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Abstract 25 

Although a relatively high number of sperm quality biomarkers have been reported over 26 

the years in several fish species, sperm motility is nowadays considered the best 27 

biomarker for fish spermatozoa. The first scientific reports focusing on fish sperm 28 

motility date from a century ago, but the objective assessment allowed by computer-29 

assisted sperm analysis (CASA) systems was not applied to fish species until the mid 30 

1980’s. Since this date, a high number of sperm kinetic parameters from more than 170 31 

fish species have already been reported in more than 700 scientific articles, covering a 32 

wide range of topics such as i) sperm physiology, ii) sperm storage, iii) broodstock 33 

management, iv) the phenomenon of sperm competition, v) ecotoxicology studies, and vi) 34 

understanding the life cycle of the species. To sum up, the sperm kinetic parameters 35 

provided by CASA systems can serve as a powerful and useful tool for aquaculture and 36 

ecological purposes, and this review gives an overview of the major research areas in 37 

which fish sperm motility assessed by a CASA system have been applied successfully.  38 

 39 
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Sperm motility as a sperm qualitative biomarker in fish 43 

Over the years, a relatively high number of sperm parameters have been used to assess 44 

sperm quality in fish (reviewed by Fauvel et al. 2010). These sperm biomarkers have so 45 

far been documented in scientific articles, and several traits, such as osmolality, plasma 46 

composition; enzymatic activity; ATP concentration; sperm density or sperm morphology 47 

have been linked to the ability of sperm to fertilize ova (Cabrita et al. 2014). However, 48 

sperm motility is currently considered the most useful parameter for assessing sperm 49 

quality in fish (Rurangwa et al. 2004), and more than 1500 scientific articles focusing on 50 

a large number of topics have been published over the last century. The most commonly 51 

used technique for assessing sperm motion in these articles has been subjective 52 

evaluation, but some problems have emerged from this method (Verstegen et al. 2002). 53 

Subjective assessment depends on an experienced observer, and several aspects such as 54 

sperm density, sperm velocity, and drift can be over- or underestimated (Rosenthal et al. 55 

2010). Therefore, the low reproducibility of motility analyses that use subjective 56 

evaluation (which can result in variations of 30–60% in the same sample) often makes it 57 

difficult to interpret and compare the results between labs (Verstegen et al. 2002). 58 

In this sense, the gradual appearance of computer assisted sperm analysis (CASA) 59 

systems has made it possible to estimate a higher number of sperm kinetic parameters 60 

using objective, sensitive and accurate techniques (Table 1). These systems are the 61 

evolution of multiple photomicrograph exposures and videomicrography techniques for 62 

sperm tracking, and with the benefits of a computer equipped with imaging software, 63 

detailed information on sperm kinetics can be extracted (Cabrita et al. 2009). Although 64 

CASA systems were first introduced in the 1970’s for mammalian spermatozoa (Katz and 65 

Dott 1975; Dubois et al. 1974), they have only been successfully adapted for fish 66 

spermatozoa in the last two decades. The differences in the biology of fish and 67 

mammalian spermatozoa might explain this delay in the release of adequate tools for the 68 

measurement of fish sperm motility. Nevertheless, CASA systems are now being applied 69 

and validated successfully for a wide range of animal groups such as marine invertebrates 70 

(Gallego et al. 2014), birds (Lüpold et al. 2009), marine mammals (Robeck et al. 2011), 71 

reptiles (Tourmente et al. 2011) and even insects (Al-Lawati et al. 2009). 72 

 73 

CASA parameters: an approach from fish spermatozoa 74 

Many years ago, an experimented observer was able to estimate, in a subjective way, only 75 



two sperm motion traits: i) the percentage of motile sperm cells and ii) the total duration 76 

of sperm movement. Then, faced with the difficult task of estimating correct and accurate 77 

sperm motility values, researchers used to make an arbitrary scale of criteria usually 78 

comprising of four to five categories at most. Now, CASA systems are able to quantify 79 

the percentage of motile spermatozoa in a concrete sample accurately and instantaneously 80 

and, in addition, computerized software is also able to estimate many other additional 81 

sperm kinetic parameters from the same sample, including some that cannot be detected 82 

by visual inspection (Figure 1 and Table 1). Although there are several companies 83 

marketing CASA products, the parameters provided by the systems are almost identical, 84 

and high correlations between most of them and fertilization or hatching rates have been 85 

reported in both freshwater and seawater fish species (Table 2). 86 

The most commonly used parameters for fish sperm analysis were revised by Kime et al. 87 

