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Abstract 31 

Fish sperm motility is nowadays considered the best quality biomarker for fish 32 

spermatozoa, and sperm motion parameters from more than 300 fish species have been 33 

already reported throughout 1500 scientific articles covering a wide range of topics, from 34 

molecular to ecology issues. Within these topics, i) sperm storage (involving both the use 35 

of chilled-storage protocols for short-term periods, and sperm cryopreservation 36 

techniques for long-term storage), ii) sperm physiology (fathom in the spermatozoa 37 

activation process and the whole propulsion machinery of the sperm cells), and iii) 38 

broodstock management (covering aspects such as rearing conditions, dietary 39 

requirements or hormonal induction treatments), have been the most studied fields 40 

through the evaluation of fish sperm motion, enhancing many aspects of management 41 

practices in fish farms. In addition, other aquaculture and ecological topics such as iv) the 42 

knowledge of the breeding cycle of the species, v) the phenomenon of the sperm 43 

competition, and vi) ecotoxicological studies for the evaluation of aquatic environments, 44 

have also been approached from the evaluation of sperm motion performance. 45 

To sum up, fish sperm motility assessment can serve as a potential tool for aquaculture 46 

and ecological purposes, covering key topics of fundamental and applied research. This 47 

review gives an overview of the major research areas in which fish sperm motility have 48 

been applied successfully.  49 

 50 
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1. Introduction 53 

Fish are the most diverse and numerous group of vertebrates, and a wide diversity of 54 

reproductive strategies can be found both in freshwater and marine species (Bone et al. 55 

1995). However, most of them share a common fertilization mode, the external 56 

fertilization, in which gametes both from males and females are released into the aquatic 57 

environment (Crowe & Russell 2009). Up to this point, fish spermatozoa remain 58 

completely quiescent in the spermiduct, and they became motile once are released to the 59 

external medium by an hyper- or hypo-osmotic shock, depending on seawater or 60 

freshwater species (Morisawa 2008). In this context, sperm activation will be an essential 61 

requirement in the pursuit of female gametes, and a wide range of factors of both external 62 

and internal origin will determine the fertilization success. 63 

It is reasonable to imagine that fertilization success will depend on gamete quality and, 64 

focusing in males, it makes sense to define and understand what gamete (sperm) quality 65 

means. From a biological standpoint, sperm quality could be defined as the ability of the 66 

spermatozoa to exploit their swimming ability for reaching and fertilize the oocyte 67 

(Fauvel et al. 2010). Therefore, any quantifiable sperm trait directly correlated with the 68 

fertilization success could be potentially used as a sperm quality biomarker. A relatively 69 

high number of sperm quality biomarkers have been reported over the years in several 70 

fish species (Rurangwa et al. 2004). These sperm biomarkers have so far been 71 

documented in scientific papers, and several traits of the fish/sperm itself such as 72 

osmolality, pH and chemical composition of the seminal plasma (Alavi et al. 2004); 73 

enzymatic activity (Burness et al. 2005); ATP concentration (Dzyuba & Cosson 2014); 74 

spermatocrit and sperm density (Sørensen et al. 2013); sperm motility (Ottesen et al. 75 

2009); or sperm morphology and ultrastructure (Ciereszko et al. 2015) have been linked 76 

to the ability of sperm to fertilize the ova. Although some of these parameters are 77 

relatively easy to score and commonly used (spermatocrit, viability and subjective 78 

motility); others need sophisticated laboratory analyses (biochemical analyses), 79 

expensive equipment (objective and quantitative motility) or availability of eggs 80 

(fertilisation success).  81 

 82 

2. Sperm motility as a sperm quality biomarker 83 

Although it is a set of sperm characteristics that contribute to determining sperm quality, 84 

sperm motility is currently considered the best sperm quality biomarker in fish (Suquet et 85 
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al. 2010; Boryshpolets et al. 2013; Mylonas et al. 2016). In fact, high correlations have 86 

been reported between sperm motility and fertilization and hatching rates in some fish 87 

species (Gage et al. 2004; Gasparini et al. 2010; Gallego et al. 2013a). Although sperm 88 

motility could loosely defined as the capacity of spermatozoa to move or not once 89 

released into the activation media, a deeper comprehensive description would also 90 

involve other kinetic features such as spermatozoa velocity, progressiveness, linearity, 91 

etc. In this sense, the method or technique chosen by the researcher for assessing the 92 

sperm movement will generate the degree of depth of understanding of the motion pattern. 93 

Nowadays, sperm motility evaluation can be done by two different ways in the laboratory: 94 

i) the subjective way, in which an experienced technician (or not) make an evaluation of 95 

sperm motility through a simple observation under the microscope; and ii) the objective 96 

way, in which sophisticated software integrate the successive positions of the heads of 97 

moving spermatozoa in consecutive frames of video records to calculate the trajectories 98 

and their characteristics. Subjective evaluation method has been the most used technique 99 

to appraise sperm motility over the history, but some problems have emerged from this 100 

method. First drawback is focused the own limitation of human eye, through which we 101 

can only provide a coarse evaluation of sperm quality by motility criteria assessing classes 102 

in terms of percent of motile sperm and motility duration. In addition, this type of 103 

evaluation will depend on the observer's experience and several aspects such as sperm 104 

density, sperm velocity, drift, etc. can cause over- or underestimated readings. Therefore, 105 

the low reproducibility of this subjective motility evaluation, which can result in 106 

variations of 30 to 60% from the same sample, often makes it difficult to interpret and 107 

compare the results intra- and inter-labs (Verstegen et al. 2002; Rosenthal et al. 2010).  108 

On the other hand, the gradual appearance of Computer Assisted Sperm Analysis (CASA) 109 

systems has made possible to estimate a higher number of sperm motion parameters not 110 

given by subjective evaluation, providing the scientific community with new useful tools 111 

to be applied in multidisciplinary studies. These systems, which are the evolution of 112 

multiple photomicrography exposure and video-micrography techniques for spermatozoa 113 

track, represent an objective, sensitive and accurate technique for obtaining sperm kinetic 114 

features (Kime et al. 2001). CASA systems were first used in the 70´s in mammalian 115 

sperm, and only in the 90´s modern CASA systems have been adapted for fish 116 

spermatozoa studies (Perchec et al. 1995; Toth et al. 1995; Christ et al. 1996). The 117 

differences on the size and the biology of fish and mammalian spermatozoa may explain 118 

the delay in the release of adequate tools for the measurement of sperm motility in fish. 119 
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To date, these systems have been used and validated in a wide range of animal groups 120 

such as marine invertebrates (Riesco et al. 2017), birds (Lüpold et al. 2009), marine 121 

mammals (Montano et al. 2012), reptiles (Tourmente et al. 2011) or even insects (Al-122 

Lawati et al. 2009). It is noteworthy that most of the parameters evaluated by CASA 123 

systems have been correlated positively with spermatozoa fertilization potential, thus 124 

CASA is a very useful tool for assessing sperm quality in fish reproduction research 125 

(Tuset et al. 2008; Gallego et al. 2013a).  126 

 127 

3. Fish sperm motility: a useful tool for multidisciplinary studies 128 

The first scientific reports focused on fish sperm motility date from a century ago (Gee 129 

1916). From this date, new articles about this topic were reported sporadically until 60s, 130 

and became continuous but still scarcely until 80s. Nevertheless, a marked and continuous 131 

increase of scientific contributions were detected from 90’s to present, and we can 132 

currently find more than 1500 publications using fish sperm motility as a research tool 133 

through a wide range of topics: from ecology to molecular issues (Figure 1 and 2). 134 

To date, sperm motion parameters from 340 fish species belonging to different families 135 

have been already studied. However, only a few species (⁓30) represent more than 50% 136 

of published papers, of which salmonids, cyprinids and sturgeons are the most studied 137 

families. In this context, scientists have devoted much more time to study freshwater than 138 

seawater species, so the flood information is five-fold bigger in freshwater fish. Here we 139 

present an overview of the state of the art about the most developed research areas in 140 

which sperm motility have been applied successfully. 141 

 142 

3.1 Sperm physiology 143 

Sperm physiology has centred the use of spermatozoa motion as a research tool. In fact, 144 

first studies using fish sperm motility were carried out on this topic at the beginning of 145 

the last century, assessing the sperm behaviour of rainbow trout on different activation 146 

media conditions. Since then, this research field has shown a continuous increase over 147 

the years, and more than 400 sperm motility-physiology articles have been published 148 

(Figure 2). 149 

Fish sperm activation process has been the key subject within this area, and learning about 150 

the process by which spermatozoa begin to move has been the main goal of fish 151 

physiology. In this context, three general pathways through which sperm becomes motile 152 
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have been discovered and reported in teleost fish (Morisawa 2008): i) marine fish 153 

spermatozoa become motile by an hyperosmotic shock; ii) spermatozoa of freshwater fish 154 

become motile by an hypoosmotic shock; and iii) spermatozoa from salmonids and 155 

sturgeons become motile by a low environment K+ concentration. Although these three 156 

spermatozoa activation models are widely accepted by the scientific community and they 157 

can be tested even by subjective motility evaluation, in-depth motion analysis through 158 

CASA systems have contributed to describe deeply these activation pathways (Gallego 159 

et al. 2013b; Pérez et al. 2016). Nowadays, novel research lines about the effect of 160 

absence/presence of certain ions in the activation medium on the sperm kinetics 161 

parameters are emerging both in freshwater and seawater species (Dietrich et al. 2007; 162 

Vílchez et al. 2016, 2017) 163 

Another important topic on this research area has focused on the relationship between the 164 

composition of the seminal plasma and sperm motility. The literature reveals many data 165 

about the ionic composition in different species belonging to different families, but the 166 

correlation between these seminal plasma compositions and the sperm the motility has 167 

been investigated in only a few species. Regarding cyprinids, a positive relationship 168 

between Na+ and sperm motility was reported both in common carp (Cyprinus carpio) 169 

and common bleak (Alburnus alburnus), while K+ had a negative correlation with sperm 170 

motion parameters (Lahnsteiner et al. 1996; Bozkurt et al. 2009). Regarding salmonids, 171 

Ca2+ was significantly correlated with the sperm fertilization capacity in rainbow trout 172 

(Oncorhynchus mykiss), estimating optimum levels from 0.8 to 1.2 mmol/L for carrying 173 

out fertilization trials (Lahnsteiner et al. 1998). In Atlantic salmon (Salmo salar), Na+ and 174 

K+ levels were correlated with fertilization rates (Aas et al. 1991). Regarding marine fish 175 

we can find mixed results: while in the European eel (Anguilla anguilla) [K+] increased 176 

and [Ca2+] and [Mg2+] showed a progressive reduction as sperm quality improved 177 

(Asturiano et al. 2004); in Atlantic cod, [Ca2+] showed significant and positive 178 

relationship with sperm motion parameters in several months during the breeding season 179 

(Butts et al. 2011). 180 

Moreover, the propulsion machinery of spermatozoa has been another research focus 181 

within sperm physiology studies. In this regard, scientists have tried to find correlations 182 

between sperm motility and other factors such as spermatozoa flagella or its power 183 

source, the energetic metabolites. Although several studies have reported a sharp decrease 184 

of ATP once motility start in a wide range of teleost species (Perchec et al. 1995; Butts 185 

et al. 2010), it is not an easy task to find significant correlations between ATP content 186 
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and spermatozoa velocities or motilities. Sperm ATP levels have been correlated with 187 

motility, velocity and⁄or fertilizing ability in two salmonid species like rainbow trout 188 

(Lahnsteiner et al. 1998) or chinook salmon, Oncorhynchus tshawytscha (Bencic et al. 189 

