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Contents 35 

Sperm cryopreservation is a useful tool in captive fish reproduction management, i.e. in 36 

order to synchronize gamete production, especially in the case of species as the 37 

European eel, where the time of female spawning readiness is unpredictable. Several 38 

protocols to cryopreserve sperm of this species have been described, but until recently 39 

fertilization trials were not feasible. The present study evaluated the effect of cold 40 

storage of diluted sperm prior to fertilizations and tested if a previously defined protocol 41 

for European eel sperm cryopreservation can be successfully applied in fertilization 42 

trials to produce viable offspring. In our experiment, the sperm motility was evaluated 43 

after the extraction and the best samples were selected and pooled. Until stripping of 44 

eggs and fertilization, diluted sperm samples were maintained at either 4 or 20 ºC, or 45 

cryopreserved, following existing protocols. Fertilization of two egg batches was 46 

attempted. Diluted sperm caused a similar percentage of fertilized eggs and a similar 47 

number of embryos and larvae, independently of storage temperature (4 or 20 ºC). The 48 

cryopreserved sperm resulted in a lower percentage of fertilized eggs, but embryos 49 

developed and a few larvae (“cryolarvae”) were obtained 55 h after fertilization in one 50 

of the two egg batches. This result evidences that the tested cryopreservation protocol is 51 

applicable for eel reproduction management, although improvements will be required to 52 

enhance fertilization success. 53 

 54 

Keywords: cryopreservation, spermatozoa, fertilization, eel larvae, Anguilla anguilla 55 
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Introduction 61 

Techniques for preservation of Japanese eel A. japonica (Ohta and Izawa 1996; Ohta et 62 

al. 2001; Tanaka et al. 2002) and European eel sperm have been developed. In the case 63 

of the European species, the study of the physico-chemical characteristics of seminal 64 

plasma, especially the ionic composition of seminal plasma in good quality sperm 65 

samples was the basis for the initial design of extenders and cryopreservation media 66 

(Asturiano et al. 2003, 2004; Pérez et al. 2003). Later, different factors such as the ionic 67 

composition, pH, cryoprotectants, presence of protective proteins, pre-freezing and 68 

post-thawing milt dilution ratios, freezing-thawing methods, cryoprotectants, etc. have 69 

been considered in order to enhance spermatozoa survival post-cryopreservation 70 

(Garzón et al. 2008; Marco-Jiménez et al. 2006; Müller et al. 2004; Szabó et al. 2005; 71 

reviewed by Pérez et al. 2009). However, protocols are still sub-optimal, considering 72 

the relative low post-thawing spermatozoa survival obtained in comparison with 73 

application of fresh sperm samples.  74 

Last improvements in protocols for European eel include the use of specific 75 

extenders (Peñaranda et al. 2010a,b) and freezing media (Peñaranda et al. 2009) that 76 

consider effects of pH and oxygen concentration, as well as the cell movement-77 

inhibiting role of the bicarbonate. These improved protocols allowed a post-thawing 78 

motility of 38 ± 3% of the spermatozoa (Peñaranda et al. 2009). However, the previous 79 

unsuccessful production of viable European eel eggs has hindered practical evaluation 80 

of these methods in fertilization trials. 81 

Protocols to hormonally induce female European eel maturation and spawning have 82 

in recent years been considerably improved and standardized fertilization procedures are 83 

now available (Butts et al. 2014; Tomkiewicz et al. 2011; Vílchez et al. 2014a). 84 

However, the timing of female eel final maturation process is highly variable and 85 



4 
 

difficult to control, which hampers predictability of egg availability and need for sperm 86 

for fertilization procedures. Furthermore, the spell of time after ovulation that the eel 87 

egg is capable of fertilization is very short (Butts et al. 2014). In order to facilitate 88 

handling of gametes in fertilization procedures, sperm extraction and evaluation can be 89 

made several hours in advance of expected harvest of eggs (Butts et al. 2014; Vílchez et 90 

al. 2014a). In this procedure, sperm is diluted in a storage medium (Asturiano et al. 91 

2003, 2004) improved by Peñaranda et al. (2009) to achieve a specified volume and 92 

concentration, thereby allowing adjustment of sperm to egg ratio (Butts et al. 2014). 93 