(2001). The percentages of motile (TM or MOT) and progressive motile spermatozoa 88 

(PM or pMOT) can provide a general overview about the quality of a sperm sample 89 

(Rurangwa et al. 2004). MOT means any spermatozoa showing any movement while 90 

pMOT is determined as spermatozoa swimming in a progressive way. Although MOT 91 

and pMOT have been the most used motion parameters in sperm motility analyses, other 92 

authors consider sperm velocities better biomarkers of sperm quality (Rurangwa et al. 93 

2001; Viveiros et al., 2010; Gallego et al., 2017a). In this respect, curvilinear velocity 94 

(VCL) is defined as the actual velocity along the real sperm trajectory, and straight-line 95 

velocity (VSL) means the straight-line distance between the start and end of the track 96 

divided by the time taken from start to finish. In essence, if the trajectory is a straight line, 97 

VCL and VSL are identical (Rurangwa et al. 2004). Finally, VAP (angular path velocity) 98 

is the velocity along a derived smoothed path. VAP is actually of little use in most fish 99 

because the sperm tracks are generally smooth curves, so VAP and VCL are very similar. 100 

However, depending on the fertilization microenvironment, spermatozoa can follow a 101 

much more erratic path so in some fish species both VCL and VAP become useful 102 

measurements (Kime and Tveiten 2002). 103 

In addition to sperm velocities, CASA systems are able to provide us with several kinetic 104 

ratios such us linearity (LIN), straightness (STR) and wobble (WOB), all of which have 105 

been widely used to define fish sperm subpopulations. Although this topic (sperm 106 

subpopulations) has mostly been studied in mammals, the few reports in fish have clearly 107 

shown the coexistence of distinct motility-based sperm subpopulations (Beirão et al. 108 

2009; Kanuga et al. 2012; Gallego et al. 2015), and new approaches based on sperm 109 



kinetics can be used from this perspective. 110 

To sum up, in addition to offering an objective and accurate estimation of classical kinetic 111 

parameters such as total motility, CASA systems provide a high number of novel sperm 112 

motion variables (impossible to detect by subjective evaluation) that can be successfully 113 

used in many research areas from fundamental to applied research.  114 

 115 

Technical applications from CASA systems in fish 116 

Although the first scientific reports assessing fish sperm quality using a subjective method 117 

date from about a century ago, computer-assisted systems for fish did not start to be used 118 

until the mid 80’s. Since then, more than 700 publications on different topics using sperm 119 

motility as a research tool can be found in the literature on fish (Figure 2). In fact, in the 120 

last 30 years fish sperm parameters from 170 different species belonging to different 121 

families have been studied using these systems, and the results have been applied to many 122 

different areas, from ecology to molecular research (Figure 3). However, 20 of these fish 123 

species represent more than 50% of published papers, of which salmonids, cyprinids and 124 

sturgeons have been the most studied. Moreover, scientists have devoted much more time 125 

to studying the former (Figures 4 and 5). Here we present an overview of the most state 126 

of the art research areas in which CASA systems have been applied successfully. 127 

 128 

Sperm physiology 129 

Sperm physiology has been the most investigated factor in sperm studies carried out by 130 

CASA systems (Figure 3). In fact, the first study on fish sperm using a uncertain semi-131 

assisted computer system was carried out in rainbow trout (Oncorhynchus mykiss) in 1985 132 

(Cosson et al. 1985), where the authors reported an objective technique for the rapid 133 

quantitative assessment of sperm motility using stroboscopic illumination. Since then, 134 

this research field has grown continually over the years, and more than 100 physiology-135 

related articles on different species have been published over the last 10 years.  136 

The fish sperm activation process has been the key subject within this area, and to learn 137 

about the process by which spermatozoa begin to move has been the main goal of fish 138 

physiologists (Zuccarelli and Ingermann 2007; Vílchez et al. 2016; Pérez et al. 2016). 139 