1999); and even in some marine species like sea bass, Dicentrarchus labrax (Zilli et al. 190 

2004). In contrast, no correlations between ATP and sperm motility were found in species 191 

as common bleak, Alburnus alburnus (Lahnsteiner et al. 1996); bluegill, Lepomis 192 

macrochirus (Burness et al. 2005); or Atlantic cod, Gadus morhua (Butts et al. 2010). 193 

Actually, it is known that ATP alone is not a strong indicator of sperm motility by itself, 194 

and other metabolites such as ADP or CrP should be taken into account (Dzyuba et al. 195 

2017). In this context, the macroenergic phosphates content have been recently proposed 196 

as a biomarker for semen quality (Hatef et al. 2013; Cabrita et al. 2014), but it is 197 

noteworthy that this parameter could be only used in a species-specific context. 198 

 199 

3.2 Sperm storage 200 

Sperm storage, by either short-, medium- or long-term period, has been the most 201 

investigated field using sperm motility as a research tool. More than 500 scientific 202 

publications reporting kinetic spermatozoa parameters have contributed for discover and 203 

improving sperm storage protocols in a large number of fish species (Figure 2). 204 

Nowadays, these techniques show a high number of potential applications, ranging from 205 

ecology to aquaculture perspective. 206 

 207 

3.2.1 Chilled storage 208 

Short- and medium-term storage methods, also known as chilled- or cold-storage 209 

protocols, aim to preserve the sperm integrity and quality over several days, weeks or 210 

even months. The main applications of these protocols are focused in aquaculture issues, 211 

allowing the improvement of broodstock management mainly through the 212 

synchronization in the gamete production of male and females. Temperatures of 0 °C 213 

(melting ice) to 4 °C are the most widely used as they are easy to reach and easy to 214 

regulate. Besides, these low temperatures reduce bacteria growth, so this may explain 215 

why temperatures below 6 °C are always reported as better than higher temperatures 216 

(Bobe & Labbe 2009). In addition to the temperature, other elements such as the type of 217 

extender, the dilution ratio (sperm:extender), or the environmental conditions become 218 

essential factors in order to achieve a successful sperm storage. Given that these factors 219 

are usually species-specific, a large number of storage protocols can be found through the 220 
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literature. The Table 1 summarizes studies on short- and medium-term storage protocols 221 

applied to several fish species during the last 30 years, and showing the best results 222 

obtained in terms of sperm motility. 223 

Regarding short-term storage, great results have been obtained in the key aquaculture 224 

families such as Salmonidae, with more than 50% of motility after 7 and 14 days in 225 

rainbow trout (Ubilla et al. 2015) and Atlantic salmon (Parodi et al. 2017), respectively; 226 

Cyprinidae, keeping good quality samples (>70%) in common carp and perch (Perca 227 

fluviatilis) during the first week of storage; Acipenseridae, with more than 50% of 228 

motility after 7 days in Siberian sturgeon (Shaliutina et al. 2013); and marine fish species, 229 

where spermatozoa still retained some motility after 30 days storage both in Atlantic cod 230 

(G. morhua) and haddock (Melanogrammus aeglefinus) (DeGraaf & Berlinsky 2004). 231 

In addition to chilled storage, sperm super cooling method (-2 to -5 °C) has been sparingly 232 

used in fish species. Within this technique, the use of different substances like 233 

cryoprotectants avoid the ice crystallization, keeping a proper membrane integrity on 234 

spermatozoa. There are only a few reports of just sub-zero storage on fish sperm: rainbow 235 

trout semen was stored at -2 ºC for at least 23 days without loss of fertilizing power (Stoss 236 

& Refstie 1983), and Atlantic salmon sperm stored for 21-28 days at -4.5 ºC was able to 237 

fertilize 80-90% of eggs (Truscott & Idler 1968). However, this method requires a very 238 

strict control of the temperature to avoid ice crystallization if temperature decreases or 239 

cryoprotectant toxicity if temperature increases (Bobe & Labbe 2009). 240 

 241 

3.2.2 Cryopreservation 242 

Cryopreservation is a long-term storage technique that apply extreme temperatures for 243 

keeping viable spermatozoa, most common is -196 °C in liquid nitrogen. At these low 244 

temperatures all biological activity stops, so this process is able to preserve and store 245 

sperm cells over long periods, from days to years. Therefore, enforcements from this 246 

technique evolved from aquaculture purposes (broodstock management, genetic 247 

improvement programs, species-specific reproductive problems, etc.) to ecology goals, 248 

as cryobanking of genetic resources from endangered species 249 

To date, sperm of more than 200 fish species haven been successfully cryopreserved and 250 

techniques of thawed sperm management have been established for freshwater and 251 

marine fish species (Tsai & Lin 2012). Although some previous manuscripts have 252 

reviewed fish sperm cryopreservation subject (Suquet et al. 2000; Kopeika et al. 2007; 253 

Cabrita et al. 2010; Asturiano et al. 2017; Martínez-Páramo et al. 2017), Table 2 254 
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summarizes the best results reached on fish sperm cryopreservation on the most important 255 

fish families for aquaculture. This table includes the cryoprotectants used (and their 256 

concentrations), focusing on pre- and post-thaw motility values obtained for each species. 257 

Freshwater species has been the most studied group, and specific protocols have been 258 

established for salmonids, sturgeons, carps and catfishes. Regarding Salmonidae, great 259 

results have been obtained in the key aquaculture species such as rainbow trout (O. 260 

mykiis), brown trout (S. trutta), and Atlantic salmon (S. salar); and post-thaw motilities 261 

higher than 60% have been reported using methanol and sugars as a rule for 262 

cryopreservation protocols on this fish family (Horváth et al. 2015). 263 

In sturgeons, whose spermatozoa have an acrosome, cryopreservation process can induce 264 

some deleterious effects on this structure (Billard et al. 2004), and post-thaw motility can 265 

be compromised in species such as beluga (Huso huso), starlet (Acipenser ruthenus), or 266 

Siberian sturgeon (Acipenser baeri). However, the addition of amino acids to the 267 

cryopreservation medium (usually 10% methanol) can noticeably improve post-thaw 268 

sperm quality, reaching motility values around 80% in Persian sturgeon (A. persicus) 269 

(Aramli et al. 2016a). 270 

In relation to cyprinids, different types of cryoprotectants such as methanol, dimethyl-271 

sulfoxide (DMSO) or glycerol have been successfully applied. DMSO provided great 272 

results in silver carp (Hypophthalmichthys molitrix) and java barb (Barbus gonionoutus), 273 

showing post-thaw motilities higher than 80%; while methanol and glycerol provided 274 

good results in tench (P. fluviatilis) and grass carp (Ctenopharyngodon idella), 275 

respectively. Surprisingly, the best results in cyprinids have been reported in common 276 

carp (C. carpio) using only 15% egg yolk as external cryoprotectant, and reaching post-277 

thaw motility values close to fresh sperm values (⁓90%). 278 

Marine species have received much less attention than freshwater species for the 279 

development of cryopreservation protocols, and many of these research efforts have been 280 

made during the present century. Although DMSO has been the most used cryoprotectant 281 

in marine fish, providing remarkable results in sparids and flatfish species (see Table 2), 282 

other cryoprotectants such as methanol, glycerol or egg yolk have been successfully and 283 

recently applied in other marine species in which DMSO was the common cryoprotectant 284 

(Asturiano et al. 2017). In this context, new trials using methanol have provided better 285 

results than DMSO-protocols in European eel (A. anguilla), and notably post-thaw 286 

motility values close to 50% have been currently reported in this species (Herranz-287 

Jusdado, pers. comm., 2017). 288 
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Finally, successful results have been also published in fish species with internal 289 

fertilization. In green swordtail (Xiphophorus helleri), a simply and useful protocol based 290 

on glycerol (14%) as cryoprotectant provided post-thaw motilities as high as 77% at 291 

10 min after thawing. Moreover, if sperm was immediately diluted after thawing, protocol 292 

was be able to retained motility values for as long as 8 days when stored at 4 °C (Huang 293 

et al. 2004). Lower post-thaw motilities have been reported in other close species such as 294 

Xiphophorus couchianus and  Xiphophorus variatus (35 and 37%, respectively) (Yang et 295 

al. 2009, 2012). 296 

To sum up, methods for sperm freezing have progressed during the last decades, and the 297 

assessment of fish sperm motility has been consolidated as a very useful tool for 298 

evaluating the validity of cryopreservation protocols. However, new techniques are 299 

emerging in order to provide in-depth information on the negative effects of freezing-300 

thawing processes (DNA fragmentation, changes in protein profile, etc.), so fish sperm 301 

cryopreservation becomes an interesting research for studying the impact of 302 

cryopreservation process through new emerging tools of sperm quality analysis (Cabrita 303 

et al. 2014; Martínez-Páramo et al. 2017). 304 

 305 

3.3 Broodstock management 306 

Broodstock management involves a large number of topics that have the common goal of 307 

enabling a captive group of fish to undergo reproductive maturation and fertilization 308 

success. In this context, spermatozoa motion will have an essential role to achieve this 309 

goal, and the effect of different factors such as the environmental conditions, diet 310 

composition, type of gamete collection or the use of hormonal treatments, could be tested 311 

through sperm motility assessment. 312 

 313 

3.3.1 Environmental conditions 314 

In many cases, reproduction of fish in captivity can be controlled or modified exclusively 315 

by the use of environmental factors: i) water temperature, ii) photoperiod and/or iii) 316 

salinity. When these environmental factors are not optimal, reproductive dysfunctions 317 

compromise male gametogenesis and, therefore, sperm quality (Mylonas et al. 2010). 318 

There are little reports on sperm quality changes in response to broodstock rearing 319 

temperature. In river lamprey (Lamprea fluviatilis), male reproductive performance was 320 

compared under three temperatures (7, 10 and 14 °C). Temperature had a significant 321 

effect on the quantity and quality of sperm produced: 70% of males held at 10 °C and 322 



11 
 

14 °C did not spermiate, while males held at 7 ºC produced samples with more than 80% 323 

of sperm motility (Cejko et al. 2016). In Siberian sturgeon (A. baeri), sperm production 324 

performance was tested at four temperatures (10, 12.5, 15 and 17.5 °C), and the 325 

significantly highest spermatozoa motilities (>65%) were also obtained with the lowest 326 

one (Williot et al. 2000). However, regarding European eel (A. anguilla), in which three 327 

temperatures were tested (10, 15 and 20 °C), the warmest thermal treatment (20 ºC) 328 

showed the best results in all the sperm production parameters (volume, density) as well 329 

as the maximum values total motility (>75%) (Gallego et al. 2012). All these data remark 330 

that temperature seems to be a species-specific factor: while cold-water species need low 331 

temperatures for showing the good quality sperm, warm-water species need high 332 

temperatures in order to achieve proper sperm motility values. In fact, temperatures above 333 

or below the optimum range can adversely reduce gamete quality, or even stop the onset 334 

and progression of spermiation (Migaud et al. 2013). 335 

Photoperiod is involved on the regulation of annual reproductive rhythms in many teleost 336 

fish, and photothermal programs are commonly used in fish farms in order to advance or 337 

delay the gamete production (Bromage et al. 1993). In rainbow trout (O. mykiss), the 338 

combination of a long photoperiod (18L:6D, 4 months) followed by a short-one (18D:6L, 339 

