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Abstract  

In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models 
connected in a feedback loop in order to account for both the short-term dynamic vehicle–track interaction and the 
long-term damage. The time-domain vehicle–track interaction model comprises a flexible rotating wheel set 
model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state 
three-dimensional wheel–rail contact model, based on the variational theory by Kalker.Wear calculation is 
performed with Archard’s wear model by using the contact parameters obtained with the non-Hertzian and 
non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the 
excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the 
frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheelset is 
negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail 
for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, 
identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third 
bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 
110 mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode 
and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 
156 mm when the vehicle velocity is 198 km/h. 
 
Keywords: rail corrugation; flexible rotating wheel set; cyclic track; global corrugation growth rate 

1.  INTRODUCTION 

Rail corrugation remains nowadays, after a long time of research and field observations, one of 
the most severe problems faced by railway administrations around the world. The reason for 
this can lie in the wide diversity of rail corrugation, which is probably produced by different 
causes. The most accepted classification of rail corrugation is due to Grassie and Kalousek, who 
classified various types of rail corrugation with respect to wavelength-fixing mechanisms and 
damage mechanisms [1].  

Several authors have concluded in their investigations that the formation and development of 
rail corrugation can be attributed to certain resonances and antiresonances of the coupled 
vehicle-track system, which act as wavelength-fixing mechanisms. Some examples of these 
wavelength-fixing mechanisms identified so far are the pinned-pinned vertical resonance of the 
track (and the corresponding antiresonance above the sleepers) [2-4]; the P2 resonance of the 
track, in which the rails and sleepers vibrate in phase on the ballast [4,5]; the vertical 
antiresonance of the track in which the sleepers vibrate independently as dynamic vibration 
absorbers [3,5]; the first and second torsional modes of the wheelset axle [4]; and the bending 
modes of the stretch of rail between the wheelsets of a bogie [6]. In some cases, the coincidence 
of two or more resonances or antiresonances of the vehicle-track system in the same frequency 
range can have a synergistic effect that can magnify the growth of rail corrugation at certain 
wavelengths. Just to mention some of them: the frequency match of the first vertical 
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antiresonance and the first pinned-pinned lateral resonance of the track [7]; the coincidence in 
the same frequency interval of the P2 resonance and the first vertical antiresonance of the track 
[8]; and the combination of a vertical antiresonance and a lateral resonance of the track with a 
resonance of the wheelset [9]. Frequently, wear is the only damage mechanism taken into 
account, since it is known to be responsible for most types of rail corrugation [1].  

In this context, simulation tools of rail corrugation can play a key role in gaining a better 
understanding of the initiation and growth of this defect. In this work, the simulation tool 
developed to analyse the growth of rail corrugation consists of several models related to each 
other by means of a feedback loop to account both for the short-term dynamic vehicle-track 
interaction, and for the long-term damage. The vehicle-track interaction model comprises a 
flexible rotating wheelset model [10], a cyclic track model based on a substructuring technique 
[11] and a non-Hertzian and non-steady state three-dimensional wheel-rail contact model, 
based on the variational theory by Kalker [12]. The dynamic interaction between the vehicle 
and the track is solved in the time domain to take into account the nonlinearities of the coupled 
vehicle-track system. Wear calculation is performed in a post-process stage, using the 
non-Hertzian and non-steady three-dimensional contact model, which is able to represent 
adequately the distributions of contact stress and slip velocity, which are required as input data 
to the Archard’s wear model to compute the material loss on the running surfaces of the two 
rails.  

The use of a non-Hertzian and non-steady state contact model to calculate wear has been proved 
by several authors [13-15] to lead to no growth of rail corrugation, since the maximum wear 
depths are located near the corrugation peaks. This fact may be caused by the geometrical shift 
of the contact point when the wheel rolls over a corrugated rail, which has been demonstrated to 
move the wear maxima towards the peaks of the corrugation [16]. However, these results are 
completely opposite when compared to those obtained with Hertz/FASTSIM models, which 
predict corrugation growth in most cases. The causes of these differences can be attributed to 
the simplifying assumptions made in Hertz/FASTSIM models, which cannot take into account 
the real shape of the contact patch, asymmetrical stress distributions in contact patch, geometric 
shift of the contact patch and the non-steady effects produced by the high frequency 
fluctuations of the contact parameters. These shortcomings are overcome in this work by 
implementing a non-Hertzian and non-steady state contact model.  

