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Abstract

The random variable transformation technique is a powerful method to determine the probabilis-
tic solution for random differential equations represented by the first probability density function
of the solution stochastic process. In this paper, that technique is applied to construct a closed
form expression of the solution for the Bernoulli random differential equation. In order to ac-
count for the general scenario, all the input parameters (coefficients and initial condition) are
assumed to be absolutely continuous random variables with an arbitrary joint probability den-
sity function. The analysis is split into two cases for which an illustrative example is provided.
Finally, a fish weight growth model is considered to illustrate the usefulness of the theoretical
results previously established using real data.

Keywords: Bernoulli random differential equation, first probability density function,
probabilistic solution, random variable transformation technique

1. Introduction and motivation

Ever since the early contributions by I. Newton, G. W. Leibniz, Jacob and Johann Bernoulli
in the XVII century until now, differential equations have uninterruptedly demonstrated their ca-
pability to model successfully complex problems. There is virtually no applied scientific area
where differential equations had not been used to deal with relevant problems. Numerous ex-
amples can be found in engineering, physics, chemistry, epidemiology, economics, etc. From a
practical standpoint, the application of differential equations requires setting their inputs (coeffi-
cients, source term, initial and boundary conditions) using sampled data, thus containing uncer-
tainty stemming from measurement errors. It has led to the consideration of randomness in the
formulation of continuous models based on differential equations. In this regard, there are two
main classes of equations, stochastic differential equations and random differential equations.
In the former case, differential equations are forced by an irregular process such as a Wiener
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process or Brownian motion. This class of equations are usually written in terms of stochastic
differentials, although they are interpreted as It6 stochastic integrals [1, 2]. Solutions of It6-type
stochastic differential equations typically exhibit nondifferentiability of their sample paths or tra-
jectories due to the irregularity of the driving Brownian motion. The formulation of It6-type
stochastic differential equations from their deterministic counterpart can be justified by means
of the perturbation of input parameters via white noise process, i.e., the formal derivative of a
Brownian motion. This implicitly entails that Gaussian-type uncertainty is assumed for perturbed
inputs. Although, stochastic differential equations have demonstrated to be powerful mathemat-
ical representations to model many problems, for instance in finance, engineering, biosciences,
etc., [3,4, 5, 6,7, 8], clearly this approach does not cover important casuistries . A complemen-
tary approach to introduce uncertainty in differential equations is to allow the direct assignment
of any probability distribution to input parameters, which is referred to as the randomization
process of the deterministic or classical differential equation. If coefficients are assumed to be
random variables (r.v.’s), then, for example, beta, exponential, Gaussian, etc., may be appropriate
candidate probability distributions to account for model uncertainty. In principle, this approach
is more flexible and it leads to random differential equations. Throughout this paper, random
differential equations will considered only.

Similarly to deterministic case, the first goal when dealing with both stochastic and random
differential equations is computing, exactly or approximately, the solution stochastic process
(s.p.)- Unlike deterministic context, now the determination of the main statistical functions asso-
ciated to the solution s.p., such as the mean and variance functions, are also important goals to be
achieved. In fact, the average behaviour of the solution as well as its variability around the mean
are obtained from these two statistical moments. Although this information is valuable, and most
contributions focus on the computation of the solution s.p. and its mean and variance/standard
deviation functions, a more ambitious target includes the determination of the first probability
density function (1-p.d.f.) of the solution. The 1-p.d.f. provides a full probabilistic description
in each time instant of the solution s.p. Moreover, from the 1-p.d.f., both the mean and variance
functions can be straightforwardly computed, but also asymmetry, kurtosis, and other higher uni-
dimensional statistical moments. Even though in this paper we focus on the computation of the
1-p.d.f. of the solution, it is worth underlining that higher p.d.f.’s of the solution s.p. are also
useful for giving further statistical characteristics. For example, from the second p.d.f. one can
obtain the correlation function of the s.p. which gives a measure of the linear interdependence
between the r.v.’s coming from evaluating the s.p. in two different time instants [4, p.39].

In order to determine the 1-p.d.f., the so-called random variable transformation (RVT) method
will be applied throughout this paper. RVT method is a powerful technique that permits the com-
putation of the p.d.f. of a r.v. which is obtained after mapping another r.v. whose p.d.f. is given
[9]. A generalization of this method can be found in [10]. One of the most fruitful applications
of RVT technique is getting the complete probabilistic description of the solution to random
differential equations represented by the 1-p.d.f. of the solution s.p. Some recent contributions
addressed to determine the 1-p.d.f. of the solution of particular random differential equations can
be found, for example, in [11, 12, 13]. In [11] one provides a comprehensive study to compute
the 1-p.d.f. of the solution s.p. of the random linear first-order differential equation. The study
considers all possible cases with respect to the manner that randomness can appear either in the
diffusion coefficient, source term or/and the initial condition. In [12] a logistic model where only
the initial condition is random. Authors determine the 1-p.d.f. of the proportion of susceptibles
of a SI-type epidemiological model. From the 1-p.d.f., a number of probabilistic properties of the
solution s.p., such as the mean, the variance, the quartiles, etc., are given. The results obtained in
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this latter paper have been recently generalized in [13] by assuming that all input parameters are
r.v.’s. In these three contributions on random ordinary differential equations, the RVT method
constitutes the cornerstone to conduct their respective analyses. However, its applicability goes
beyond random ordinary differential equations. For example, some interesting contributions deal
with random partial differential equations [14, 15]; random integral-differential equations [16]
and random difference equations [17]. Although, in all these contributions the 1-p.d.f of the so-
lution s.p. of the corresponding problems is obtained in an exact way, the technique can be also
applied to get numerical approximations, [18].