3 months) was able to generate a high percentage of spermiating males (~80%) during 340 

the out-of spawning season. However, the sperm motility in this experimental group was 341 

lower than in the control group maintained with natural photoperiod (70 and 83%, 342 

respectively) (Atasever & Bozkurt 2015). In turbot (S. maximus), sperm collected in 343 

males submitted to a contracted cycle (compressed to 6 months) presented a significantly 344 

higher sperm motion parameters at first stripping than that recorded in males submitted 345 

to natural photoperiod (Suquet et al. 1992). In shortfin silverside fish (Chirostoma 346 

humboldtianum), males were induced to reproduction through a 81-day artificial 347 

photothermal compressed cycle, showing similar sperm motility values (81±7%) than in 348 

natural conditions (Blancas-Arroyo et al. 2004). Therefore, artificial photoperiods 349 

become a useful tool in commercial hatcheries, advancing the sperm production and 350 

causing similar motility values than those reached using natural photo-cycles. 351 

Water salinity is the less studied environmental factor, and several trials suggest that 352 

gamete maturation and final spawning can take place across a wide range of rearing 353 

salinities in several species (Lee et al. 1992; Bani et al. 2016). Although the effect of 354 

salinity has been mainly studied regarding sperm activation process, there are only a few 355 

reports about the effect or rearing salinity on breeders and the quality of gametes that they 356 
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produce. In this context, motility parameters of sperm activated with two activation media 357 

(seawater and a sucrose solution) were compared in blackchin tilapia (Sarotherodon 358 

melanotheron heudelotii) reared in freshwater (FW; 0‰), seawater (SW; 35‰), and 359 

hypersaline water (HW; 70‰). Results showed that for FW fish, sperm motility was high 360 

and varied little between individual fish for both activation media. In contrast, 361 

spermatozoa of SW and HW fish were significantly less active in sucrose solution than 362 

in synthetic SW, with substantial differences between individual fish (Legendre et al. 363 

2016). In Mozambique tilapia (Oreochromis mossambicus), regulation of sperm motility 364 

seems to be modulated during acclimation of the fish from freshwater (FW) to seawater 365 

(SW), being independent of extracellular Ca2+ in FW and dependent in SW. In this sense, 366 

sperm of SW tilapia showed motility even in a hypertonic environment, whereas sperm 367 

of FW tilapia were not motile (Morita et al. 2004). In another euryhaline species, such as 368 

European eel (A. anguilla), spermatozoa produced from males induced both in freshwater 369 

and seawater could be activated (10–90% motility) in SW solution. Since there is no 370 

significant difference between motility of freshwater and seawater spermatozoa, authors 371 

assume that the freshwater rearing of males is no limiting factor in the artificial 372 

propagation of this endangered species (Müller et al. 2005). All these results show that in 373 

euryhaline species, spermatozoa can present a wide plasticity regarding activation media, 374 

reaching suitable motility values regardless of medium in which they are released. 375 

 376 

3.3.2 Dietary requirements 377 

Broodstock nutrition is a key factor controlling gonadal development and gamete quality 378 

in fish, and diet composition can affect reproduction success and offspring survival 379 

(Izquierdo et al. 2001). Although there are many publications linking up the dietary with 380 

reproduction success, scarce reports are able to link directly the broodstock diet with the 381 

kinetic characteristic of spermatozoa. In this sense, Table 3 summarizes studies on this 382 

topic over the last years. 383 

Fatty acid composition of broodstock diet has been identified as major dietary factor that 384 

determine sperm quality, mainly due to carnivore fish are not able to synthesize certain 385 

fatty acids. In general, both freshwater and seawater species need PUFA (polyunsaturated 386 

fatty acids) or HUFA in the diet (Izquierdo et al. 2001), and the enrichment of dietary 387 

broodstock with these fatty acids can generate a substantial improvement in sperm 388 

motility parameters (see Table 3). Beirão et al. (2015) reported that sperm quality of 389 

Senegalese sole (Solea senegalensis) improved through the enriched docosahexaenoic 390 
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acid (DHA) diet, specifically the sperm velocity (VCL) and the percentage of progressive 391 

sperm. In European eel (Butts et al. 2015; Baeza et al. 2015), diets with high levels of 392 

arachidonic acid (ARA) induced medium milt volumes and high sperm motilities, while 393 

diets with higher percentage of eicosapentaenoic acid (EPA) induce remarkable volumes 394 

of milt and also high sperm motilities. In freshwater fish like rainbow trout (O. mykiss), 395 

some breeders fed with a diet deficient in essential fatty acids (n-3) showed a lower sperm 396 

motility than breeders fed with a control diet (Vassallo-Agius et al. 2001); while in other 397 

trial carried out in rainbow trout, fish fed with a properly HUFA/PUFA ratio showed the 398 

highest semen motility percentage and duration than other treatments (Hajiahmadian et 399 

al. 2016). In aquarium species such as zebrafish (Danio rerio) and guppy (Poecilia 400 

reticulata), fatty acid composition of broodstock diet also provided an improvement on 401 

sperm quality parameters. In guppy, Rahman et al. (2015) reported significant main 402 

effects of PUFAs on sperm viability and weak but significant interacting effects of both 403 

nutrients on sperm motility time, evidencing PUFAs as critical determinants of sperm 404 

quality. In zebrafish (D. rerio), the addition of phospholipids (fatty acids linked to 405 

phosphate group) in the diet caused great results in sperm quality of breeders, which was 406 

revealed by higher total and progressive motility and higher velocities than sperm from 407 

males fed with control diet (Diogo et al. 2015). 408 

Regarding vitamins, which are also components that the fish cannot synthesize, their 409 

addition to the diet often means an improvement of gamete quality. Vitamin C (ascorbic 410 

acid) and D have been the most used vitamins for improving broodstock diet, and positive 411 

effect on sperm motility have been reported in several species. In Nile tilapia, animals fed 412 

with vitamin C-diet showed higher motility values (54.9 ± 8.9%) than fish from control 413 

group (22.3 ± 19.4%) (Sarmento et al. 2017). In rainbow trout (O. mykiss), the highest 414 

motility rate was recorded in fish fed with a vitamin E enriched diet (94.5%), while the 415 

lowest motility was detected in the control group (62.2%) (Ciereszko & Dabrowski 1995, 416 

2000). The addition of vitamin C and /or E to the diet also enhanced sperm motility in 417 

goldfish (Kashani et al. 2011; Kashani & Imanpoor 2012), African catfish (Dada 2012) 418 

and Senegalese sole (Beirão et al. 2015). 419 

 420 

3.3.3 Hormonal induction 421 

Hormonal therapies for the enhancement of spermiation and sperm production have been 422 

tried and employed in fish research and aquaculture. These hormonal protocols are often 423 

used in two scenarios: i) in some species in which sperm production exist during rearing 424 
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conditions, but sperm performance (volume, motility density, etc.) is not good enough for 425 

hatchery operations; and ii) in some fish species in which it is impractical or even 426 

impossible to simulate the environmental factors of the breeding process (i.e., spawning 427 

migration, depth, etc.), so gonadal maturation does not occur in captivity (Mylonas et al. 428 

2016). In both situations, hormonal stimulation could provide several advantages for the 429 

aquaculture industry, and breeding males can be able to produce more sperm of higher 430 

quality for a longer period, avoiding hatchery problems such as the gamete 431 

synchronization or limitation. 432 

The injection of pituitary extracts (PE) from mature fish into breeders was the first method 433 

used to control reproductive function in aquaculture handling, and has been used widely 434 

in a variety of species, especially cyprinids (Mylonas et al. 2010). For example, in 435 

common bream (Abramis brama), males treated with bream PE (2.5 mg kg−1) or carp PE 436 

(2 mg kg−1) showed higher sperm volume and motility than control males (Kucharczyk 437 

et al. 1997). In common carp (C. carpio), CPE (2 mg kg−1) treatment led to 100% 438 

spermiation males compared to only 25% in the control group, and sperm quality were 439 

also improved by the hormonal treatment (Vazirzadeh et al. 2016). In pikeperch (Sander 440 

luciperca), males treated with CPE produced sperm with higher motility (67.5–86.7%) 441 

than control group (Falahatkar & Poursaeid 2014). However, in other cyprinid species 442 

such as in dace (Leuciscus leuciscus), crucian carp (Carassius carassius), or even 443 

common carp (C. carpio), there were no statistical differences between control and 444 

hormone-treated groups (Cejko et al. 2012, 2013). In South American fishes, a single or 445 

multiple injection of CPE usually did not improve the spermatozoa motion performance, 446 

but CPE treatment was able to increase sperm volume and decrease sperm density, 447 

facilitating the sperm handling steps over cryopreservation protocols in these species 448 

(Viveiros & Godinho 2009). Similar results have been reported in Siluridae, and different 449 

catfish species such as European catfish (Silurus glanis), African catfish (Clarias 450 

gariepinus), or Amazon catfish (Leiarius marmoratus), that did not show statistical 451 

differences in sperm quality parameters between control and hormone-treated groups 452 

(Linhart et al. 2004; Araújo et al. 2014). 453 

Gonadotropin (GTH) preparations of mammalian origin (ovine, mare or human) stage 454 

another technique for inducing or enhancing spermiation in some fish species belonging 455 

from different families. In cyprinids, notable results have been reported in several species 456 

using these hormonal therapies. In pikeperch (S. luciperca), males treated with hCG 457 

(human chorionic gonadotropin) produced sperm with higher motility (67.5–86.7%) than 458 
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control group (Falahatkar & Poursaeid 2014). In goldfish (Carassius auratus), hCG 459 

treatment was able for inducing 100% of spermiation males (n=10), which showed a 460 

motility about 80% (Targońska & Kucharczyk 2011). In common bream (A. brama), 461 

males treated with hCG showed higher motility (54%) than control males (22%) 462 

(Kucharczyk et al. 1997). However, if there is a genus in which this hormone has 463 

generated great results, this is the genus Anguilla. In European eel (A. anguilla), three 464 

different GTHs (hCG, hCGrec and PMSG) were tested on the induction of maturation on 465 

eel males. Regarding motion performance, hCGrec treatment generated the highest values 466 

throughout most weeks of treatment, reaching maximums of 70% of total motility, and 467 

keeping spermiating males until the 20th week of the treatment (Gallego et al. 2012). In 468 

relation to Japanese eel (Anguilla japonica), repeated weekly injections of hCG provide 469 

the onset of spermiation at 5th injection, and the percent motility of spermatozoa remained 470 

at approximately 70% from 9 to 14th injection (Ohta et al. 1996). It is important to note 471 

that the results obtained by GTHs in these species are particularly relevant for the 472 

scientific community, mainly due to eels (Anguilla spp.) are not able to mature 473 

spontaneously in captivity.  474 

Recently, studies have examined the production and use of recombinant (re) GtHs of 475 

piscine origin, which have been successfully produced for zebrafish (D. rerio), channel 476 

catfish (Ictalurus punctatus), goldfish (C. auratus), Japanese eel (A. japonica), European 477 

seabass (D. labrax), Senegalese sole (S. senegalensis), cinnamon clownfish (Amphiprion 478 

melanopus), and European eel (A. anguilla) (reviewed by Mylonas et al., 2017). However, 479 

although the in vitro effect of these hormones was relatively good in most of these species 480 

(stimulating both FSH and LH receptors, steroids production, etc.), specific reGtHs had 481 

little in vivo effect. In fact, first full spermatogenesis and spermiation has only been 482 

achieved in one species: the European eel (Peñaranda, pers. comm., 2015). Although the 483 

sperm quality was variable and not all the spermiating males produced samples with high 484 

sperm quality, some sperm samples reached motilities ≥50%, densities around 485 

7 × 109 cells ml−1 and sperm volumes of approximately 0.4 ml (Peñaranda, pers. comm., 486 