Although sperm activation models for different species had previously been discovered 140 

and reported thanks to subjective motility evaluation, CASA systems have helped to 141 

describe these activation pathways in more depth through sperm kinetic features. For 142 



example, some studies have reported that sperm activation in marine fish can be triggered 143 

both by electrolyte (e.g., seawater) and non-electrolyte (e.g., glucose-containing) media, 144 

but the absence of ions in the extracellular medium caused a general decline in sperm 145 

velocities in several species (Detweiler and Thomas 1998: Gallego et al. 2013c; Vílchez 146 

et al. 2017). On the other hand, some studies have shown that in vitro temperature can 147 

have an important effect on sperm motility parameter. In common carp (Cyprinus carpio), 148 

spermatozoa activated at 4 ºC showed higher motility rate than sperm activated at 14 and 149 

24 ºC, whereas highest swimming velocity was observed at 14 °C (Dadras et al., 2016). 150 

Other studies showed similar results, and swimming velocity at high temperatures is often 151 

higher in species such as Senegalese sole (Solea senegalensis, Diogo et al., 2010) and 152 

European perch (Perca fluviatilis; Lahnsteiner, 2011). Moreover, the propulsion 153 

machinery of spermatozoa has been another research focus within sperm physiology 154 

studies, and although sperm ATP levels have been correlated with motility, velocity 155 

and⁄or fertilizing ability in several species like rainbow trout (Lahnsteiner et al. 1998), 156 

chinook salmon, Oncorhynchus tshawytscha (Bencic et al. 1999), or sea bass, 157 

Dicentrarchus labrax (Zilli et al. 2004); no correlations between ATP and sperm motility 158 

were found in other species such as common bleak, Alburnus alburnus (Lahnsteiner et al. 159 

1996); bluegill, Lepomis macrochirus (Burness et al. 2005); or Atlantic cod, Gadus 160 

morhua (Butts et al. 2010). 161 

Summing up, CASA systems have become useful for carrying out studies on fish sperm 162 

physiology, providing the user with an in-depth understanding of the activation 163 

mechanisms involved in different genus and families, and approaching several factors 164 

such as osmolality, temperature, ion plasma composition, etc… 165 

 166 

Sperm storage 167 

Sperm storage, both short and long-term, has been the second most investigated field 168 

using CASA systems as a research tool (Figure 3). Almost 200 scientific publications 169 

reporting kinetic sperm parameters have contributed to the discovery and improvement 170 

of sperm storage protocols in more than 80 fish species. Now, these techniques can be 171 

seen in a great number of applications, ranging from ecology to aquaculture.  172 

With regards to cryopreservation, significant results have been reported in species 173 

belonging to the most important families used in aquaculture, and Table 3 summarizes 174 

the best results in terms of the pre- and post-thaw motilities (MOT) and velocities (VCL) 175 

obtained from each species. The most studied family has been that of the Salmonidae and 176 



excellent sperm motion results have been reported using CASA systems in key 177 

aquaculture species such as the Atlantic salmon (Salmo salar), rainbow trout (O. mykiss) 178 

and brown trout (Salmo trutta) (see Table 3). In this context, although the 179 

cryopreservation process often generates a significant decrease in MOT values, other 180 

sperm kinetic parameters were not affected by the freezing process (Nynca et al. 2016). 181 

For example, in Atlantic salmon, CASA systems have revealed a decrease in VCL and an 182 

increase in LIN after cryopreservation, while no differences were observed in the VAP 183 

or VSL values in post-thawed sperm. In brown trout (S. trutta) and rainbow trout (O. 184 

mykiss), increases in VAP, VSL, and LIN were detected while a decrease in ALH was 185 

also reported. In brook trout (S. fontinalis), lower values of VCL were seen in 186 

cryopreserved sperm in comparison with fresh semen, whereas VAP, VSL, LIN and ALH 187 

were similar in both fresh and cryopreserved sperm. Regarding the Cyprinidae, CASA 188 

systems have helped in the creation and development of many of the species-specific 189 

cryopreservation protocols that are currently being used in fish farms. In the Eurasian 190 

perch (Perca fluviatilis), for example, an optimized commercial-scale cryopreservation 191 

protocol was developed successfully, and although fresh sperm showed significantly 192 

higher pMOT (85±5%) and VCL (139±7 μm/s) than cryopreserved sperm, similar 193 

fertilization rates were achieved by both fresh and cryopreserved samples (Bernáth et al. 194 