Continuing previous work in [17], this paper analyses the influence of the excitation of two 
coinciding resonances of a flexible rotating wheelset on the corrugation growth in the 
frequency range from 20 Hz to 1500 Hz. It must be highlighted that there are few papers in the 
literature concerning rail corrugation that implement the flexibility and the gyroscopic effects 
associated with the rotation of a railway wheelset since, typically, they were modelled as rigid 
masses or only the flexibility of the wheelset axle is considered. In [7] a flexible wheelset was 
implemented but the rotation was neglected and in [15] the former features were accounted for 
but only the wheelset axle was model as flexible and rotating since the wheels were represented 
as rigid bodies.  

Contact conditions similar to those that can arise when a wheelset is negotiating a high radius 
curve are prescribed to analyse the potential growth of rail corrugation. To this aim, two 
different excitation irregularities on the rail running surfaces are accounted for: sinusoidal rail 
corrugation and broadband rail roughness.  
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2. VEHICLE-TRACK INTERACTION 

In this work, the time-domain vehicle-track interaction model consists of the cyclic track model 
described in [11] and the flexible and rotating wheelset model developed in [10]. The forces 
transmitted through the wheel-rail contact are calculated by means of a three-dimensional 
non-Hertzian and non-steady contact model based on the Kalker’s variational theory [12], 
which is implemented into the time- stepping algorithm.  

The modelling of the dynamic vehicle-track interaction is based on a substructuring technique, 
which considers three different types of substructures: vehicle, rails and sleepers. Each 
substructure is defined by a set of ordinary differential equations. The connection among the 
different substructures is done through the external forces acting on each substructure. These 
external forces are both the wheel-rail contact forces, which are applied on the vehicle and the 
rails, and the railpad forces, acting on the rails and sleepers. 

2.1 Track model 

The cyclic track model used in this research work can be interpreted as an infinite track on 
which an infinite number of identical vehicles circulate at the same velocity V. Thus, thanks to 
the periodicity properties, the analysis of an infinite track is reduced to the study of a stretch of 
track with a finite length L, which is the distance between two consecutive vehicles, as shown in 
Figure 1. The track length considered is 36 m, corresponding to 60 sleeper bays. 

L L

V V V

L
V

L

 

Figure 1. Cyclic track model 

Rails are modelled as cyclic Timoshenko beams with the properties of the UIC60 rail and their 
mode shapes are calculated analytically through harmonic functions [11]. To represent the 
vibration of the rail, 60 vertical vibration modes are included, with frequencies up to 2.5 kHz. 
Sleepers are considered as rigid bodies. Railpads and ballast are modelled as viscous-elastic 
elements, whose stiffness and damping in the vertical direction along with other track 
parameters are summarised in Table 1. In Figure 2 the substructures of the track model are 
represented together with the connection elements. 
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Figure 2. Track model consisting of the substructures rails and sleepers connected by visco-elastic elements that 
represent the railpads and the ballast. 

 
Table 1.Parameters of the cyclic track model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The set of ordinary differential equation in modal coordinates related to the sth substructure can 
be expressed as follows 
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Track parameters Value 

Rail   

Mass (kg/m) 60.34 

Cross-section area (m2) 7.687 10-3 

Young’s modulus (GPa) 210 

Shear modulus (GPa) 81 

Bending stiffness about vertical axis (MNm2) 1.077 

Bending stiffness about lateral axis ( MNm2) 6.416 

Saint-Venant torsional stiffness ( MNm2) 0.16 

Timoshenko shear coefficient (vertical and lateral) 0.4 

Railpad   

Vertical stiffness, kp (MN/m) 300 

Damping coefficient, cp (kNs/m) 30 

Sleeper  

Mass (kg) 324 

Sleeper spacing (m) 0.6 

Ballast  

Vertical stiffness, kb (MN/m) 160 

Damping coefficient, cb (kNs/m) 200 
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in which s
nq  is the modal coordinate, s

nω is the natural frequency, s
nξ is the spectral damping and 

s
nf  is the modal force associated with the nth vibration mode of the model. More details on the 

track model can be found in [11,17]. 