2015). 487 

Finally, gonadotropin-releasing hormone agonists (GnRHa), administered by injections 488 

or controlled-release delivery systems, become the last technique for inducing or 489 

enhancing spermiation in some fish species. GnRHa treatments offers some important 490 

advantages in comparison to GTH treatments, such as i) GnRHa are less species-specific 491 

due to the high structural similarity of native GnRHs among fishes, and ii) this technique 492 
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decrease considerably the handling stress generated by the repetitive manipulations of 493 

breeders. In cyprinids such as barbel (Barbus barbus), common carp (C. carpio), or 494 

crucian carp (C. carassius), hormonal stimulation by GnRHa did not have a significant 495 

influence on the CASA parameters (motility and velocity indicators), which were shown 496 

to be similar in hormonally stimulated groups and control groups (Cejko et al. 2014, 2015; 497 

Cejko & Kucharczyk 2015). However, in marine species GnRHa implants have provided 498 

great results in some species such as Atlantic halibut (Hippoglossus hippoglossus), where 499 

sperm motility was enhanced in males treated with a high dose of GnRHa (25 μg/kg) 500 

compared to controls (Vermeirssen et al. 2004); in Senegalese sole (S. senegalensis), 501 

where sperm motility produced by GnRHa-treated males was enhanced by 2-fold with 502 

respect to controls; or in yellowtail flounder (Pleuronectes ferrugineus), where 503 

percentage of motile sperm activated was higher in the high dose GnRHa treatment (90%) 504 

than the control fish (20%). However, GnRHa implants did not have any effect on sperm 505 

motility in other seawater species such as meagre (Argyrosomus regius), European 506 

seabass (D. labrax) or bluefin tuna (Thunnus thynnus) (Rainis et al. 2003; Mylonas et al. 507 

2016). 508 

To sum up, even when hormonal treatments (CPEs, GTHs or GnRHs) can be useful to 509 

enhance sperm production (overall in terms of volume) in aquaculture fish, hormonal 510 

therapies usually do not affect sperm motion performance. In general, hormonal 511 

treatments only provide successful results just in cases where fish species fail to spermiate 512 

naturally or produce very small volumes of high-density sperm. 513 

 514 

3.3.4 Gamete collection 515 

Once the gametes have been produced naturally or thanks to the application of hormonal 516 

or environmental treatments, it is time to gamete collection. Although at first glance it 517 

may seem like a simple process, gamete collection often become a delicate task that can 518 

affect negatively the gamete quality.  519 

First step for recollecting gametes is usually the anesthetizing of breeders, which 520 

obviously involves the use of different types of anaesthetics for minimizing fish stress. 521 

Although most of aquaculture species does not present negative effect of anaesthetics at 522 

gamete level, some exceptions can be found on the literature. First report in brook trout 523 

(Salvelinus fortinalis) showed that tricaine (MS222) affected the motility duration of trout 524 

sperm at concentrations as low as 19 mg/L (Allison 1961). In rainbow trout (O. mykiss), 525 

despite the percentage of motile spermatozoa was also unaffected by the type of 526 
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anaesthetic or concentration used, the duration of motility decreased as anaesthetic 527 

concentration increased (Wagner et al. 2002; Dietrich et al. 2005). These results 528 

suggested anaesthesia have a moderate effect on total sperm motility values but, by 529 

contrast, can affect significantly the duration of sperm movement. 530 

Moreover, the method of obtaining gametes is also of great importance in order to avoid 531 

urine contamination, which can negatively affect sperm characteristics and quality 532 

(Lavens et al. 1996). Collection of fish sperm can be carried out by different techniques 533 

such as i) the traditional procedure (manual stripping), ii) using a catheter, or iii) taking 534 

out the testes, which involves killing the animal. Although traditional stripping procedure 535 

has been the most widely technique for collecting sperm, it also presents a high risk of 536 

urine contamination. In this context, some recent studies carried out in salmonids and 537 

cyprinids report excellent sperm motility results collecting sperm samples with a catheter. 538 

For example, in Caspian brown trout (S. trutta caspius), sperm samples collected with a 539 

catheter were characterized by higher spermatozoa motility (~80%) than the sperm 540 

collected via stripping (~60%) (Aramli et al. 2016b). In pikeperch (S. lucioperca), the 541 

results were even more conclusive, and motility rate of sperm collected with a catheter 542 

was 73%, whereas the motility rate of sperm collected with a syringe (manual stripping) 543 

did not exceed 35% (Sarosiek et al. 2016). Therefore, in both species, catheter was proven 544 

to effectively reduce the contamination of sperm with urine and was the best technique to 545 

collect sperm samples.  546 

Last method involves the collection of sperm samples directly from testes (post-mortem 547 

samples), and can be applied both in aquaculture, research or field topics (Rosenberg 548 

1983; Aoki et al. 1997). In this context, Dietrich et al. (2005) reported that sperm collected 549 

from testes of rainbow trout (O. mykiss) at different post-mortem times did not show 550 

significant differences respect the control groups in sperm motility values (>90%) over 551 

the first hour. In dace (L. leuciscus), spermatozoa collected from testicles showed same 552 

motility values and lower initial velocities than sperm collected from the sperm duct 553 

(Kowalski et al. 2012). In Indian catfish (Heteropneustes fossilis), sperm samples 554 

collected from specimens stored during 240 days at –20 °C showed an incredible motility 555 

of 96.4% (Koteeswaran & Pandian 2002). However, even this post-mortem sperm 556 

reached fertilization rates about 93%, hatching rates were extremely low (~2%) in 557 

comparison to the control group (~98%). 558 

In order to maximize the amount of available sperm produced by broodstock males, the 559 

possibility of repeat sperm collections (sequential stripping) in a short-time period has 560 
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been extensively studied is several species. In Persian sturgeon (A. persicus), Alavi et al. 561 

(2006) reported multiple collections (x3) at different times within the 48 h after hormone 562 

injection. Despite total volume collected over multiple stripping was remarkable, 563 

significant differences were found in the percentage of motile spermatozoa between the 564 

two first collections (80-90%) and the 3rd collection. In sterlet (A. ruthenus), multiple 565 

stripping method (every 3 h; from 12 to 66 h after hormone injection; 9 collections in 566 

total) yielded larger volumes (>80 mL) than a single collection did. In addition, except 567 

for the 1st and 7th stripping, sperm motility was extremely high during all the stripping 568 

process, with values closed to 95%. 569 

 570 

3.3.5 Biotechnology and genetic engineering 571 

In the last few years, biotechnology and genetic engineering have contributed greatly to 572 

fish culture through the application of novel techniques such as chromosome 573 

manipulation, transgenesis, etc. (Foresti 2000). Thanks to these methods, it has been 574 

possible to produce triploid, tetraploid, haploid, gynogenetic or androgenetic fish for 575 

improving the production on fish farms. However, these types of techniques involves 576 

from small to large changes in the genetic material of cells, which can produce a negative 577 

impact on gamete quality (Pandian & Koteeswaran 1998). 578 

Gynogenesis consist in the production of offspring with the genes of the mother only, and 579 

has been successfully applied in a large number of fish species. Due to this technique 580 

requires the inactivation of the male genome by exposure the spermatozoa to either 581 

ultraviolet (UV) or gamma (Γ) rays, sperm motility assessment should be an essential step 582 

after irradiation process. Regarding sturgeons, UV exposure has significant impacts on 583 

the sperm motility. In Siberian sturgeon (A. baerii), spermatozoa revealed high sensitivity 584 

to UV irradiation, with complete loss of motility after homogeneous UV irradiation at 585 

doses above 200 mJ/cm2 (Lebeda et al. 2014). Zhang et al. (2011) reported similar results 586 

in this species, with significant effects of UV exposure on sperm kinetic parameters such 587 

as total motility, velocity, and motility time. With regard to Salmonidae, irradiated sperm 588 

of rainbow trout (O. mykiss) showed approximately 60% of motility after a 20 minutes 589 

exposure to UV irradiation, became activated and maintained progressive movements for 590 

at least 15 seconds duration (Goryczko et al. 1991). Reduction in spermatozoon activation 591 

with UV exposure has also been described for other freshwater species such as silver barb 592 

(P. gonionotus), catfish (I. punctatus) or common tench (Tinca tinca) (Goudie et al. 1995; 593 

Pongthana et al. 1995; Nowosad et al. 2014). 594 
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In marine fish, gynogenesis is widely extended in several aquaculture species, in which 595 

female production become more profitable than males. In European seabass (D. labrax), 596 

exposure of sperm to UV light (≥15000 erg mm−2) reduced the amount of motile 597 

spermatozoa, without affecting the duration of motility in the spermatozoa that remained 598 

motile (Felip et al. 1999). In turbot (S. maximus), a dose-dependent effect of UV light on 599 

sperm motility was found. The dose at which both the amount of motile sperm and the 600 

duration of sperm motility was reduced to 50% of the original value (ID-50) was 28000 601 

erg/mm2 (Piferrer et al. 2004). UV exposure also generated a decreased of sperm motility 602 

values in several finfish species such as Atlantic halibut (H. hipoglossus), Southern 603 

flounder (P. lethostigma), or Japanese halibut (P. olivaceus) (Luckenbach et al. 2004; 604 

You et al. 2008). 605 

Polyploidy can be defined as the condition for having one or more additional chromosome 606 

sets with respect to the number most frequently found in nature for a given species 607 

(Piferrer et al. 2009). Although polyploidy can be easily induced in some relevant 608 

aquaculture species, polyploid organisms can also spontaneously appear in both wild and 609 

cultured populations. Some reports have shown the sperm performance of polyploid fish 610 

(mainly triploids), and Table 4 summarizes these results. Within triploidy, disparate 611 

results about sperm quality have been reported in several species. To begin with, no 612 

spermatozoa production has been reported in triploid males of European sea bass (D. 613 

labrax), turbot (S. maximus), gilthead sea bream (Sparus aurata), and Arctic charr (S. 614 

alpinus) (reviewed by Piferrer et al. 2009) . Sperm production, but with sperm motility 615 

values low or close to zero has been reported in Prussian carp (C. gibello), yellowtail 616 

flounder (L. ferruginea) and pond loach (Misgurnus anguillicaudatus) (Manning et al. 617 

2004; Flajšhans et al. 2008; Fujimoto et al. 2008). However, triploid specimens of some 618 

fish species are able to produce spermatozoa with high motility and velocity rates, as 619 

occur in rosy bitterling (R. ocellatus), common tench (T. tinca) or cod (G. morhua) 620 

(Kawamura et al. 1999; Peruzzi et al. 2009; Pšenička et al. 2010). Although usually the 621 

triploidy confers genetic sterility, in some species spermatozoa from triploid males could 622 

carry out egg activation leading to non-viable aneuploid embryos, generating a genetic 623 

impact in fish population (Piferrer et al. 2009). 624 

 625 

3.4 Breeding cycle 626 

Sperm motility assessment has become a useful tool for studying several aspects of fish 627 

ecology. To date, more than 100 scientific publications reporting kinetic spermatozoa 628 
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parameters have contributed to explore numerous ecology issues of different fish species 629 

belonging to different taxa (Figure 2). During this section, a wide range of topics such as 630 

breeder ageing, seasonal changes, characterization of populations, etc. are going to be 631 

addressed through the sperm quality perspective. 632 

In fish species with an annual reproductive cycle, the quality of sperm usually oscillates 633 

across the spawning season both in the wild and in captivity individuals. Most of these 634 

differences may be due to physiological changes and environmental cues related to fish 635 

reproduction, and sperm motility assessment will reveal the optimal period in which 636 

sperm should be collected in the hatchery (captive fish), or will simply supply information 637 

about the breeding cycle of the species (wild fish). Table 6 summarizes the seasonal 638 

changes in sperm motility on several fish, and over the data different sequential patterns 639 