2016a). In common carp (C. carpio), post-thawed motility and sperm velocity were also 195 

significantly lower when compared with fresh sperm, but the use of DMSO generated 196 

better results than those provided by ethylene glycol (Li et al. 2013). 197 

On the other hand, marine species have received much less attention than freshwater 198 

species with regards to the development of cryopreservation protocols, and much of this 199 

research has been concentrated in the last few years. In gilthead seabream (Sparus aurata) 200 

kinetic data provided by a CASA system showed that sperm composition in terms of 201 

subpopulations was differentially affected by the cryopreservation technique, and an 202 

optimal protocol for them was established based on sperm motility-based subpopulations  203 

(Beirão et al. 2011a). In seabass (Dicentrarchus labrax), notable post-thawed motility 204 

values (⁓60%) were obtained using vitamins and amino acids to the cryopreservation 205 

media (Cabrita et al., 2011). 206 

To sum up, methods for fish sperm freezing have progressed in the last couple of decades, 207 

and the use of CASA systems to assess sperm kinetic parameters is now recognized as 208 

key in evaluating the validity of cryopreservation protocols. However, new techniques 209 

are emerging in order to provide in-depth information on the negative effects of the 210 



freezing-thawing process on genetic material, so fish sperm cryopreservation studies 211 

should combine both sperm kinetic assessments and DNA damage studies (Cabrita et al. 212 

2014; Martínez-Páramo et al. 2017). 213 

 214 

Broodstock management 215 

Broodstock management involves a large number of factors that contribute to the ultimate 216 

aim of enabling a captive group of fish to successfully complete reproductive maturation 217 

and fertilization. In this context, sperm motion parameters play an essential role in 218 

achieving this objective, and the effect of different rearing factors (temperature, diet, 219 

handling, etc.) can be tested through the proper use of CASA systems. Around 100 220 

scientific publications focusing on broodstock handling and using these systems have 221 

been published, and this section offers an overview of the most studied topics within this 222 

area (Figure 6). 223 

Temperature and photoperiod are the main environmental factors controlling the 224 

development of gametes and gamete quality in most fish species (Migaud et al. 2013). 225 

With regard to temperature, several studies have shown how under- or over-optimal 226 

conditions have negative effects on gamete quality (Alavi and Cosson, 2005). Lahnsteiner 227 

and Leitner (2013) reported that in brown trout (Salmo trutta), a thermal regime of more 228 

than 5 ºC above the natural temperature affects the spermiation process, and causes a 229 

reduction in the percentage of spermiating male fish that produce spermatozoa of high 230 

quality (in terms of motility and swimming velocity). In European grayling (Thymalus 231 

thymallus), the maturation rate of male fish and their gamete quality depended greatly on 232 

the temperature regime, and the highest sperm motilities and velocities were obtained 233 

under a creek water temperature regime with natural seasonal fluctuations (Lahnsteiner 234 

and Kletzl 2012).  235 

On the other hand, when sperm production using environmental treatments is not 236 

possible, hormonal induction techniques can be used to enhance spermiation and sperm 237 

quality. A wide variety of hormonal treatments (e.g., carp pituitary extract or 238 

gonadotropin preparations) have been tested on a great many  aquacultural species 239 

(Mylonas et al. 2017), but CASA systems have mainly been used to test gonadotropin-240 

releasing hormone agonist (GnRHa) treatments. Indeed, GnRHa implants have provided 241 

great results in marine species such as Atlantic bluefin tuna (Thunnus thynnus thynnus), 242 

where GnRHa-implantation therapy increased the percentage of spermiating males and 243 

the availability of motile spermatozoa (Mylonas et al. 2007). They have also shown 244 



benefits in Atlantic halibut (Hippoglossus hippoglossus), although there were no 245 

significant differences in sperm motility between the two experimental groups treated 246 

with different GnRHa doses (5 and 25 µg/kg), the curvilinear velocity (VCL) assessed by 247 

a CASA system was significantly higher in males treated with a high dose (Vermeirssen 248 

et al. 2004). In European smelt (Osmerus eperlanus), GnRHa treatments resulted in the 249 

stimulation of a higher sperm volume and higher percentages of motility. However, the 250 