2.2 Wheelset model 

When the dynamic interaction is analysed in the high frequency range, assuming that the 
suspensions isolate effectively the wheelset from the car body at frequencies higher than 20 Hz, 
the model of the vehicle can be reduced to the model of the wheelset (unsprung masses) with 
the proportional part of the car body weight. Popp et al. [18] highlighted the need for 
considering the wheelset flexibility and gyroscopic effects related to rotation in models of 
vehicle-track interaction in the medium- and high-frequency ranges, since the elastic 
deformations of the wheelset may affect the calculation of the contact creepages, and 
consequently the determination of wear, and the gyroscopic effects are responsible for the 
splitting of the wheelset resonance peaks associated with mode shapes with multiplicity two.    

The wheelset model used in this work is based on a general method for rotating solids of 
revolution presented in [10] and considers the flexibility and the gyroscopic effects due to 
rotation. The fundamental idea of this method is that the deformed shape of the solid of 
revolution can be defined through the modal functions in non-rotating coordinates, thanks to the 
properties of solids of revolution. Thus, the relationship between the displacements due to the 
deformation u  and the modal coordinates wq is given by the modal function matrix Φ through 

 wqu  Φ= . (2) 

The differential equation governing the movement of the wheelset is  

 ( ) LQqCKqGq ~ ~~ ~2 22 ΩΩΩ qwww +=++−  , (3) 

where Ω is the rotating velocity of the wheelset, G~  is the gyroscopic matrix, K~ is a diagonal 
matrix containing the square of the natural frequencies of the non-rotating wheelset, C~  is a 
matrix which implements the centripetal forces that depend on the deformation of the solid and 
L~ takes account of the centripetal forces associated with the undeformed shape. The 
generalised force vector qQ is calculated from the external forces through the matrix of modal 
functions. All these matrices are constant and are calculated once at the beginning of the 
simulation of the vehicle-track interaction. For further details on the formulation of the 
wheelset model see [17]. Table 2 contains the values of the parameters of the wheelset model.  

 
Table 2. Parameters of the flexible rotating wheelset model 

 

 

 

 

 

 

 

Wheelset parameters Value 

Wheelset mass (kg) 2700 

Static load (kN) 200 

Rolling radius of the wheel (m) 0.5 

Moment in the vertical and lateral axes (kg m2) 493 

Moment in the rolling axis (kg m2) 169 
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In the Campbell diagram, the equivalent resonance frequencies of the mounted wheelset are 
represented in function of the velocity of the vehicle. The model of the flexible rotating 
wheelset used in this research work considers the gyroscopic effects due to wheel rotation, 
which cause a resonance peak of a mode shape of multiplicity two to split into two different 
peaks associated with the backward and forward whirl modes, with frequencies lower and 
higher, respectively, than the resonance frequency corresponding to zero velocity. It has been 
identified two cases in which two wheelset resonance frequencies coincide. They result from 
the intersection of the line of the backward wheel mode with two nodal diameters and no nodal 
circle with the lines corresponding to the forward (B-F modes) and backward third bending 
modes (B-B modes), as can be seen in Figure 3. These mode shapes are shown in Table 3. 

In the following, the effects of the excitation of these two coinciding resonances of the flexible 
rotating wheelset on the corrugation growth will be analysed.  
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Figure 3. Zoom of the Campbell diagram for the railway wheelset [17]:  
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backward third bending mode). 

2.3 Wheel-rail contact model  

The non-Hertzian and non-steady three-dimensional wheel-rail contact model used in this work 
is based on the variational theory by Kalker [12]. The main disadvantage in using this contact 
model is its high computational cost, that makes it difficult to obtain the results by discretisating 
the potential contact area in a very refined mesh, and consequently, by adopting a small time 
step in the time-stepping integration algorithm.  

The discretisation of the potential contact area, which is considered in this paper with 
hexagonal shape, is done with piecewise linear triangular elements following a suggestion 
made by Johnson in order to improve the representation of the contact traction distributions 
[19]. In Figure 4, the Johnson’s idea is illustrated for the bidimensional case. By changing from 
non-overlapping rectangular elements, in which the tractions are assumed constant, to 
overlapping triangular elements, in which the tractions vary linearly, it is pursued an enhanced 
representation of the distributions of tractions in the contact patch.  