(depending on the timing of sperm quality peak) can be found among species. Type I 640 

pattern includes species whose sperm production (quality and quantity) is higher at the 641 

beginning of the spawning season, to subsequently decrease. Species such as Russian 642 

sturgeon (A. gueldenstaedtii), halibut (H. hippoglossus), brook trout (S. trutta) or turbot 643 

(S. maximus) show this breeding pattern. Type II species show the highest sperm motility 644 

peak right in the middle of the breeding season, so sperm motion performance is 645 

maximum during the central months. Many marine species such as European sea bass (D. 646 

labrax), cod (G. morhua), red porgy (P. pagrus) or the ocean pout (Macrozoarces 647 

americanus) present this sperm quality pattern. Finally, type III pattern includes species 648 

whose sperm quality is higher at the end of the spawning season, achieving the peak 649 

values of sperm motility at the final months of the breeding season. Key species in 650 

freshwater aquaculture such as common carp (C. carpio) or the European perch (P. 651 

fluviatilis) show this motility pattern. Lastly, there are species such as Persian sturgeon 652 

(A. persicus), common barbel (B. barbus) or South American catfish (Rhamdia quelen) 653 

that not present significant differences in the percentage of motile spermatozoa 654 

throughout the breeding season, so sperm motility usually remains high and constant 655 

during this period. 656 

Moreover, sperm motility can be also applied to inquire inter-populations differences or 657 

even in the kinetic characteristics between related species belonging to the same genus. 658 

Concerning inter-populations studies, some authors have reported notably differences 659 

studying the same species between different populations and environments. In lake 660 

minnow (Eupallasella percnurus), the two populations analyzed were markedly different 661 

in several sperm quality biomarkers such as milt volume, sperm concentration, and sperm 662 
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motility (Dietrich et al. 2014). As a result, authors estimated 134 million motile 663 

spermatozoa per ejaculate (volume × concentration × percentage of motility) in the 664 

“Siedliszcze” population compared to 480 million motile sperm in males from “Guzy” 665 

population.  666 

In Atlantic salmon (S. salar), two wild populations (belonging from Wiezpra and Vistula 667 

river) were compared in the terms of sperm motility and motility time (Biernaczyk et al. 668 

2012). Authors reported that both parameters were dependent on the origin of fish: 669 

salmons ascending the River Wieprza showed the highest sperm quality values (both in 670 

sperm motility and motility time), while animals caught in the Vistula river showed 671 

lowest values. In this case, sperm quality was largely dependent on environmental 672 

conditions, which were able to explain the 75% of sperm variability. Other authors have 673 

studied in depth the sperm trait differences between wild and farmed animals, pondering 674 

the possible impacts of escaped farmed fish on wild fish populations. In this sense, 675 

Lehnert et al. (2012) reported that Chinook salmon (O. tshawytscha) farmed males had 676 

significantly greater percentage of motile spermatozoa compared to wild males, 677 

suggesting that farming practices may lead to increased sperm performance from 678 

selective pressure on the aquaculture environment. Authors also reported that these results 679 

do highlight the potential for substantial introgression resulting from male-male 680 

competition between farmed and wild Chinook salmon in the wild. However, other 681 

studies focused on this topic showed different outcomes: Skjæraasen et al. (2010) and 682 

Butts et al. (2011) reported that wild male cod (G. morhua) had greater sperm 683 

performance compared to farmed cod; whereas Rideout et al., (2004) observed no 684 

difference in sperm traits between wild and farmed haddock (H. hippoglossus). 685 

Concerning inter-species studies, interesting approaches can be done through sperm 686 

motility data. Gallego et al. (2014) analyzed the sperm motion parameters of swimmer 687 

(pufferfish and European eel) and sessile (sea urchin and ascidian) species, reporting 688 

sperm motion patterns totally opposite. In this context, sessile species displayed notably 689 

higher values than swimmer species in terms of motility time,, keeping high motility 690 

values during a longer time. Authors linked the sperm motion patterns to the species-691 

specific lifestyles, postulating that sessile organisms (which show limited or no 692 

movement) need sperm with a capacity to swim for long distances to find the oocytes, 693 

while swimmer male organisms can move toward the female and release gametes near it, 694 

and therefore the spermatozoa does not need to swim for such a long time. 695 

 696 
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3.5 Ecotoxicology 697 

Aquatic ecosystems are repositories of substantial quantities of natural and man-made 698 

environmental contaminants (EC), and fish sperm motility has become a valuable tool for 699 

assessing the EC toxicity (Hatef et al. 2013). At present, around 100 scientific 700 

publications reporting the impact of ECs on sperm motion performance have contributed 701 

to understand the toxicity mechanisms and action sites of ECs, and this knowledge can 702 

be nowadays applied for wider range of topics. 703 

ECs are diverse along the natural environment and include a heterogeneous group formed 704 

by heavy metals, pesticides, biocides or pharmaceuticals, which can usually lead to 705 

diminished reproductive parameters, including sperm production and sperm motility 706 

parameters (Segner 2011). It is important to take into account that EC effects are 707 

extremely variable, and several factors such as the target species, the EC concentrations 708 

and the duration of exposure will be key elements on the impact on the sperm motion 709 

performance. In this context, Table 6 summarizes the main ECs affecting sperm motility 710 

of fish species, indicating the minimum EC dose at which sperm motion performance was 711 

significantly affected. 712 

Within the main ECs, xenoestrogens are part of a group of synthetic and naturally 713 

endocrine disruptors that specifically have estrogen-like effects. Bisphenol-A (BPA), a 714 

synthetic chemical used in the production of epoxy resins and polycarbonate plastics, has 715 

estrogenic potency and several studies have evidenced its effect on fish sperm motility. 716 

For example, brown trout (S. trutta) males exposed to BPA concentrations of 1.75 and 717 

2.40 µg/L showed low sperm quality (sperm density, motility rate, and swimming 718 

velocity) than control males at the beginning of the spawning season (Lahnsteiner et al. 719 

2005). In fact, production of high quality sperm was restricted to the end of the spawning 720 

season, and delayed for approximately 4 weeks in comparison to the control. In goldfish 721 

males (Carassius auratus), sperm motility was significantly decreased in the BPA-treated 722 

groups after 20 or 30 days of exposure, and significant decrease in sperm velocity was 723 

observed at 30, 60 and 90 s post-activation in the BPA-treated groups at all exposure 724 

times (10, 20 and 30 days) (Hatef et al. 2012). 725 

Estradiol (E2) or ethynylestradiol (EE2) are another xenoestrogens easy to find, which 726 

usually comes from oral contraceptives, and its occurrence in surface waters is the result 727 

of local sewage discharges (Arcand-Hoy & Benson 1998). Recently, both xenoestrogens 728 

have been implicated as the primary contaminants contributing to the estrogenic activity 729 

in surface waters, and negative effects about reproduction issues have been reported in 730 
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both freshwater and seawater species. In fighting fish (Betta splendens), an exposure for 731 

4 weeks of 100 ng/L reduced significantly sperm swimming velocity and, in rainbow trout 732 

(O. mykiss), exposures for 12 weeks of 10 ng/L also decreased sperm motility parameters. 733 

In pejerrey fish (Odontesthes bonariensis), although no significant differences in motility 734 

parameters were observed between the control group and E2 and EE2 acting separately, 735 

a significant decrease in sperm motility was recorded for combined effect of estrogenic 736 

agents (E2 + EE2) (Gárriz et al. 2015).  737 

Furthermore, heavy metals are considered as the most dangerous pollutants around the 738 

world, and the toxicity of accumulated metals is determined not only by the type of metal, 739 

but also by the physical and chemical properties of water and the  protective mechanisms 740 

of fish species (Hatef et al. 2013). In this sense, and regarding species-specific effect, 741 

Lahnsteiner et al. (2004) studied the impact of different heavy metals (zinc, mercury and 742 

cadmium) on sperm motility parameters in four teleosts belonging to the most 743 

representative freshwater families (Salmonidae, Cyprinidae, Gadidae and Clariidae), and 744 

they concluded that toxic concentrations of all pollutants differed markedly for each 745 

species. In this sense, African catfish (C. gariepinus) spermatozoa were the most resistant, 746 

European chub (L. cephalus) and burbot (Lota lota) spermatozoa showed medium 747 

resistance and brown trout (S. trutta) spermatozoa were the most sensitive to the heavy 748 

metals used. The impact of heavy metals has been also reported in other freshwater 749 

species such as common carp (C. carpio), in which zinc and cadmium affected 750 

significantly sperm motility at 50 mg/L after 24 h of incubation (Chyb & Kime 2000; 751 

Dietrich et al. 2011); or in rainbow trout (O. mykiss), where cadmium and mercury 752 

decreased the percentage of motile spermatozoa after 4 h of incubation at 10 mg/L 753 

(Dietrich et al. 2010). By contrast, scarce studies have been carried out in marine species. 754 

In this context, some data in European sea bass indicate that cupper (CuCl2·2H2O) and 755 

lead (PbCl2) did not affect sperm motility when the activating media contained up to 100 756 

ppm of these metal salts. In contrast, mercury (HgCl2) was able to completely arrest the 757 

spermatozoa motion at concentrations as low as 0.1 mg/L (Abascal et al. 2007). 758 

Finally, some pesticides and biocides can also interfere with normal biological processes 759 

causing deleterious effects on the reproductive axes of species from aquatic ecosystems. 760 

Within this class of chemicals, dichlorodiphenyltrichloroethane (DDT) and tributyltin 761 

(TBT) has been the most studied biocides. Regarding DDT, although banned from use 762 

many years ago, it is still widely used in some developing countries. Some studies have 763 

reported that large exposures (~40 days) of DDT in stinging catfish (H. fossilis) can affect 764 
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negatively sperm motility (Singh et al. 2008). In this sense, non-exposed animals showed 765 

80-100% of total motility, whereas DDT-exposed fish showed only 20-40% of motile 766 

sperm. In African catfish (C. gariepinus) and Mozambique tilapia (O. mossambicus), 767 

CASA results showed a decrease in motility parameters from the control fish values 768 

(Marchand et al. 2008, 2010). Specifically, the decrease in motility for O. mossambicus 769 

was statistically significant (80% against 54%, DDT-area against non-polluted area, 770 

respectively). Regarding TBT, widely used as antifouling agent, it is considered another 771 

common contaminant that has been shown to be capable of embryotoxicity, genotoxicity 772 

and endocrine disruption. Studies in African catfish (C. gariepinus) showed that TBT had 773 

a significant effect on motility at 0.27 μg/L after 24 h exposure in catfish (Rurangwa et 774 

al. 2002). However, same trials carried out in common carp (C. carpio) showed that 775 

sperm motility was only significantly affected by TBT exposure at only 2.7 μg/L 776 

(Rurangwa et al. 2002). 777 

To sum up, sperm motility assessment became a valuable tool to check and understand 778 

toxicity mechanisms and sites of action of different ECs through in vitro and in vivo 779 

techniques. Although EC effects are extremely variable depending on the target species 780 

or on the concentration and the duration of exposure, changes in the sperm motion 781 

performance can serve as a useful biomarker for biomonitoring these agents and their 782 

potential effects on reproductive function. 783 

 784 

3.6 Sperm competition 785 

Sperm competition, which occurs when the sperm from two or more males compete for 786 

the fertilization of eggs, is a widespread process that occurs in a wide range of animal 787 

taxa, including fish (Stockley et al. 1997; Stoltz & Neff 2006). This process usually lead 788 

to behavioural, morphological and physiological adaptations both for males 789 

characteristics (breeder size, body colour, etc.) and sperm traits (head or flagellum size, 790 

total motility, swimming velocity, etc.), so sperm motion assessment become a useful tool 791 

for studying this phenomenon (Reinhardt & Otti 2012). In this sense, and despite being a 792 

topic of recent interest, about a hundred scientific reports have been published during the 793 

last two decades (Figure 2). 794 

Dominance hierarchies are common among males living in groups during the mating 795 

season, and they have been one of the most studied aspects over sperm competition. 796 