CASA systems did not reveal any statistical differences in CASA parameters between the 251 

control and hormonally treated groups (Król et al. 2009). 252 

Broodstock nutrition is another key factor that affects gonadal development and gamete 253 

quality in fish (Izquierdo et al. 2001). However, although there are many publications 254 

linking diet and reproductive success (e.g., fertilization and hatching rates), few reports 255 

have been able to make a direct link between broodstock diet and the kinetic 256 

characteristics of spermatozoa assessed by a CASA system. In terms of freshwater 257 

species, although the dietary regime did not affect the percentage of motile spermatozoa, 258 

it significantly affected sperm velocity in common barb (Barbus barbus) (Alavi et al. 259 

2008). In goldfish (Carassius auratus gibelio), the addition of vitamins and highly 260 

unsaturated fatty acids (HUFA) had a significant effect on sperm parameters such as the 261 

duration and percentage of spermatozoa with motility (Kashani and Imanpoor 2012); and 262 

in African catfish (Clarias gariepinus), a diet formulated with agricultural products 263 

provided higher milt volumes and improved sperm velocity in breeding males (Nyina-264 

wamwiza et al. 2012). In marine species, such as Senegalese sole (Solea senegalensis), 265 

Beirão et al. (2015) reported that males who had been fed on an enriched diet 266 

(polyunsaturated fatty acid, PUFA) showed improvements in sperm motility parameters 267 

such as pMOT and VCL. Likewise, in European eel (Anguilla anguilla), diets with high 268 

levels of arachidonic acid and eicosapentaenoic acid induced better sperm kinetic 269 

parameters than did commercial diets (Butts et al. 2015; Baeza et al. 2015). 270 

In the last few years, biotechnology and genetic engineering have contributed greatly to 271 

fish culture, allowing the production of triploid, tetraploid, haploid, gynogenetic or 272 

androgenetic fish through the application of novel breeding techniques (Foresti 2000). 273 

However, this type of technique involves small to large changes in the genetic material 274 

of affected cells, often having a negative impact on gamete quality (Pandian and 275 

Koteeswaran 1998). For example, in common tench (Tinca tinca), Linhart et al. (2006) 276 

reported that the ploidy level significantly influenced the percentage of motile 277 

spermatozoa: with the motile sperm count of diploid males ranging from 93% to 100% 278 



and that of triploid males from 37% to 77%. However, the ploidy level did not result in 279 

any significant differences in terms of the velocity of spermatozoa. Conversely, in 280 

Atlantic cod (Gadus morhua), VCL was higher in the spermatozoa of diploid males 281 

compared with that of  triploid males, but no differences between ploidies were observed 282 

for the remaining sperm motility descriptors (Peruzzi et al. 2009). On the other hand, in 283 

fish in which atypical combinations of sexual phenotype and genotype has become a 284 

useful tool for aquaculture production, the assessment of gamete quality is essential in 285 

order to carry out future crosses. In this context, a study performed in Nile tilapia 286 

(Oreochromis niloticus) showed that sperm kinetic parameters (measured using a CASA 287 

system) did not differ between the three different genotypes: XX, XY, and YY (Gennotte 288 

et al. 2012). Similar results were obtained in a comparative study of sperm quality over 289 

all possible sex genotypes in rainbow trout (Oncorhynchus mykiss), where sperm motility 290 

parameters showed no differences between neo-males (XX genotype) and super-males 291 

(YY genotype) (Kowalski et al. 2011). 292 

To sum up, sperm kinetic parameters have become useful in the evaluation of many 293 

aspects relating to broodstock handling, and several factors such as i) the environmental 294 

rearing conditions, ii) the hormonal treatments used, iii) the diet requirements of each 295 

species, and iv) biotechnology and genetic engineering, have been improved through 296 

gamete evaluation using CASA systems. 297 

  298 

Sperm competition 299 

Sperm competition is defined as the process in which spermatozoa from two or more 300 

males race to fertilize the egg, is a widespread phenomenon that occurs in a wide range 301 

of animal taxa, including fish (Stoltz and Neff 2006). This phenomenon is closely related 302 

to dominance hierarchies, where male fish can adopt different mating strategies according 303 

to their social position (Serrano et al. 2006). Although sperm competition has become a 304 

recent topic of interest, more than 90 scientific papers on fish species have been published 305 

during the last two decades (Figure 3).  306 

The trade-off between social investment and sperm performance has been widely studied 307 

in fish, and some studies have shown differences in sperm kinetic parameters between 308 

males with different social statuses. For example, in Chinook salmon (Oncorhynchus 309 

tshawytscha), parr males (jacks) invested significantly more of their somatic tissue into 310 

gonads compared with anadromous males (hooknoses), and parr males showed higher 311 



motility and velocity values (90% and 70 µm/s, respectively) than dominant males (85% 312 

and 55 µm/s, respectively). In another study, after examining the sperm characteristics of 313 