Storage temperature is maintained at 20 °C until use.  94 

The present study tested and compared fertilization rate, embryonic and larval hatch 95 

success using sperm storage procedures at two temperatures, i.e. 20 and 4 ºC, as well as 96 

sperm cryopreservation, following a sperm cryopreservation protocol previously 97 

described (Peñaranda et al. 2009) and assisted reproduction protocols also described 98 

recently (Butts et al. 2014; Tomkiewicz 2012; Vílchez et al. 2014a). This study is the 99 

first attempt to apply cryopreserved sperm in European eel artificial fertilization 100 

protocols. 101 

 102 

Material and methods 103 

Broodstock and hormonal treatments 104 

European eel for the experiments (n = 43; mean standard length and body weight ± SD: 105 

40 ± 2.6 cm and 124 ± 21 g, respectively) were raised at a commercial eel farm in 106 

Jutland, Denmark (Stensgård Eel Farm A/S) and transferred to a Research Facility of 107 

the Technical University of Denmark. All the fish were transferred to independent 108 

recirculation systems and acclimatized to artificial saltwater at 36 ppt and a temperature 109 

at 20 °C. Prior to the onset of experiments, all fish were anaesthetized with Benzocaine 110 
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(ethyl p-aminobenzoate, 20 mg/L) weighed (BW) and tagged with Passive Integrated 111 

Transponder (PIT) tags.  112 

Farmed male eel spermatogenesis was induced using weekly injection of 113 

recombinant human chorionic gonadotropin (rhCG; Ovitrelle, Madrid; 1.5 IU/g BW; 114 

Gallego et al., 2012). The males were weighed weekly in order to calculate dosage. 115 

Farmed female European eels were treated weekly with salmon pituitary extract (SPE; 116 

18.75 mg SPE/kg BW, Argent Chemical Laboratories, Washington, USA), based on 117 

initial body weight) and 17α,20ß-dihydroxy-4-pregnen-3-one (2 mg/kg BW; Sigma-118 

Aldrich Denmark A/S) was used to induce follicular maturation and ovulation (Butts et 119 

al. 2014; Tomkiewicz et al. 2011). 120 

 121 

Sperm and egg sampling  122 

Eggs from two females were obtained after 17 weeks of treatment and concurrently, 123 

sperm was sampled from males treated 11 weeks. Sperm was collected 24 hours after 124 

the rhCG injection (Pérez et al. 2000) and approximately 12 h after induction of female 125 

follicular maturation (Tomkiewicz 2012). Males were anesthetized using benzocaine for 126 

one minute and cleaned using demineralized water thoroughly at and around genital 127 

pore, and drying prior to semen collection. First drop of semen was discarded to avoid 128 

urine and feces contamination.  129 

 130 

Sperm evaluation and establishment of pools 131 

Individual sperm samples were evaluated in triplicate by assessing the percentage of 132 

motile spermatozoa. Two µl sperm was mixed with 200 µl of artificial sea water (Aqua 133 

Medic Meersalz, 37 g/L, with 2% BSA (w/v), pH adjusted to 8.2; Peñaranda et al. 134 

2010a) as activation medium, and 2 µl of activated sperm was transferred to a Makler 135 
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reusable chamber (10 μm deep; Sefi Medical Instruments, Haifa, Israel) and observed 136 

between 15 and 30 s after activation using a Nikon Eclipse 55i microscope equipped 137 

with a Nikon DS-Fi1 camera. All samples were assessed in triplicate and analyzed by 138 

the same trained observer to avoid subjective differences in the motility evaluation. 139 

Only samples showing more than 80% motile cells were selected for fertilization trials. 140 

Pools of selected samples, including sperm from 3-4 males (1 ml sperm/male) were 141 

established and sperm motility of the pooled samples was assessed. 142 

Sperm density of the pools (being Pool 1: 15.95 x 109 spz/ml; Pool 2: 15.25 x 109 143 

spz/ml) was determined using a Neubauer Improved hemocytometer. 144 

 145 

Sperm dilution and preservation 146 

Two hours prior to fertilization experiments, pooled samples were diluted 1:99 in the 147 

medium described by Peñaranda et al. (2010a) containing, in mM: 125 NaCl, 20 148 

NaHCO3, 2.5, MgCl2-6H2O, 1 CaCl2-2H2O, 30 KCl, pH 8.5 and osmolality 320-330 149 

mOsm/kg. Two storage conditions for diluted sperm were used, i.e. room temperature at 150 

20 ºC or in refrigerator at 4 ºC.  151 

 152 

Sperm cryopreservation and thawing 153 

Sperm for cryopreservation was diluted 1:2 in P1-modified freezing medium, previously 154 

described by Peñaranda et al. (2009; and named medium M5 in that paper) and frozen in 155 

250 µl straws using liquid nitrogen as was previously described (Peñaranda et al. 2009).  156 

