select a single decision, but rather 

suggests a range of possible ones and their likely consequences. Fuzzy logic proved its suitability 

for being understood by people without a solid grounding in its theory, as well as being proper 

method of estimating implicit operating rules, which were encoded in its fuzzy rules defined by 

expert criteria and historical records of the decisions made. 

Despite the potential of the approach and the good performance in its implementation in the case 

study, several weaknesses must be addressed. Firstly, the quality of the regression process was 

hindered by the lack of data availability. It is likely that regression could improve if new records 

were added. More specifically, new variables would be required to adequately capture the 

variability observed by the lower sub-basin regression, as well as in the others, in which there are 

several values that need to be explained by regarding variables not included in the equations. 

Besides this, the accuracy of the fuzzy rule-based systems could be improved by adding 

additional fuzzy rules in order to obtain a finer discretization of the fuzzy inputs, although this 

would make the process of incorporating the expert criteria harder because of the increase in 

fuzzy rules. With regard to this, Şen (2010) pointed out that using more than seven fuzzy 

numbers to characterize a variable would make it difficult for people to understand the FRB, as 

the meaning of the linguistic terms would be too similar to allow people to make a clear 

distinction between them. 

Furthermore, the FRB systems and the fuzzy regression equations operate under the assumption 

that the inflows are uncorrelated, which does not correspond to the real behaviour. As a result, 

the uncertainty intervals provided by the DSS tool are higher than expected in real-life. Solving 

this issue would require more detailed FRB systems (more rules) and fuzzy regressions (more 

variables), something that needs additional data (fuzzy regression) or could make the process 

difficult to understand (FRB systems). 

Regarding the DSS building process and its implementation in the Jucar River system, the 

following conclusions can be drawn: 

 The collaborative process set was able to couple historical data and expert judgement, 

taking advantages of the synergies found between both data sources. 

 Fuzzy logic was successful in establishing the implicit operating rules followed in the 

Jucar River system through combining historical records and expert criteria. 

 The DSS created for making a priori assessments of the management decisions applied in 

the Jucar River system offers a quick and adequate way to help the decision-making 

process: experts are able to foresee possible decisions and to anticipate the possible 

consequences of these decisions. 

 Although the uncertainty regarding future inflows is addressed by the tool, the quality of 

its estimation is hindered by the lack of data. In particular, the uncertainty band provided 

by the tool could be larger than the real one. Therefore, the inflow prediction mechanism 

should be re-assessed as soon as new data sets are available. 

 Collaborative Decision Support Systems (DSS) such as the one developed in this paper 

are likely to have the best chance to be implemented in reality, since the experts who 
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should use them are directly involved in the process and thus feel confident with the 

resulting tool. 
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