29 cichlid species, Fitzpatrick el al. (2009) showed that species experiencing greater 314 

levels of sperm competition have faster-swimming sperm. Nevertheless, even when 315 

theory predicts that dominant males might have lower quality spermatozoa, some studies 316 

have shown no effects, or even the opposite situation in other species such as rainbow 317 

trout (O. mykiss), bluegill (Lepomis macrochirus) and three-spined sticklebacks 318 

(Gasterosteus aculeatus) (Cardwell et al. 1996; Stoltz and Neff 2006; Mehlis et al. 2013). 319 

In this sense, sperm motility assessment can serve as a useful tool for studying the 320 

evolution of alternative reproductive strategies and mating systems in different fish taxa, 321 

and several kinetic parameters such as total motility, swimming velocity and/or motility 322 

over time will provide further data for sperm competition studies. 323 

 324 

Ecotoxicology 325 

Aquatic environments can carry substantial quantities of natural and man-made 326 

environmental contaminants (ECs), and evaluating the kinetics of fish sperm via CASA 327 

systems has become a key in assessing EC toxicity (Hatef et al. 2013). At present, around 328 

70 scientific publications reporting the impact of ECs on sperm motion performance have 329 

contributed to the understanding of the toxicity mechanisms and action sites of ECs, and 330 

this knowledge can now be applied to a wide range of topics. However, is important to 331 

note that EC effects are extremely variable among fish taxa and even within species, and 332 

several factors such as EC concentrations or the duration of exposure can greatly affect 333 

sperm motion performance. In this regard, Table 4 summarizes the main ECs affecting 334 

sperm motility as assessed by a CASA system in some fish species, indicating the 335 

minimum EC dose at which sperm kinetic parameters were affected significantly. 336 

Xenoestrogens are types of xenohormones that imitate oestrogen activity, and they can 337 

be produced by both synthetic or natural pathways. Among the most important ECs with 338 

oestrogenic effects are bisphenol-A, estradiol, and ethynyloestradiol, and several studies 339 

have reported their negative effect on the sperm motion performance in several freshwater 340 

species belonging to the Salmonidae and Cyprinidae (see Table 4). On the other hand, 341 

heavy metals represent the other EC group with high toxicity levels, and now they are 342 

considered the most dangerous pollutants in the world (Hatef et al. 2013). In this regard, 343 

Lahnsteiner et al. (2004) studied the impact of different heavy metals (zinc, mercury, and 344 

cadmium) on the sperm motility parameters of four teleosts belonging to the most 345 



representative freshwater families (Salmonidae, Cyprinidae, Gadidae, and Clariidae). The 346 

authors concluded that toxic concentrations of all the pollutants differed markedly for 347 

each species (highlighting species-specific effects of these EC groups).  348 

To sum up, sperm motility assessment has become a valuable tool to check and 349 

understand toxicity mechanisms and sites of action of different ECs, and changes in sperm 350 

motion performance can serve as a potential biomarker for biomonitoring these agents 351 

and their potential effects on reproductive function. 352 

 353 

Ecology 354 

CASA systems can also be applied to many areas of fish ecology. Although subjective 355 

evaluation of sperm motility has been the main method used in this field, more than 50 356 

recent publications have used CASA systems and have contributed to the exploration of 357 

numerous ecology issues of different fish species from different taxa. In this context, a 358 

wide range of topics such as breeder age, seasonal changes, and characterization of 359 

populations are going to be approached through a sperm quality perspective. 360 

In fish species with an annual reproductive cycle, sperm quality usually oscillates 361 

throughout the spawning season both in the wild and in captivity, and sperm motility 362 

assessment can give us the optimal period in which they should be collected.. For 363 

example, thanks to sperm motility assessment, scientists know (in wild conditions) that 364 

there are species in which sperm quality is higher at the beginning of the spawning season, 365 

such as halibut (H. hippoglossus, (Babiak et al. 2006)) or Senegalese sole (Solea 366 

senegalensis, (Beirão et al. 2011b)); species in which sperm quality is higher in the 367 

middle of the spawning season, such as Atlantic cod (Gadus morhua, (Rouxel et al. 368 