 



 7 

J I

p
j

          J I

p
j

 

                                                  (a)                                                             (b) 
Figure 4. Approximation of the surface traction through: (a) Piecewise constant pressure elements; (b) piecewise 

linear overlapping pressure elements. 
 

In the three-dimensional contact problem this idea is equivalent to obtaining the distributions of 
tractions in the contact patch through the superposition of overlapping pyramidal pressure 
elements on hexagonal bases formed by six equilateral triangular elements [19], so that in each 
triangular element the tractions vary linearly, as shown in Figure 5. 

 

Figure 5. Approximation of the distributions of tractions through the superposition of overlapping pyramidal 
pressure  elements on hexagonal bases formed by six equilateral triangles.  

 

A cartesian coordinate system ( )321  x xx  with the origin at the centre of the wheel-rail contact is 
assumed, with the 1x -axis pointing in the longitudinal direction of the track, the 2x -axis 
pointing in the lateral direction and the 3x -axis pointing vertically upwards. The following 
development is based on the assumption that both the wheel and the rail behave as elastic 
half-spaces. This assumption is only valid for the contact between the rail crown and the wheel 
tread, which takes place when vehicles run on straight tracks or gentle curves.  

In this paper, the elastic influence coefficients are calculated at the vertices of the triangular 
elements (nodes) by integrating the Boussinesq-Cerruti constitutive equations over triangular 
domains loaded with linearly varying distributions of tractions, which vary from unity at one 
vertex to zero at the other two vertices of the triangle. An elastic influence coefficient can be 
denoted as 

jJiI
D

   
and it enables obtaining the elastic displacement in the i-direction at the node I, 

which is produced by a load applied in the j-direction at the node J.  

For a pyramidal load of unitary value acting at node J in the j-direction, the elastic influence 
coefficients are obtained at the mesh nodes (vertices of the triangles) by adding the 
contributions of the 6 triangles which form the hexagonal base of the pyramid 
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Thus, the contact parameters, such as contact tractions, local slip velocities and displacements, 
are obtained at the N inner nodes of the potential contact area. Considering the quasi-identity 
properties of the materials of wheel and rail, the normal and the tangential contact problem can 
be solved independently. First, the normal contact problem is solved to determine the real 
contact patch and the distribution of normal contact pressure. The normal contact force is 
calculated by integrating the distribution of normal contact pressure over the contact patch. 
Next, once the contact patch is known, the tangential contact problem is solved. Solving the 
tangential problem consist in determining which nodes are either in the stick area and which 
ones are in the slip area and obtaining the distribution of tangential contact tractions. The 
longitudinal and lateral contact forces are calculated through the integration of the longitudinal 
and lateral distributions of contact tractions, respectively. 

 
Table 3. Third bending modes and wheel modes of the wheelset 

 
      Modes Frequency (Hz) 

(V=0 km/h) 

Multiplicity Mode shape 
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bending modes 

 
 
 

357 

 
 
 
2 

        
 
 
 
Modes of the 
wheel with two 
nodal diameters 
and no nodal 
circle 

 
 

 
 

383 

 
 
 
 
4       

        

.  

 

2.3.1 Formulation of the normal contact problem  

The deformed distance between wheel and rail at a node I of the potential contact area is defined 
as the difference of displacements between these bodies in the normal direction 3Iu plus the 
undeformed distance between them Ih , which accounts for the irregularities existing in the 
running surfaces of rails 
 III hue += 3 , (5) 

where the difference of displacements 3Iu can be obtained through the elastic coefficients 

33JID and the normal pressure acting on the N nodes of the potential contact area as 
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Thus, the normal contact problem can be solved using an iterative process, by defining an active 
set consisting of the nodes that are outside the real contact area and an inactive set formed by 
the nodes belonging to the contact area. From the conditions of the minimisation problem of the 
complementary energy, the normal contact problem can be formulated in function of the 
Lagrangian multipliers 3Iλ , which coincide with the deformed distance for the normal contact 
problem, as 
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The solution for the normal contact problem is obtained when all the nodes of the potential 
contact area satisfy the conditions given in Equation (7). 
 