Cryopreserved sperm was thawed in a water bath at 40 ºC for 10 s followed by 157 

immediate use in fertilization trials to avoiding premature activation of spermatozoa 158 

caused by the cryoprotectant agent (DMSO; Peñaranda et al. 2009). 159 

 160 
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Fertilization and subsequent evaluation  161 

Fertilization success of the fresh sperm samples subjected to two storage temperatures 162 

and the cryopreserved sperm was compared (Fig. 1). The fertilization procedure was 163 

performed using a cross combination of eggs from two females (A and B) and sperm 164 

pooled samples (pools 1 and 2, each representing the three treatments).  165 

For fertilization trials, two straws (in total 500 µl of sperm diluted 1:3 as part of 166 

the cryopreservation) were thawed and diluted 1:33 in the medium described by 167 

Peñaranda et al. (2010a) at 4 ºC, resulting in a final dilution of 1:99, being similar to the 168 

non-cryopreserved sperm samples. 169 

Eggs and diluted sperm were mixed in disposable 100 ml plastic weighing trays in 170 

triplicate. Each tray held 1.9 g eggs (approx. 3800 eggs) mixed with 1 ml of diluted  171 

sperm (1:99 in all the cases) that were activated using 6.7 ml natural North Sea seawater 172 

(32.5 ppt) filtered using a drop-in housing cartridge filter (0.8 μm, CUNO 3M®, St. 173 

Paul, MN, USA) and adjusted using Tropic Marin® Sea Salt (Tropic Marin Sea Salt, 174 

Dr. Biener GmbH, Wartenberg, Germany) to allow for a final fertilization salinity of 36 175 

psu in each tray (Sørensen et al. 2016). After 5 min of activation process eggs were 176 

gently moved to 250 ml beaker with filtered natural sea water.  No aeration or 177 

movement was applied and eggs were left untouched for 5 hours post fertilization 178 

(HPF). Hereafter, subsamples of randomly sampled egg were photographed on glass 179 

slide taking 4 pictures per replicate each depicting approximately 20 eggs. The pictures 180 

were subsequent analyzed with respect to fertilization defined as eggs showing above 4-181 

cell stage development. An average percent of fertilizations in each replicate was 182 

calculated based on the 4 photos taken per replicate and the depicted results are 183 

fertilization percent featuring standard error between replicates (Butts et al. 2014). 184 
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Hatching success and relative mortality during incubation was determined applying 185 

procedures described by Sørensen et al. (2014). Subsamples of 2 ml floating eggs from 186 

each replicate were inserted 5 HPF in sterile media flasks 250 ml (Nunc®, Non-treated 187 

with Ventilated Caps, Thermo Scientific). Each flask was prefilled with 200 ml 0.8 µm 188 

filtered natural sea water adjusted to 36‰ using Tropic Marin Sea Salt. Flasks were 189 

rearranged randomly and incubated in 20 ˚C in light levels below 10 lux. Each flask was 190 

evaluated quantifying number of dead/sinking eggs at 36-37 HPF and again at 55 HPF 191 

counting also number of hatched larvae. The initial number of eggs loaded in each flask 192 

was estimated based on 5 identical 2 ml egg samples taken at time of loading for 193 

incubation in Nunc Flasks and counted using photographic analysis using ImageJ and 194 

particle counter plugin.  195 

 196 

Statistics 197 

The mean ± SEM were calculated for the number of fertilized eggs, floating embryos 198 

and floating larvae. Shapiro-Wilk and Levene tests were used to check the normality of 199 

data distribution and variance homogeneity, respectively. One-way analysis of variance 200 

(ANOVA) was used to analyze data with normal distribution. Significant differences 201 

between post-activation times were detected using the Tukey multiple range test 202 

(P<0.05). For non-normally distributed populations, Kruskal-Wallis one-way ANOVA 203 

on ranks and Mann-Whitney U-test were used. All statistical analyses were performed 204 

using the statistical package SPSS version 19.0 for Windows software (SPSS Inc., 205 

Chicago, IL, USA). 206 

 207 

Results  208 

Fertilization 209 
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The rhCG hormonal treatment (Gallego et al. 2012) induced high sperm quality 210 