2008)) or European seabass (Dicentrarchus labrax, (Dreanno et al. 1999b); and species 369 

such as common carp (C. carpio, (Christ et al. 1996)) or European perch (P. fluviatilis, 370 

(Alavi et al. 2010)) in which sperm quality is higher at the end of the spawning season. 371 

Furthermore, kinetic parameters provided by CASA systems can also be applied to 372 

investigate inter-population differences, either by comparing wild populations to link 373 

sperm quality to environmental conditions (Salte et al. 2004; Dietrich et al. 2014; 374 

Biernaczyk et al. 2012), or by comparing farmed and wild populations to ascertain the 375 

possible impact of escaped farmed fish on wild ecosystems (Lehnert et al. 2012; Rideout 376 

et al. 2004; Butts et al. 2010). 377 

Concerning inter-species studies, interesting ecology approaches can be made using 378 

sperm motility data. Gallego et al. (2014) after having analysed the sperm motion 379 



parameters of several swimmer and sessile species, reported that the patterns were totally 380 

different. In that study, the authors linked the sperm motion patterns to species-specific 381 

lifestyles, postulating that sessile organisms (which show limited or no movement) need 382 

spermatozoa with a capacity to swim long distances to find the oocytes, while swimming 383 

male organisms can move toward the female and release gametes nearby, and as such the 384 

spermatozoa do not need to swim for such a long time. 385 

 386 

Aspects to be improved in CASA systems 387 

Although CASA systems are widely accepted by the animal reproductive science 388 

community as a valuable research tool for basic sperm biology, an evident lack of 389 

standardization in assessing fish sperm motion has often resulted in low reproducibility, 390 

making it difficult to interpret and compare intra- and inter-laboratory results (Rosenthal 391 

et al. 2010). Indeed, a series of biological, technical and CASA settings must be taken 392 

into account to harmonize common procedures and establish standardized protocols to be 393 

used in many research groups (see Table 5). 394 

Biological or handling settings such as how to collect gametes (Aramli et al. 2016a), 395 

which ejaculate portion to use for analysing (Gallego et al. 2013a), the storage 396 

temperature before analysis (Sanches et al. 2015), and the sperm-to-activation medium 397 

ratio (Toth et al. 1995) can have a marked influence on evaluating sperm kinetics. In this 398 

context, it is important to note that the kinetic characteristics of fish spermatozoa are often 399 

species-specific, so biological settings must be linked to the species being evaluated. 400 

Technical settings for assessing sperm motility can also involve a wide range of factors 401 

(Table 5), but few reports can be found in the literature on fish. For example, microscope 402 

settings such as the magnification had a significant effect on  the  pMOT levels and sperm 403 

velocities in European eel (Anguilla anguilla) (Gallego et al. 2013a); however, the use of 404 

different chambers did not affect these same sperm motion parameters when assessed by 405 

a CASA system. In common carp (Cyprinus carpio), Kowalski et al. (2014) reported that 406 

adhesion of sperm to a glass surface can be a crucial factor when assessing sperm motion 407 

performance by CASA systems; and recommended the use of protein supplements (e.g., 408 

bovine serum albumin) to obtain accurate CASA results for sperm quality prediction.  409 

Finally, CASA settings also play a key role in estimating sperm kinetic parameters, and 410 

factors such as the recording frame rate (Castellini et al. 2011; Gallego et al. 2013a; 411 

Boryshpolets et al. 2013) or even the type of CASA used (Boryshpolets et al. 2013) have 412 



a notable effect on sperm kinetic results both in freshwater and seawater species. 413 