2.3.2 Formulation of the tangential contact problem 

The kinematic equation for the tangential contact problem relates the local shift τS , which is the 
relative displacement between the wheel and rail associated to a time increment t∆ , with the 
local rigid shift τW , the tangential displacements in the contact patch due to the current 
distribution of the tangential tractions τIu  and the displacements produced in the contact patch 
by the tangential tractions in a previous time step τIu′  

 1,2   , =′−+= τττττ IIII uuWS , (8) 

where the local rigid shift τW  is obtained from the longitudinal ξ , lateral η  and spin φ  
creepages, the coordinates of the node I with respect to the centre of the potential contact area 
and the spatial step tVx ∆=∆ , which is the distance that the potential contact area is moved 
forward in each time step 
 ( )φξ II yξW −∆=1 ;     ( )φη II xxW +∆=2   (9) 

The differences of tangential displacements τIu are calculated by means of the elastic influence 
coefficients κτJID and the tangential tractions applied on each of the N nodes of the potential 
contact area through 

 1,2  ,
2

1 1

== ∑∑
= =

τ
κ

κκττ

N

J
JJII pDu  (10) 

The tangential contact problem is solved by means of an iteration process, which takes into 
account an active set, constituted by the nodes in the stick area, and an inactive set, consisting of 
the nodes in the slip area. The tangential contact problem can be formulated in function of the 
Lagrangian multipliers τλI , considering the conditions of the minimisation problem of the 
complementary energy, as 
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After each iteration, the active set is updated and the solution is reached when all nodes in the 
contact area fulfill the conditions established in Equation (11). The friction coefficient is 
assumed constant and equal to 0.35. 

Finally, the contact forces are calculated as the superposition of the volumes of pyramids of 
height κIp with hexagonal base, which is formed by six equilateral triangles with sides of length 

tl   
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N
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2.4 Modelling of the initial rail irregularities  

In this work, two kinds of irregularities on the running surfaces of rails are implemented for 
modelling the excitation of the vehicle-track system: sinusoidal corrugations and broadband 
roughness, as illustrated in Figure 6. 
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                                                  (a)                                                               (b) 

Figure 6. Excitation of the vehicle-track system through: (a) Sinusoidal corrugation; (b) Broadband rail 
roughness. 

2.4.1 Sinusoidal rail corrugations 

In order to excite the B-B and the B-F wheelset modes, initial sinusoidal corrugations are 
assumed to be present on the running surfaces of rails with wavelengths calculated as the 
velocity divided by the frequency corresponding to the crossing points on the Campbell 
diagram. Table 4 presents the frequencies of the B-F and B-B modes together with the 
wavelengths and amplitudes of the rail corrugations used to excite them and the vehicle 
velocities. 
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Table 4. Frequencies and vehicle velocities of the studied modes and characteristics of the rail corrugation used to 

excite them. 
 

 
 

Frequency  
(Hz) 

Velocity  
(km/h) 

Corrugation 
wavelength (mm) 

Corrugation 
amplitude (µm) 

B-F modes 360.8 142 110 10 
B-B modes 352.5 198 156 10 

 

2.4.2 Broadband rail roughness 

In this paper, the limit roughness spectrum on the running surfaces of rails established in the 
standard ISO 3095:2005 [20] is implemented to reproduce a realistically low level of roughness 
containing a broadband spectrum of wavelengths, ranging from 0.00315 m to 0.63 m. This 
standard indicates the roughness level irL  , in decibels, for the central wavelengths iλ of 
twenty-four 1/3 octave bands 
 10/1001.0 k

i ⋅=λ , with 18,...,4,5 −−=k  and 24,...,1=i  (13) 
The initial roughness profile can be calculated, following the procedure used by Hiensch et al. 
[21], as the superposition of sinusoidal functions whose amplitudes are calculated for each 1/3 
octave band from the levels of the rail roughness spectrum 
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where M is the number of 1/3 octave bands and N is the number of sinus functions used to 
obtain the roughness profile. The M amplitudes ia , in µm, associated with each band are 
calculated in the function of the roughness level corresponding to the band 

 20/102
riL

i N
a =  (15) 

The phase angles ijj are obtained as random numbers uniformly distributed from 0 to 2π. The N 
wavelengths in each band ijλ are calculated by taking into account a constant increment of the 
wave number 

 







−=∆ maxmin

112

ii
i N λλ

πκ , (16) 

with min
iλ and max

iλ being the wavelengths of the extremes of each band, which are calculated 
through the wavelength of the centre of each band iλ as follows 