Within these hierarchies, males can adopt different reproductive strategies according to 797 

their social position (dominant or subordinate), and sperm performance will be often 798 
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linked to the chosen strategy (Serrano et al. 2006). Theoretical models predict that 799 

dominant males invest more in “attractiveness” (size, colour, behaviour, etc.) than in 800 

gametes (spermatozoa), so sperm quality should be a priori lower in dominant than in 801 

subordinate males (Ball & Parker 1996). On their hand, subordinate males are not going 802 

to invest in “attractiveness”, so they will have more resources for enhancing their 803 

gametes. This trade-off between social investment and sperm performance has been 804 

studied in several fish species, overall salmonids. For example, in Arctic char (S. alpinus), 805 

sperm velocity was significantly higher in subordinate than in dominant males, suggesting 806 

that males with social dominance are unable to maintain high sperm velocity (Serrano et 807 

al. 2006). In Atlantic salmon (S. salar), in which there are two alternative reproductive 808 

tactics (ARTs; small sneaking “parr” males versus large dominant “anadromous” males), 809 

parr males compensate their behavioural subordinance by producing physiologically 810 

superior spermatozoa. In this sense, the proportions of motile spermatozoa were notably 811 

greater in the parr males (Vladić & Järvi 2001). In Chinook salmon, O. tshawytscha, parr 812 

(jacks) males invested significantly more of their somatic tissue into gonads compared 813 

with anadromous (hooknoses) males, and parr males showed higher motility and velocity 814 

values (90% and 70 µm/s, respectively) than dominant males (85% and 55 µm/s, 815 

respectively). In masu salmon (Oncorhynchus masou), sperm velocity and motility were 816 

also significantly higher in parr males compared to anadromous males activated by river 817 

water (Makiguchi et al. 2016). However, in that study, sperm velocity and motility did 818 

not differ between the ARTs in the presence of ovarian fluid (OF, produced by females 819 

and released with the eggs) on the activation media, so these results could suggest that 820 

OF biases paternity in competitive fertilization contexts playing a role in cryptic female 821 

choice. In this sense, it is important to note that OF usually plays an important role during 822 

fertilization process, and numerous manuscripts have shown an increase of sperm motility 823 

and velocity in species such as lake trout, Salvelinus namaycush (Butts et al. 2012), Arctic 824 

char, Salvelinus alpinus (Turner & Montgomerie 2002; Urbach et al. 2005), Alpine 825 

whitefish, Coregonus sp. (Urbach et al. 2007), three-spined stickleback, Gasterosteus 826 

aculeatus (Elofsson et al. 2006), rainbow trout (Wojtczak et al. 2007) or Caspian brown 827 

trout, Salmo trutta caspius (Hatef et al. 2009). Therefore, OF effects should be taken into 828 

account during the sperm competition studies with the aim of not masking the “true” 829 

sperm kinetic parameters obtained by the dominant or non-dominant males. 830 

On the contrary, even when theory predicts that dominant males should have lower 831 

quality sperm, some studies have shown no effects, or even the opposite situation. In 832 
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rainbow trout (O. mykiss), no significant differences in sperm quality (motility) or 833 

quantity (weight of expressible milt) were evident between fish with different social status 834 

(Cardwell et al. 1996). In bluegill (Lepomis macrochirus), in which males can use three 835 

mating tactics (“sneakers”, which streak spawn; “satellites”, which mimic females; and 836 

“parentals”, which are territorial), there was no difference in sperm flagellum length, 837 

curvilinear swim speed or path linearity among the different mating types (Stoltz & Neff 838 

2006). Regarding the opposite effect, male breeding coloration was positively correlated 839 

with sperm velocity in three-spined sticklebacks (G. aculeatus), and “attractive” 840 

(colourful) males showed the fast spermatozoa (Mehlis et al. 2013). 841 

Cichlids represent another interesting group to study adaptations resulting from sperm 842 

competition, because there is a tremendous diversity in their mating behaviours (Morita 843 

et al. 2014). Fitzpatrick et al. (2007) tested in Telmatochromis vittatus, a small shell-844 

brooding cichlid, the evolution of sperm parameters across four different reproductive 845 

tactics present in this species (pirate, territorial, satellite, and sneaker). Because sneakers 846 

usually spawn in the presence of another male, sneakers face the highest levels of sperm 847 

competition and pirates the lowest, whereas satellites and territorials experience 848 

intermediate levels. In accordance with sperm competition theory, sneakers’ spermatozoa 849 

swam faster (>40 µm/s) than sperm from males adopting the other reproductive tactics 850 

(territorial and satellite), whereas sperm from pirates was slowest (<30 µm/s) (Fitzpatrick 851 

et al. 2007). Fitzpatrick el al. (2009) also provided, after examine sperm characteristics 852 

in 29 cichlid species, an evidence that species experiencing greater levels of sperm 853 

competition have faster-swimming sperm. In this sense, authors reported that species 854 

subject to a high level of competition (polygynous) had relatively larger and longer 855 

gonads able to provide faster-swimming and longer-lived spermatozoa compared with 856 

species experiencing lower sperm competition (monogamous). However, other study 857 

carried out by Morita et al. (2014) among 28 cichlid species showed that sperm velocity 858 

was not correlated with sperm competition rank, whereas motility time was considerably 859 

longer in bower-building species (high competition rank) compared with species that do 860 

not build bowers (low competition rank). 861 

In this context, spermatozoa motion assessment can serve as a useful tool for studying the 862 

evolution of alternative reproductive strategies and mating systems in different fish taxa, 863 

and several kinetic parameters such as total motility, swimming velocity and/or motility 864 

time will provide data to carry out sperm competition studies. 865 

 866 
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4. Standardization of the procedures for assessing sperm motility 867 

The evaluation of sperm motility and other kinetic parameters have become an essential 868 

tool for investigating a wide range of topics in numerous fish species (see section 3), and 869 

more than 1500 manuscripts have been already published applying fish sperm motility as 870 

a tool research. However, an evident lack of standardization assessing the sperm motion 871 

has often provided a low reproducibility between trials, making difficult to interpret and 872 

compare the results intra- and inter-labs (Boryshpolets et al. 2013; Gallego et al. 2013c). 873 

Therefore, a serial of biological and technical settings both for subjective (made by a 874 

technician) and objective (made by CASA system) assessments should be taken into 875 

account before sperm kinetic evaluation.  876 

Biological settings such as sperm collection (see section 3.3.4), the initial dilution in a 877 

species-specific extender, the storage temperature before analysis (see section 3.2.1), the 878 

sperm:activation medium ratio, or the timing after sperm motility triggering can notably 879 

influence the sperm kinetic evaluation (Fauvel et al. 2010). In this sense, Billard and 880 

Cosson (1992) reported that a relatively high dilution ratio (close to 1/1000) is necessary 881 

to initiate simultaneous motility of spermatozoa in cyprinids. At low dilutions, only some 882 

of the spermatozoa were activated after mixing with diluent, whereas others became 883 

progressively activated afterwards, so sperm dilution became a key issue for assessing 884 

sperm motility. On their hand, kinetic characteristics of fish sperm are often species-885 

specific, and the timing in which the technician (both during subjective or objective) 886 

assess sperm motility plays a crucial role regarding the species evaluated. For example, 887 

spermatozoa from freshwater species usually present a shorter longevity (1-2 min) than 888 

marine species, thus freshwater sperm must be evaluated during the first seconds after 889 

activation (Billard & Cosson 1992). However, because there is a lot of variability on 890 

sperm longevity among marine species, early sperm evaluations (first 15-30 seconds) are 891 

often recommended for all teleost fish (Gallego et al. 2014). 892 

Technical settings for assessing sperm motility can involve a wide range of factors such 893 

as optical contrast, lens magnification, type and depth of the chamber used, etc. (Amann 894 

& Waberski 2014). For example, studies carried out in European eel (A. anguilla) showed 895 

that different magnification lens (10x vs 20x) affected significantly the measurement of  896 

sperm kinetic parameters (Gallego et al. 2013c). In this case, the number of spermatozoa 897 

captured by the 20x magnification lens was much less than those assessed with the 10x 898 

lens, therefore the variability coefficients obtained by the wider lens (20x) were much 899 
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higher than those obtained with the 10x lens. Thus, the results obtained using the 10x lens 900 

should be, a priori, more accurate and precise than the results obtained using the 20x lens. 901 

CASA settings also play a key role for estimating sperm kinetic parameters, and several 902 

factors such as the frame rate of recording (or frames per second; fps), the track sampling 903 

time, the focal position of swimming sperm cells inside the open drop, the field of 904 

observation location, or even the type of CASA used can notably affect sperm kinetic 905 

results (Amann & Waberski 2014; Lu et al. 2014). In this sense, Gallego et al. (2013) 906 

reported for a teleost fish that the number of fps influenced the sperm quality parameters 907 

provided by a CASA system. Even the frame rate setting had no effect either on motility 908 

or on progressive motility, parameters such as curvilinear velocity, straightness, and beat 909 

cross frequency were significantly affected. Authors then demonstrated that low frame 910 

rates underestimated the real value of kinetic traits, while a higher fps setting provided a 911 

more accurate reconstruction of the sperm trajectories, closely resembling the real 912 

trajectory. 913 

In other study, Boryshpolets et al., 2013 examined different CASA systems (CRISMAS; 914 

Hobson Sperm Tracker; and Image J) on the same video recordings using three 915 

taxonomically different fish species (sterlet: A. ruthenus; common carp, C. carpio; and 916 

rainbow trout, O. mykiss). Authors reported that motility parameters were highly affected 917 

by the species and the CASA used for analyses, so special care should be taken with 918 

regard to CASA settings, recording conditions, and quality of video recordings 919 

(Boryshpolets et al. 2013). 920 

To sum up, to make it possible to compare the results obtained by different laboratories, 921 

all studies using sperm motility assessment must describe its methodology in detail, 922 

particularly concerning biological and technical settings. Unfortunately, in most 923 

publications, details of these parameters are not provided, thus reducing the possibility of 924 

comparing the results intra- and inter-labs. Therefore, it becomes imperative to harmonize 925 

common procedures and established protocols to be used in many research groups 926 

assessing fish sperm motility for enhancing the reliability, comparability, and 927 

applicability of data produced by different laboratories (Rosenthal et al. 2010). 928 

 929 

5. New emerging tools for sperm quality analysis 930 

Although a relatively high number of sperm quality biomarkers have been successfully 931 

applied in several fish species, the new demands on basic research imply the arrival of 932 

new techniques for sperm analysis, which in a not so far future will be used by fish 933 
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farming companies (Cabrita et al. 2014). This new generation of tools, reviewed by 934 

Cabrita et al. (2014), will improve the knowledge on sperm quality assessment, 935 

complementing the information provided by sperm motion assessment. 936 

Genome analysis represent the first emerging tool being a candidate to become a great 937 

sperm quality biomarker. In this context, although the evaluation of chromatin damage 938 

has been poorly considered in the assessment of sperm quality, some studies have recently 939 

related with the fertilization success in fish (Pérez-Cerezales et al. 2010a). In addition, it 940 

is important to take into account that chromatin modifications could happen even in the 941 

absence of measurable effects on other sperm characteristics (like sperm motility), so 942 

damage spermatozoa would be able to reach and fertilize the ova, being able to cause 943 

harmful effects on the offspring (Pérez-Cerezales et al. 2010b). Different methods can be 944 

applied to the evaluation of chromatin damage, and most of them related to the detection 945 

of fragments or packaging failures. Comet assay or SCGE (single cell gel electrophoresis) 946 

is the technique most commonly used and has been validated in numerous fish species 947 