However, there are other CASA settings that have not yet been tested, such as the number 414 

of cells sampled per field/capture, the location of the field inside the chamber, or even the 415 

focal position of swimming sperm cells inside an open drop.  All of these factors could 416 

also affect sperm motion results, so further studies are necessary to evaluate the effect of 417 

reported and novel factors on a greater number of fish species. 418 

 419 

5. New challenges for CASA systems in fish research 420 

CASA systems are able to analyse a huge number of spermatozoa per capture, which 421 

means thousands of motion tracks reported per sample. However, despite the advantages 422 

of working with these extensive databases, most research groups are can only show the 423 

mean of the sperm quality parameters (or even some of them), and spermatozoa are 424 

considered to represent homogeneous populations. Nevertheless, it has been pointed out 425 

that the spermatozoa of some species do not constitute a homogeneous mixture, and 426 

several studies in fish have clearly shown the coexistence of different sperm motility-427 

based subpopulations (Martínez-Pastor et al. 2008; Beirão et al. 2011a; Gallego et al. 428 

2017). In this context, the study of the variations and distributions of these populations 429 

has been applied successfully in several research areas such as sperm physiology, sperm 430 

cryopreservation and broodstock management (Beirão et al. 2009; Kanuga et al. 2012; 431 

Gallego et al. 2015); moreover, certain sperm subpopulations have been positively and 432 

significantly correlated with fertilization and hatching rates in key aquaculture species, 433 

such as gilthead seabream (Sparus aurata, (Beirão et al. 2011a)) or tambaqui (Colossoma 434 

macropomum, (Gallego et al. 2017). Just as data modelling techniques (such as 435 

clustering) allow for the extraction of information between many variables and patterns 436 

relating to the kinetics of spermatozoa, subpopulation studies are becoming a novel tool 437 

to be applied in scientific fish and aquaculture matters. 438 

Asides from providing us with a large number of sperm motion characteristics (described 439 

in Table 1), CASA systems are able to demonstrate other important parameters such as 440 

sperm concentrations, morphology, survival (viability) rates, and even the rate of DNA 441 

fragmentation. The set of parameters provided by the given CASA program depends on 442 

the brand of the product and, overall, by the number of modules purchased by the 443 

researcher. We can presently identify more than 20 companies that market CASA 444 

systems, and because they focus on a range of areas, from biology and medicine to 445 



engineering, computer technology, and mathematics, the future development of these 446 

systems will be directed at a combination of related subjects (motility, morphology and/or 447 

viability) (Lu et al. 2014).  448 

To sum up, CASA results in sperm motion analysis boast precision, reliability and 449 

reproducibility, providing the scientific community with a useful tool which can be 450 

applied both in aquaculture and for ecological purposes. Although sperm motion traits 451 

from a large number of species have already been reported in hundreds of articles, future 452 

developments in CASA systems (e.g., three-dimensional motion analysis, species-453 

specific software, comfortable and portable systems) will be necessary to expand and 454 

deepen our knowledge of the biological functions of fish spermatozoa. 455 
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887 



Figure 1. Schematic diagram of some kinetic parameters recorded by CASA system. 888 

Black circles represent successive positions of the head of motile spermatozoa through 889 

the video recording. Sperm motion parameters: VCL, curvilinear velocity; VAP, 890 

averaged path velocity; VSL, straight-line velocity; ALH, amplitude of lateral head 891 

displacement; BCF, beat/cross frequency. 892 
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Figure 2. Evolution of number of scientific manuscripts published from 1985 to 2016 in 895 

journals selected in the Science Citation Index (SCI) using fish sperm motility assessed 896 

by CASA systems as a research tools. The pie chart indicates the percentages of 897 

manuscripts focusing on freshwater or seawater species. 898 
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Figure 3. Number of manuscripts published by research area (sperm physiology, sperm 901 

storage, broodstock management, sperm competition, ecotoxicology, and breeding cycle) 902 

in SCI journals using fish sperm motility assessed by CASA systems as research tools. 903 
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Figure 4. Number of manuscripts published on the main freshwater fish families used in 905 

aquaculture using fish sperm motility assessed by CASA systems as research tool. The 906 

insert also shows the five most commonly studied seawater species. 907 
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Figure 5. Number of manuscripts published on the main seawater fish families used in 910 

aquaculture using fish sperm motility assessed by CASA systems as research tool. The 911 

insert also shows the five most commonly studied seawater species. 912 
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Figure 6. Percentage of manuscripts published in the main topics (maturation protocols; 915 

broodstock nutrition; biotechnology and genetic engineering; and gamete collection 916 

techniques) of broodstock management using fish sperm motility assessed by CASA 917 

systems as a research tool. 918 
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