 6/1max 2ii λλ = ;  
6/1

min

2 
i

i

λλ =  (17) 

In this work, twenty-four 1/3 octave bands and 100 sinus functions have been considered to 
represent the initial rail roughness. 
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3. SIMULATION OF RAIL WEAR  

3.1 Wear model 

Archard’s wear model states that the volume of material which is removed from a surface due 
to wear is directly proportional to the normal load and the sliding distance between the bodies in 
contact. From the model of Archard, an expression for estimating the wear depth at a node I of 
the contact patch can be deduced  

   3
w

III Sp
H
kz =∆ , (18) 

in which 3Ip is the normal contact pressure at node I and IS  is the norm of the local shift, 
which is the sliding distance obtained by multiplying the slip velocity and the time step, H is the 
hardness of the softer material and wk is the wear coefficient. In this paper, the wear coefficient 
is assumed independent of the variations of the normal contact pressure and the sliding velocity 
in the contact patch. A wear coefficient of 1.09·10-4, which corresponds to low sliding 
velocities, and a hardness of 3.2 GPa have been used for the simulations of railhead wear. 

 

3.2 Rail profile updating 

In order to map the wear depth distributions z∆ in the contact area onto the rail, the running 
surfaces of the rails are discretised into a mesh of nodes uniformly distributed in the 
longitudinal and lateral direction. Wear depths in the rail nodes are calculated by displacing the 
potential contact area a distance tVx ∆=∆ , which is equal to the traversed distance in each time 
step, at the vehicle velocity V. If, for a certain time instant i, a node of the railhead mesh k is 
located within the contact area, the wear depth in such rail node is calculated by means of a 
linear interpolation of the values of wear depth at the three vertices of the triangle containing 
the rail node. For each time step, the wear depths in the rail nodes are saved. Thus, the total 
wear depth in a rail node is calculated by addition of the wear depth for each time step for all the 
time steps Nt considered, as follows 

 ∑
=

∆=∆
tN

i

k
i

k zz
1

    (19) 

Then, the updated rail profile after n wheelset passages is obtained by subtracting the wear 
depth for a wheelset passage from the initial (or previous) rail profile 
 zzz nn ∆−= −1  (20) 

4. NUMERICAL RESULTS  

4.1 Initial sinusoidal corrugation 

In the simulation tool, it has been implemented contact conditions similar to those that can be 
found when a vehicle passes through a gentle curve with a high radius, in which the contact 
predominantly takes place between the rail crown and the wheel tread and flange contact rarely, 
if ever, occurs. In order to simulate the forces arising in the wheel-rail contact due to curve 
negotiation, mean values for the longitudinal creepages have been prescribed. It has been 
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considered a positive mean value of 0.2% for modelling the contact conditions between the 
inner wheel and the low rail, while a negative mean value of -0.2% has been adopted to 
represent the conditions in the contact between the outer wheel and the high rail. According to 
some works in the literature [22] these values can be considered reasonable as an initial 
approximation to the problem addressed in this study for the speeds of the vehicle taken into 
account. These contact conditions are represented in Figure 7. 

 

 

Figure 7. Contact conditions adopted to simulate the passing of the wheelset through a high radius curve 

 

Figure 8 shows the wear depths on the centre line of the running surface of both rails of the 
curved track when the B-F modes are excited with a sinusoidal rail corrugation with wavelength 
110 mm and amplitude 10 µm. The wear depths on both rails are compared with the initial rail 
corrugation, which is represented out of scale for the sake of clarity. The phase angle between 
the wear depth obtained from the simulation tool and the initial rail corrugation is an important 
parameter that is usually taken into account in order to analyse the potential growth of rail 
corrugation [13,15]. Thus, as can be observed in Figure 8(a), corresponding to the low rail, the 
wear depth is approximately in anti-phase with respect to the initial corrugation, which 
indicates that rail corrugation could grow on the low rail under the studied conditions. 
However, as can be deduced from Figure 8(b), no rail corrugation growth is predicted for the 
high rail, since the wear depth is almost in-phase with the initial rail corrugation, which means 
that the corrugation crests would be removed after thousands of wheel passages.  
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     (a)                                                                                      (b) 
Figure 8. Wear depths on the running surfaces of both rails in a curve when the B-F modes are excited: (a) Low 