(10/43 males showed over 80% of motile cell after sea water activation), supporting it 211 

as an effective treatment for this species. 212 

Fertilized eggs were obtained in all three treatments, including those using 213 

cryopreserved sperm (Fig. 2). In fact, no significant differences were reached when the 214 

eggs from female A were fertilized with pool 1 sperm preserved with the three different 215 

treatments (Fig 2A). In the rest of cases, no differences were found between sperm 216 

pools maintained at 4 or 20 ºC, while a lower fertilization percent was observed in the 217 

test using cryopreserved sperm.  218 

In addition, the experimental cross combination of two females and two sperm pools 219 

revealed both maternal and paternal effects, where the combination of female A and 220 

cryopreserved sperm pool 1 gave the best results, reaching an average of 33% of 221 

fertilized eggs in the fraction of buoyant eggs. 222 

 223 

Embryo and larvae survival 224 

The proportion of fertilized eggs differed between the two females in our study (Fig. 2), 225 

but both females proved capable of producing embryos and larvae (Fig. 3 and 5). 226 

Survival of embryos and larvae from female A and B was high for Pool 1 and 2 and the 227 

treatments 4 or 20 ºC, but with a significantly higher survival for eggs from female A 228 

fertilized with Pool 2. For the cryopreservation, no embryos from female B survived 229 

until 36 HPF (Fig. 3). However, in the case of female A, a proportion of embryos from 230 

eggs fertilized with cryopreserved sperm survived, and larvae hatched were present at 231 

55 HPF (Fig 4. and 5).  232 

 233 

Discussion 234 
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Short term storage at both temperatures, 4 and 20 ºC, proved to preserve diluted sperm 235 

well until the fertilization, but probably, the absence of differences is due to the fact that 236 

was used only two hours before the fertilization trials and probably that time was not 237 

enough to allow the bacteria growth at the higher temperature, at least until becoming a 238 

problem compromising the sperm fertilization capacity. Therefore, refrigeration at 4 ºC 239 

is recommended in order to reduce potential microbial activity and transfer to eggs in 240 

the fertilization process.  241 

The obtained results evidenced that the existing protocol for European eel sperm 242 

cryopreservation (Peñaranda et al. 2009) is capable of maintaining fertilization capacity 243 

in thawed sperm, although at a lower level than fresh diluted sperm and considering that 244 

only a few larvae were obtained from one of the two egg batches (female A). Future 245 

research to improve fertilization capacity of cryopreserved sperm needs to address 246 

potential DNA damages (cryo-injuries), epigenetics effects or differences in the ambient 247 

environment, e.g. osmolality during activation in fertilization media. In prospect, 248 

attainment of the first European eel “cryolarvae” using cryopreserved sperm is a 249 

promising step for efficient management of captive eel reproduction for a sustainable 250 

aquaculture. 251 

The sperm to egg ratios used (42105 or 39473 spermatozoa/egg when sperm pool 1 252 

or 2 were used) was the same in all the treatments (sperrm frozen or stored at 4 or 20 253 

ºC). In both cases are well above the limiting sperm to egg ratio determined by Butts et 254 

al. (2014) for this species (25000 spz / egg).   255 

No previous attempts using cryopreserved European eel sperm on European eel eggs 256 

have been reported. The present study is the first to show fertilized eggs from a pure 257 

cross of this species. However, cryopreserved sperm from European eel (using the 258 

method described by Müller et al. (2004) recently proved capable of fertilizing the eggs 259 
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of Anguilla japonica (Müller et al. 2012), although low egg quality was reported to 260 

interfere with the success in numbers of fertilized eggs. Moreover, the evident 261 

differences between the two females used in the present study support the findings of 262 

Müller et al. (2012) that maternal quality is vital for outcome success. On the other 263 

hand, our results do not indicate the existence of a male effect in terms of embryo/larvae 264 

survival after sperm cryopreservation. The absence of this effect could be due to the use 265 

of pooled samples after selection by motility, what could mask the weakness of specific 266 

males. In this regard, enhanced selection criteria of male (sperm) for future reproduction 267 

trials using cryopreservation seems an interesting point. 268 

The obtained results evidences that fertilization capacity was maintained in part by 269 

the thawed spermatozoa. However, the fertilization and hatch success was low (in fact 270 

only a few larvae were obtained from fertilized eggs of female A, but none from female 271 

B) and cryopreservation methods need to be improved, in order to reduce e.g. potential 272 

DNA damages (cryo-injuries), epigenetics effects (Labbé et al. 2014a,b) or problems 273 

with mitochondrial integrity (since they are the main energy producers), which may 274 

cause the reduction of fertilization rate observed in the present study. If mitochondria 275 

are damaged as a consequence of osmotic stress caused by the addition of a 276 

cryoprotectant, it is possible that a decrease in ATP production occurs. In the same way, 277 

morphometric changes produced by DMSO addition might influence cell movement 278 

(Marco-Jiménez et al. 2006). Moreover, preliminary studies have proposed the 279 

epigenetic effects of different cryoprotectants for European eel sperm (Vílchez et al. 280 