(Cabrita et al. 2005a; Beirão et al. 2008; Pérez-Cerezales et al. 2009; Nathanailides et al. 948 

2011). This method is based on the different electrophoretic migration patterns of DNA 949 

fragments, where cells (spermatozoa) with damaged DNA usually present a comet-like 950 

tail structure, being longer is the DNA structure damage is bigger.  951 

Another techniques based on the differential migration of chromatin fragments, such as 952 

the SCD (sperm chromatin dispersion test), are nowadays emerging in fish and they need 953 

to be set up for different fish species. In fact, this method have been only used in tench 954 

(T. tinca) sperm, reporting a good correlation with the results obtained simultaneously 955 

using the comet assay (López-Fernández et al. 2009). Finally, DNA fragmentation can 956 

also be assessed more specifically using the TUNEL (terminal deoxynucleotidyl 957 

transferase dUTP nick end labelling) assay method, based on the addition of a fluorescent 958 

nucleotide to the 3′OH end of the strand. So, as more fragmentised is the spermatozoa 959 

DNA, higher the fluorescence emit by the nucleus. This technique has been successfully 960 

applied in European sea bass (D. labrax) and gilthead seabream (S. aurata) (Cabrita et al. 961 

2011). 962 

Moreover, transcriptomic analysis can represent another tool for predicting gamete 963 

quality. Although traditionally the use of microarray had not focused on the evaluation of 964 

the RNA profile in breeding males, studies in mammals reporting key roles of residual 965 

mRNAs from spermatogenesis (Lalancette et al. 2008) have allowed the beginning of the 966 

research in this topic in fish species. Guerra et al. (2013), for example, reported a different 967 
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approach to investigate on the role of mRNAs as quality markers in fish spermatozoa. In 968 

this sense, authors were able to define a set of transcripts that had a different profile in 969 

testicular cells from good and bad zebrafish breeders, reporting then a correlation between 970 

specific transcripts and sperm quality. Although these results were provided using model 971 

species such as zebrafish (D. rerio), it opened up the possibility of exploring these 972 

findings to key species of aquaculture sector (Guerra et al. 2013). 973 

To sum up, the great potential of emerging technologies such as genomic, transcriptomic 974 

and/or proteomic could establish the first step towards the possibility of selecting fish 975 

breeder performance from a molecular point of view (Cabrita et al. 2014; Labbé et al. 976 

2017; Robles et al. 2017). The identification of predictive estimators or markers of sperm 977 

quality would have major applications in research, fish farms and biotechnological 978 

industries. 979 
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Figure legends 1923 

 1924 

Figure 1. Evolution of number of manuscripts published from 1975 to 2016 in SCI 1925 

journals using fish sperm motility as a research tool (assessed both by subjective or 1926 

objective method). 1927 

 1928 

Figure 2. Number of manuscripts published by research area (sperm storage, sperm 1929 

physiology, broodstock management, breeding cycle, ecotoxicology, and sperm 1930 

competition) in SCI journals using fish sperm motility as a research tool (assessed both 1931 

by subjective or objective method). 1932 

 1933 

Table legends 1934 

 1935 

Table 1. Studies on short- and medium-term sperm storage protocols applied to several 1936 

fish species indicating the temperature (ºC) and ratio (sperm:extender) used. Table gives 1937 

the best results reached for each species in terms on sperm motility (percentage of motile 1938 

cells). Numbers in brackets indicate the storage days and the absence of brackets means 1939 

1-week storage. 1940 

 1941 

Table 2. Studies on sperm cryopreservation of fish species belonging from different 1942 

groups. Table gives the best results reached for each species in terms on post-thaw 1943 

motility (percentage of motile cells), indicating the cryo-medium used for each specie. 1944 

 1945 

Table 3. Effect on sperm motility (percentage of motile cells) of different dietary 1946 

components (carotenoids, lipids, proteins, vitamins, and others) applied on different fish 1947 

species. Positive effect on sperm motility respect to the control group are represented by 1948 

“+”; negative effect are represented by “-“; and non-effect are represented by “=”. 1949 

 1950 

Table 4. Sperm motility (percentage of motile cells) and velocity (µm/s) of different 1951 

polyploid fish (2n, 3n, 4n, and 6n) on several teleost species. 1952 

 1953 

Table 5. Seasonal changes in sperm motility (percentage of motile cells) throughout the 1954 

breeding season on several fish species. Data are structured regarding sequential patterns 1955 
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of motility: Type I, species whose sperm motility is higher at the beginning of the 1956 

spawning season; Type II, species whose sperm motility is higher at the middle of the 1957 

spawning season; Type III, species whose sperm motility is higher at the end of the 1958 

spawning season. Table also shows if fish belong from fish farms (captive) or in the wild. 1959 
*Solea senegalensis spawn naturally in two periods (late spring to the beginning of summer and 1960 
early autumn, when temperatures are similar) 1961 

 1962 

Table 6. Main environmental contaminants (ECs) affecting sperm motility (percentage 1963 

of motile cells) on different fish species, indicating the minimum EC dose at which sperm 1964 

motion performance was significantly affected. Values in brackets indicate the time 1965 

exposure, in vivo or in vitro.  1966 



61 
 

Figure 1 1967 

Publication year
1975 1980 1985 1990 1995 2000 2005 2010 2015

Pu
bl

is
he

d 
pa

pe
rs

20

40

60

80

100

120 By technician (subjective)
By CASA system (objective)

 1968 
  1969 



62 
 

Figure 2 1970 
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Table 1 1974 

Species Motility (%)  Tº Ratio Reference 
 Short-term Medium-term    
Acipenser baerii 50-55 (6) - 4 1:100 Shaliutina et al. (2013) 
Acipenser gueldenstaedtii 50-55 (6) - 4 1:100 Shaliutina et al. (2013) 
Acipenser oxyrinchus 70-75 40-65 (28) 4 1:3 Park and Chapman (2005) 
Anguilla anguilla 25-30 - 4 1:50 Peñaranda et al. (2010) 
Anguilla japonica 80-85 55-60 (21) 3 1:50 Ohta and Izawa (1996) 
Brycon orbignyanus 55-60 - 4 1:3 Murgas et al. (2004) 
Clarias macrocephalus 30-35 15-20 (10) 4 1:4 Vuthiphandchai et al. (2009) 
Colossoma macropomum 20-25 (5) - 6 1:4 Garcia et al. (2016) 
Cyprinus carpio 90-95 25-30 (17) 4 1:100 Saad et al. (1988) 
Gadus morhua 50-55 15-20 (30) 3 1:3 DeGraaf and Berlinsky (2004) 
Hippoglossus hippoglossus 85-90 50-55 (50) 4 1:5 Babiak et al. (2006a) 
Ictalurus punctatus 25-30 - 4 - Jenkins and Tiersch (1997) 
Melanogrammus aeglefinus 60-65 20-25 (30) 3 1:3 DeGraaf and Berlinsky (2004) 
Morone saxatillis 5-10 - 3 1:3 Jenkins-Keeran and Woods (2002) 
Nibea albiflora 20-25 (1) - 4 1:2 He et al. (2012) 
Oncorhynchus mykiss 70-75 50-55 (14) 4 1:2 Ubilla et al. (2015) 
Oncorhynchus tshawytscha 40-45 40-45 (14) 4 - Bencic et al. (2001) 
Perca fluviatilis 70-75 55-60 (17) 4 1:9 Sarosiek et al. (2014) 
Poecilia reticulata 20-25 - 4 1:50 Sun et al. (2010) 
Polyodon spatula 75-100 5-25 (56) 2 1:1 Taylor et al. (1995) 
Prochilodus lineatus 15-20 - 6-8 1:9 Viveiros et al. (2014) 
Takifugu niphobles 75-80 15-20 (15) 4 1:50 Gallego et al. (2013b) 
Rhamdia quelen 45-50 25-30 (12) 6 - Carneiro et al. (2006) 
Salmo salar 45-50 35-40 4 1:2 Parodi et al. (2017) 
Salvelinus alpinus 60-65 10-15 (15) 4 1:10 Sarosiek et al. (2013) 
Sciaenops ocellatus 35-40 10-15 (10) 4 1:10 Wayman et al. (1998) 

  1975 
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Table 2 1976 

Group Species Motility (%) Medium Reference 
  Fresh Post-thaw   
Salmonids Coregonus clupeaformis 87 52 9% methanol + 0.18 M 

 
Nynca et al. (2016) 

 Coregonus lavaretus 80 50 7.5% methanol + 0.15 m glucose Dietrich et al. (2016) 
 Oncorhynchus mykiss ≥90 ≥60 10% DSMO + 7,5% egg yolk  Kutluyer et al. (2014) 
 Salmo salar 93 62 9% methanol + 0.18 M glucose Nynca et al. (2016) 
 Salmo trutta 90 74 7.5% methanol + 0.15 m glucose Nynca et al. (2014) 
 Salvelinus alpinus >70 28 15% methanol Richardson et al. (2011) 
 Salvelinus fortinalis 83 57 9% methanol + 0.18 M sucrose Nynca et al. (2016) 
      
Cyprinids Barbodes gonionoutus 91 83 10%  DSMO Vuthiphandchai et al. (2015) 
 Ctenopharyngodon idella 91 83 5% glycerol + 0.35 M glucose Yavas and Bozkurt (2011) 
 Cyprinus carpio 95 93 15% egg yolk Yavas et al. (2014) 
 Hypophthalmichthys molitrix 91 81 10%  DSMO Hossain & Sarder (2013) 
 Perca fluviatilis 82 54 10% methanol Bernáth et al. (2015) 
 Tinca tinca >80 45 5% DSMO Lujić et al. (2017) 
      
Sturgeons Acipenser baerii 80 50 10% methanol + glucose Judycka et al. (2015) 
 Acipenser persicus 95 80 10% methanol + 10 mM glutamine Aramli et al. (2016a) 
 Acipenser ruthenus 92 57 10% methanol Dzyuba et al. (2014) 
 Huso huso 82 50 10% methanol + 0.2 M glucose Aramli et al. (2015) 
 Polyodon spathula 90 85 10% methanol Horváth et al. (2006) 
      
Characiformes Brycon insignis 98 82 5% BTS + 5% glucose Viveiros et al. (2011) 
 Colossoma macropomum >90 >70 10% methyl-glycol + 5% Egg yolk Gallego et al. (2017) 
 Esox lucius 80 60 7.5% methanol + 0.15 M glucose Dietrich et al. (2016) 
 Oreochromis niloticus 70 65 10% methanol Navarro et al. (2014) 
 Prochilodus lineatus 100 88 10% methyl-glycol + 5% glucose Viveiros et al. (2009) 
      
Model species Danio rerio 84 46 8% DMSO or 4% methanol Bai et al. (2013) 
 Oryzias latipes 85 52 10% methanol Yang et al. (2010) 
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 Poeciliia latipinna 80 50 20% glycerol Huang et al. (2009) 
 Poeciliia reticulata 75 60 20% glycerol Huang et al. (2009) 
      
Catfishes Clarias gariepinus 95 71 8% DMSO + 10% egg yolk Rurangwa et al. (2001) 
 Ictalurus punctatus 87 48 5% methanol Christensen and Tiersch (2005) 
      