rail; (b) High rail.   
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In Figure 9, the wear depths for both rails are represented together with the initial rail 
corrugation for the case in which the B-B modes are excited. Although in both rails the wear 
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depth is out of phase with respect to the initial rail corrugation, it is difficult to conclude 
whether there would be growth of the amplitude of the initial rail corrugation or migration of 
the corrugation peaks as found in [15]. At the sight of the wear depths calculated, it seems that 
there are two main frequencies that prevail: the sleeper-passing frequency and the frequency of 
the initial rail corrugation. Probably, an analysis of these results in the frequency domain can be 
more clarifying. 
In order to determine the frequency spectra of the temporal histories of the wear depth on the 
railheads, the Fourier transforms are computed and shown in Figure 10. To obtain these results, 
data corresponding to a distance of 30 m has been used and has been filtered with a Hanning 
window for minimising the spectral leakage error.  
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         (a)                                                                                      (b) 
Figure 9. Wear depths on the running surfaces of both rails in a curve when the B-B modes are excited: (a) Low 

rail; (b) High rail.   
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In these spectra, it appears peaks at the sleeper-passing frequency fsp corresponding to the 
velocities under study (at 65.7 Hz for V=142 km/h in Figure 10(a) and at 91.7 Hz for V=198 
km/h in Figure 10(b)) and its associated harmonics at nfsp. Additionally, it can be observed 
another distinct peak at the frequency of the sinusoidal corrugation fc, that is, at 360.8 Hz and at 
352.5 Hz for velocities 142 km/h and 198 km/h, respectively, and its corresponding harmonics 
at nfc. Due to the nonlinearities in the vehicle-track system, there will be transfer of energy 
between frequencies. In the Fourier spectra in Figure 10, it can be observed that this 
phenomenon makes that the sleeper-passing frequency and the frequency of the sinusoidal 
corrugation combine resulting in new peaks of lower magnitude at frequencies fc -nfsp and            
fc +nfsp. 
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Figure 10. Fourier transform of the wear depth: (a) excitation of the B-F modes; (b) excitation of the B-B modes.  
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4.2 Broadband initial rail roughness 

In this work, global corrugation growth rates are calculated for the vehicle velocities 142 km/h 
and 198 km/h in order to identify wavelength bands in which the initial roughness may grow. 
The global corrugation growth rate, introduced by Hempelmann and Knothe in [3], is a 
non-dimensional and independent of the number of wheelset passages indicator of the growth 
or decrease of the amplitude of the defect at a certain wavelength or frequency. This 
corrugation growth rate is based on the assumption that the growth law of rail corrugation is 
exponential. 

After computing the Fourier spectra of amplitude of the initial roughness 0Z and the roughness 
after n wheelset passages nZ , these spectra have been averaged over 1/24 octave bands. For the 
central frequency or wavelength of the ith 1/24 octave band, the global corrugation growth rate 
has been obtained through 

 







=

0,

,ln1

i

ni
i Z

Z
n

γ , with  Mi ,...,1= . (21) 

When the global corrugation growth rate is positive in a certain 1/24 octave band, it means that 
the amplitude of the final roughness is higher than the initial roughness amplitude, which 
implies that the roughness would grow at the corresponding frequency. On the contrary, when 
the global corrugation growth is negative in a certain band, the amplitude of the roughness 
would decrease in that band, with which the initial roughness would be removed after a certain 
number of wheelset passages. 