2014b). Given the apparent differences observed between sperm pools in this study in 281 

particular in relation to cryopreservation, emphasis needs to be causes of male 282 

differences cryo-capacity. 283 

Benefits of cryopreserved sperm application include the option to perform 284 
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comparative experiments, using different egg batches but sperm from the same male(s). 285 

For European eel, this could be fertilized eggs obtained from females subjected to 286 

different hormonal treatments or rearing conditions. Furthermore, the method allows 287 

optimization of resources, as male European eel produces large volumes of good quality 288 

sperm over a prolonged period (Asturiano et al. 2005; Gallego et al. 2012; Tomkiewicz 289 

et al. 2011). Thus, the number of males applied can be reduced, and high costs 290 

associated with male hormonal treatment schemes can be lowered. In addition, 291 

cryopreservation of sperm from selected males in combination with the possibility to 292 

transport preserved sperm, would promote exchange of genetic material for use in 293 

breeding and genetic programs. Together, future successful sperm cryopreservation 294 

protocols may enhance flexibility in broodstock management, breeding programs and 295 

preservation of genetic diversity, at the same time saving animals and costs.  296 

The use of high quality gametes from both males and females during in vitro 297 

fertilization trials is essential in order to achieve both high fertilization and hatching 298 

rates. Some studies have demonstrated that both sperm quantity and quality have a great 299 

influence on fertilization and hatching success (Butts et al. 2011). Gallego (2013) and 300 

Gallego et al. (2013) demonstrated that sperm/egg ratio and sperm quality are factors 301 

strongly related to each other in the pufferfish (Takifugu niphobles), suggesting that 302 

both factors should be taken into account as unique interrelated elements, making 303 

possible to obtain high fertilization rates using a successful combination of small 304 

amount of high quality sperm or high amount of low quality sperm. Moreover they 305 

suggested that spermatozoa velocity appears to be a key factor in the fertilization 306 

process, especially when the number of spermatozoa per egg is limited in the aqueous 307 

environment. In the case of the European eel, Sørensen et al. (2013) compared several 308 

methods to determine sperm density, and Butts et al. (2014) used the relationship 309 
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between sperm density and absorbance by use of a spectrophotometer to determine that 310 

eggs should be fertilized within 10 min post-stripping using 2.5 x 104 spermatozoa per 311 

egg. 312 

In the present study, the sperm/egg ratio was considered, but probably the lower 313 

sperm fertilization capacity of thawed sperm can be compensated by increasing this 314 

ratio. Precise numbers should be fixed in the future for practical reasons, limiting the 315 

number of breeding fish and reducing production costs. Moreover, this must be 316 

considered as a preliminary trial because larval rearing was not used and nothing is 317 

known on the effects of cryopreservation on larval quality. Further research will be 318 

necessary to cover these aspects. 319 
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Figure legends 447 

 448 

Fig. 1.  Different sperm preservation methods tested in fertilization experiments. 449 

 450 

Fig. 2. Percentage of fertilized eggs from females A and B 5 h after fertilization with 451 

sperm from Pool 1 and 2 diluted and maintained at 20 or 4 ºC or cryopreserved. Results 452 

are shown as mean ± SEM of the triplicates in each case. Different letters indicate 453 

significant differences between the different sperm storage methods for the different 454 

combinations of females and sperm pools. 455 

 456 

Fig. 3. Proportion of embryos and larvae (in percent) 36-37 h after fertilization of eggs 457 

from females A and B with sperm from Pool 1 and 2 diluted and maintained at 20 or 4 458 

ºC or cryopreserved. Results are shown as mean ± SEM of the triplicates in each case. 459 

Different letters indicate significant differences between the different sperm storage and 460 

preservation methods for the different combinations of females and sperm pools. 461 

  462 

Fig. 4. European eel offspring obtained using cryopreserved sperm. a) Fertilized eggs in 463 

the incubation flask, b) buoyant embryos, c) suspended larvae. 464 

 465 

Fig. 5. Number of embryos and larvae/per incubation beaker 55 h after fertilization of 466 

eggs from females A and B with sperm from Pool 1 and 2 diluted and maintained at 20 467 

or 4 ºC or cryopreserved. Results are shown as mean ± SEM of the triplicates in each 468 

case. Different letters indicate significant differences between the different sperm 469 

storage methods for the different combinations of females and sperm pools. 470 

 471 
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Figure 2 499 
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