Marine fish Anguilla anguilla 75 47 10% methanol + 5% egg yolk Herranz-Jusdado, pers. comm., 2017) 
 Anguilla japonica 60 46 10% DMSO Tanaka (2002) 
 Dicentrarchus labrax >90 >50 10% egg yolk + Na-pyruvate Sansone et al. (2002) 
 Gadus morhua 85 70 10% glycerol + 10% egg yolk Babiak et al. (2012) 
 Hippoglossus hippoglossus 80 75 10% DMSO Ding et al. (2011) 
 Morone saxatillis 88 53 5% DMSO+50 mM glycine He and Woods (2004) 
 Pagrus major 88 78 15% methanol + 100mM threalose Liu et al. (2015) 
 Scophthalmus maximus >80 77 10% DMSO Chen et al. (2004) 
 Sparus aurata 95 70 5% DMSO Cabrita et al. (2005b) 
      
Int. fertilization Xiphophorus helleri 95 77 14% glycerol Huang et al. (2004) 
 Xiphophorus couchianus 95-90 35-40 14% glycerol Yang et al. (2009) 
 Xiphophorus variatus 57 37 10% glycerol Yang et al. (2012) 

  1977 
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Table 3 1978 

Diet component Type Species Effect on motility Reference 
Carotenoids Astaxanthin β-carotene  Amatitlania nigrofasciata = Sullivan et al. (2014) 
 Astaxanthin β-carotene Carassius auratus + Tizkar et al. (2015) 
 Zeaxanthin, Astaxanthin, β-carotene Poecilia reticulata = Rahman et al. (2015) 
     
Lipids Fats Rhamdia quelen + Tessaro et al. (2012) 
 DHA Solea senegalensis + Beirão et al. (2015) 
 EFA Oncorhynchus mykiss + Vassallo-Agius et al. (2001) 
 EPA, DHA, ARA Anguilla anguilla + Butts et al. (2015) 
 HUFAs Carassius auratus = Kashani and Imanpoor (2012) 
 PUFAs Catla catla = Nandi et al. (2007) 
 PUFAs Poecilia reticulata + Rahman et al. (2015) 
 Phospholipids Danio rerio + Diogo et al. (2015) 
 PUFAs Dicentrarchus labrax = Asturiano et al. (2001) 
 Fish oil Fundulus grandis = Patterson and Green (2015) 
 HUFAs:SFA Oncorhynchus mykiss + Hajiahmadian et al. (2016) 
 HUFAs ratio Perca fluviatilis = Kestemont and Henrotte (2015) 
 n-3/n-6 ratio Perca fluviatilis = Henrotte et al. (2010) 
     
Proteins Soybean meal (replacement) Carassius auratus - Bagheri et al. (2013) 
 Vegetable meal (replacement) Clarias gariepinus = Ajala and Owoyemi (2016) 
 Agricultural meal (replacement) Clarias gariepinus + Nyina-Wamwiza et al. (2012) 
 Cottonseed meal (replacement) Ictalurus punctatus = Robinson and Tiersch (1995) 
 Cottonseed meal (replacement) Oncorhynchus mykiss = Rinchard et al. (2003) 
 Cottonseed meal (replacement) Oncorhynchus mykiss = Dabrowski et al. (2000) 
     
Vitamins Biotoin Danio rerio + Yossa et al. (2015) 
 Vitamin C Oreochromis niloticus + Sarmento et al. (2017) 
 Vitamin C Clarias gariepinus + Dada (2012) 
 Vitamin C Oncorhynchus mykiss + Ciereszko and Dabrowski (1995, 2000) 
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 Vitamin C and E Carassius auratus + Kashani et al. (2011) 
 Vitamin E Scophthalmus maximus + Xu et al. (2015) 
 Vitamin E Solea senegalensis + Beirão et al. (2015) 
 Vitamin E Oncorhynchus mykiss + Canyurt and Akhan (2008) 
     
Others Zinc Megalobrama amblycephala + Jiang et al. (2016) 
 Cadmium Oreochromis mossambicus - El-Ebiary et al. (2013) 
 Genistein Oncorhynchus mykiss - Bennetau-Pelissero et al. (2002) 
 Glycerin Oreochromis niloticus - Mewes et al. (2016) 
 Reservatrol Oryzias latipes + Kowalska et al. (2017) 
 Lactobacillus rhamnosus Anguilla anguilla + Vílchez et al. (2015) 
 Ergosan Oncorhynchus mykiss + Sheikhzadeh et al. (2010) 

 1979 
  1980 
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Table 4 1981 

Species Type Motility (%) Velocity (µm/s) Reference 
Acipenser baerii 4n 95 155 Pšenička et al. (2011) 
 6n 100 181  
     
Acipenser baerii cierto  2n 95 170 Havelka et al. (2014) 
 6n 100 152  
     
Carassius gibelio 2n 69 - Flajšhans et al. (2008) 
 3n 23 -  
 4n 45 -  
     
Gadus morhua 2n 90 12 Peruzzi et al. (2009) 
 3n 84 11  
 2n - 55 Feindel et al. (2010) 
 3n - 56  
     
Limanda ferruginea 2n 90-100 - Manning et al. (2004) 
 3n >10 -  
     
Misgurnus anguillicaudatus 2n 91 - Zhao et al. (2012) 
 4n 90 -  
 2n >80 - Yoshikawa et al. (2007) 
 3n 10 -  
 2n 90 - Fujimoto et al. (2008) 
 3n 1.5 -  
 2n 91.7 - Zhao et al. (2016) 
     
Rhodeus ocellatus 2n 98 - Kawamura et al. (1999) 
 3n 87 -  
     
Tinca tinca 2n 92-100 90-100 Hulak et al. (2010) 
 3n 87-96 90-100  
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 2n 98 99 Pšenička et al. (2010) 
 3n 94 91  
 2n 93-100 82-110 Linhart et al. (2006) 
 3n 37-77 ~90  

 1982 

  1983 
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Table 5 1984 

 Species Condition Motility   Reference 

   Early Middle Last  
Type I Acipenser gueldenstaedtii Captive 65-70 65-70 40-45 Halimi et al. (2015) 
 Hippoglossus hippoglossus Captive 80-85 80-85 20-30 Babiak et al. (2006b) 
 Salmo trutta Captive 65-70 55-60 50-55 Hajirezaee et al. (2010) 
 Scophthalmus maximus Captive 80-100  60-80 Suquet et al. (1998) 
 Solea senegalensis* Captive 55-60  35-40 Beirão et al. (2011) 
       
Type II Centropristis striata Captive  80-85 40-45 DeGraaf et al. 2004) 
 Dicentrarchus labrax Captive  90-100 35-50 Rainis et al. (2003) 
 Gadus morhua Captive 40-45 50-55 35-40 Rouxel et al. (2008) 
 Macrozoarces americanus Captive <25 >75 40-50 Wang and Crim (1997) 
 Mastacembelus mastacembelus Wild 45-50 80-85 65-70 Sahinöz E et al. (2007) 
 Oncorhynchus mykiss Captive 75-80 80-85 55-60 Munkittrick and Moccia (1987) 
 Pagrus pagrus Captive 45-50 90-95 85-90 Mylonas et al. (2003) 
 Rutilus rutilus Wild 60-65 80-85 70-75 Golpour et al. (2013) 
       
Type III Cyprinus carpio Captive 60-60 80-90 80-90 Christ et al. (1996) 
 Mastacembelus armatus Captive 0-10 10-20 30-40 Uthayakumar et al. (2013) 
 Odontesthes bonariensis Captive 40-45 20-25 60-65 Chalde et al. (2016) 
 Perca fluviatillis Captive 80-85 90-95 90-95 Alavi et al. (2010) 
 Scophthalmus rhombus Captive 20-40 40-60 60-80 Hachero-Cruzado et al. (2013) 
 Solea senegalensis* Captive 55-60  60-65 Beirão et al. (2011) 
       
No diff. Acipenser persicus Captive 90 80-85 80-85 Aramli et al. (2014) 
 Barbus barbus Captive 60-65 60-65 60-65 Hadi-Alavi et al. (2008) 
 Brycon amazonicus Wild 100 95  Cruz-Casallas et al. (2007) 
 Paralichthys orbignyanus Wild 50-75 50-75 50-75 Lanes et al. (2010) 
 Pseudoplatystoma metaense Captive >90 >95 >90 Ramirez-Merlano et al. (2011) 
 Rhamdia quelen Captive >90  >90 Borges et al. (2005) 
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Table 6 1985 

ECs Species Mode Dosis (Time exposure) Reference 
Bisphenol A Danio rerio In vivo 0.1 µM (2 months) Chen et al. (2017) 
 Perca fluviatilis In vitro 1.5 mM Hatef et al. (2010) 
 Carassius auratus In vivo 4.5 µg/L (20 days) Hatef et al. (2012) 
 Salmo trutta In vivo 1.75 µg/L (spawning period) Lahnsteiner et al. (2005) 
     
EE2 Tinca tinca In vivo 50 μg/kg (30 days, injected) Oropesa et al. (2015) 
 Oncorhynchus mykiss In vivo 10 ng/L (12 weeks) Schultz et al. (2000) 
 Odontesthes bonariensis In vitro 45 ng/L + 350  ng/L  E2 Gárriz et al. (2015) 
 Betta splendens In vivo 100 ng/L (4 weeks) Montgomery et al. (2014) 
 Sparus aurata In vivo 5 µg/L (28 days, by feeding) Cabas et al. (2013) 
     
Zinc Salmo trutta In vitro 5.9 mg/L Giardina et al. (2009) 
 Clarias gariepinus In vitro 2000 mg/L (24h) Kime et al. (1996) 
 Cyprinus carpio In vitro 50 mg/L (24h) Chyb and Kime (2000) 
 Lota lota In vitro 75 mg/L Lahnsteiner et al. (2004) 
 Leuciscus cephalus In vitro 7.5 mg/L Lahnsteiner et al. (2004) 
     
Cadmium Clarias gariepinus In vitro 100 mg/L (24h) Kime et al. (1996) 
 Cyprinus carpio In vitro 10 mg/L (2h) Chyb et al. (2001) 
 Oncorhynchus mykiss In vitro 10 mg/L (4h) Dietrich et al. (2010) 
 Cyprinus carpio In vitro 50 mg/L (24h) Dietrich et al. (2011) 
 Lota lota In vitro 25 mg/L Lahnsteiner et al. (2004) 
     
Mercury Oncorhynchus mykiss In vitro 10 mg/L (4h) Dietrich et al. (2010) 
 Perca fluviatilis In vitro 62 µM Hatef et al. (2011) 
 Perca fluviatilis In vitro 31 µM (3h) Hatef et al. (2011) 
 Clarias gariepinus In vitro 0.001 mg/L Rurangwa et al. (1998) 
 Dicentrarchus labrax In vitro 0.1 mg/L (5 min) Abascal et al. (2007) 
 Carassius auratus In vitro >1 mg/L (24 h) Van Look and Kime (2003) 
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DDT Oreochromis mossambicus In vivo >0.01 μg L* Marchand et al. (2008) 
 Clarias gariepinus In vivo >0.01 μg L* Marchand et al. (2008) 
 Heteropneustes fossilis In vivo 0.1 mg/L (40 days) Singh et al. (2008) 
     
TBT Cyprinus carpio In vitro 2.7 μg/L Rurangwa et al. (2002) 
 Cyprinus carpio In vitro 0.27 μg/L (24h) Rurangwa et al. (2002) 
 Clarias gariepinus In vitro 0.27 μg/L (24h) Rurangwa et al. (2002) 

 1986 
 1987 