In Figure 11, the corrugation growth rates for both rails and the two vehicle velocities studied 
are shown. For the vehicle velocity of 142 km/h, it can be observed in Figure 11(a) that the 
global corrugation growth rates for wavelengths shorter than 110 mm take negative values, 
indicating that there is no growth of rail roughness for those wavelengths. However, rail 
roughness with a wavelength of 110 mm can grow on the low rail, while no growth is predicted 
at this wavelength on the high rail. Roughness with wavelengths in the interval 130-500 mm 
may grow on both rails. When the vehicle circulates at 198 km/h, similar results are found as for 
the velocity 142 km/h, as can be seen in Figure 11(b). In this case, roughness growth is 
predicted for both rails at wavelengths ranging from 200 mm to 600 mm. Moreover, on the low 
rail, roughness would grow at a wavelength of 156 mm, while on the high rail no roughness 
growth is obtained. In Figure 12, the ratio between the amplitude of the wear depth and the 
amplitude of the initial rail roughness evaluated in 1/24 octave bands is presented for the two 
velocities under study. For both vehicle velocities, it can be observed that the shorter the 
roughness wavelength, the higher the ratio between the wear depth amplitude and the initial 
roughness amplitude. This fact does not necessarily mean that the roughness of short 
wavelength would grow, as can be verified in Figure 11, since it depends on the phase angles 
between the wear depths and the initial roughness. Some distinct peaks can be noticed at a 
wavelength equal to the sleeper bay (600 mm), at wavelengths corresponding to the frequency 
of the B-F mode in Figure 12(a) (110 mm) and B-B mode in Figure 12(b) (156 mm) and at a 
wavelength around 35-40 mm, which might be due to the vertical pinned-pinned antiresonance. 
The wide peak at about 200-250 mm is probably caused by the vertical antiresonance of the 
track in which the sleepers vibrate independently from rails and ballast, acting as dynamic 
vibration absorbers.  
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Figure 11. Global corrugation growth rate: (a) V=142 km/h; (b) V=198 km/h. 
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Figure 12. Wear depth amplitudes with respect to the initial roughness amplitude: (a) V=142 km/h; (b) V=198 

km/h 
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Figure 13. Amplitudes of the contact forces with respect to amplitude of initial roughness: (a) Longitudinal force; 
 (b) Normal force. 
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In Figure 13, the ratio between the amplitudes of contact forces and the initial roughness are 
plotted for both vehicle velocities in function of the excitation frequency. It can be noticed that 
the amplitudes of both the vertical force amplitude and the longitudinal force are higher when 
the excitation frequency increases. Similar results for the amplitude of the normal contact force 
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with respect to the excitation frequency were obtained in [23]. The first peak appears at the 
sleeper-passing frequency (at 65.7 Hz for V=142 km/h and at 91.7 Hz for V=198 km/h), the 
second wide peak arise around 250 Hz and might be produced by the antiresonance in which 
only the sleepers vibrate, the third and wider peak might be produced by the pinned-pinned 
antiresonance. In Figure 13(a), it can be seen peaks at approximately 375 Hz, related to the 
excitation of the B-F and B-B modes. 

5. CONCLUSIONS 

A simulation tool has been developed to analyse the potential growth of rail corrugation under 
contact conditions arising when a wheelset is traversing a high radius curve. The corrugation 
model consists of several models connected in a feedback loop in order to account both for the 
short-term dynamic vehicle-track interaction, and for the long-term damage. The time-domain 
vehicle-track interaction model comprises a flexible rotating wheelset model, a cyclic track 
model based on a substructuring technique and a non-Hertzian and non-steady state 
three-dimensional wheel-rail contact model, based on the variational theory by Kalker. In order 
to improve the calculation of the distributions of contact tractions, the potential contact area is 
discretised into equilateral triangular elements in which the contact tractions vary linearly 
unlike the original method, in which piecewise constant rectangular elements are used.  
The influence of the excitation of two natural frequencies of a flexible and rotating wheelset on 
the growth of rail corrugation and roughness has been investigated by accounting for the 
non-Hertzian and non-steady state effects at contact patch due to the presence of initial 
corrugation or roughness on the running surfaces of rails, in the frequency range from 20 Hz to 
1500 Hz. It has been found that when a mean positive longitudinal creepage is considered in the 
contact between the inner wheel and the low rail in order to simulate the contact conditions 
while negotiating a gentle curve, roughness growth is predicted on the low rail for the 
wavelengths corresponding to the B-F and B-B modes, 110 and 156 mm, respectively. No 
roughness growth is obtained on the high rail under the contact conditions studied. The 
non-Hertzian and non-steady contact model has not predicted roughness growth for initial 
roughness with wavelengths shorter than 100 mm on both rails. These last results seem to be 
similar to those obtained in [13-15].  

In addition, it has been shown that the vehicle-track coupled system has a nonlinear behaviour, 
mainly due to the wheel-rail contact. Thus, a time-domain model is needed to account for the 
nonlinearities of the vehicle-track system when it comes to simulate the growth of rail 
corrugation.  
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