Recently, RVT technique has been applied by the authors to give a full probabilistic descrip-
tion to both, general linear first-order and Riccati random differential equations, represented by
the 1-p.d.f. of their solutions [11, 19]. The aim of this paper is to continue extending this anal-
ysis to another important classical differential equations where probabilistic dependence among
input r.v.’s will be assumed. In the following, we will consider the Bernoulli random initial value
problem (IVP)

X(@) CX() + DXX()A, t>1, } 0

X)) = Xo,

where 7y denotes the initial time and all the input parameters, Xy, D, C and A, are assumed to
be absolutely continuous r.v.’s defined in a common probability space (Q2, 7,P). Hereinafter,
D(Xp), D(D), C(C) and D(A) will denote their respectively domains. In order to provide as
much generality as possible throughout our analysis, hereinafter we will assume that Xy, C, D
and A are statistically dependent. In the following, fx, p.c.a(xo,d,c,a) will denote their joint
p.d.f.

The paper is organized as follows. In Section 2, some preliminaries and technical results
about RVT technique that will be required throughout the paper, are included. Section 3 is
addressed to determine the 1-p.d.f. of the solution s.p. to the Bernoulli random IVP (1) in the
general scenario where all input parameters (Xy, D, C,A) are assumed to be r.v.’s. As it will
be shown later, our approach requires splitting the analysis in two cases. For every case, an
illustrative example is also provided. In Section 4, we take advantage of the ideas exhibited in
Section 3 to illustrate the usefulness of computing the 1-p.d.f. to deal with a fish weight growth
model. Conclusions are drawn in the last section.

2. Preliminaries

In this section, some technical results that will play a key role to solve the Bernoulli random
IVP (1) are presented.

For the sake of clarity, we start by stating the Random Variable Transformation (RVT)
method. This result permits the computation of the p.d.f. of a r.v. which is obtained after
transforming another r.v. whose p.d.f. is known.

Theorem 1 (Multidimensional Random Variable Transformation method, [4]). Let us con-
siderU = (Uy,...,U)TandV = (Vy, ..., V,)" two n-dimensional absolutely continuous random
vectors defined on a probability space (Q, §,P). Let g : R" — R" be a one-to-one deterministic
transformation of U into 'V, i.e., V = g(U). Assume that g is continuous in U and has continuous
partial derivatives with respect to each U;, 1 < i < n. Then, if fy(u) denotes the joint probability
density function of vector U, and h = g™ = (hi(v1,...,vp), ..., ha(v1,..., )T represents the



inverse mapping of g = (g1(u1, ..., ), ..., gu(U1, ..., u,))", the joint probability density function
of vector V is given by

S~ = fu (W) ], 2

where |J|, which assumed to be different from zero, is the absolute value of the Jacobian defined
by the determinant

O (V1,eesVn) Ohn(V1,eesVn)
vy vy
ou’
v Ohy(vy,...,vy) . Ohy(vi,...,vn)
vy, v,

The following results are specializations of Theorem 1 that will be required later.

Lemma 2. Let U = (U;, U,) be an absolutely continuous real random vector defined on a prob-
ability space (Q, §, P), with joint probability density function fy(uy,us). Assume that Uy(w) # 0
and Uy(w) # 1 for all w € Q. Then, the probability density function fw(w) of the transformation

W= (Ul)ﬁ is given by
fww) = f Sow' ™, u) [(1 = u)w™| dus, 4)
D(U»)

where D(U,) denotes the domain of U,.

Proof. Let us apply Theorem 1 to the transformation v = (vi,v;) = g(u) = ((ul)ﬁ,uz). Its
inverse mapping is given by h(v) = ((v;)!™2, ), being its Jacobian

T - _ 1-v,
J= det(al) = det( - vz(;(vl) o) llog )2 (1 =v)(v) ™.

Notice that J # 0 because by hypotheses U;(w) # 0 and U,(w) # 1 with probability 1 (w.p. 1).
1
Then, applying (2)—(3), the joint p.d.f. of V = ((U;) """, U,) is given by

A1) = ful)' ™2, m) [ = v) () ™).

Finally, by marginalizing with respect to r.v. V, = U,, one obtains the p.d.f. of W = V; =
1
(Uy)'-22 given by (4). O

Lemma3. Let Z : Q — R be an absolutely continuous real random variable defined on a
probability space (Q, §, P), with probability density function fz(z). Assume that Z(w) # 0 for all
w € Q. Then, the probability density function fy(w) of the transformation W = Z? is given by

1
Fww) = 2 fz (Vo) wi 2. ®)

Proof. This result is a direct consequence of Theorem 1 forn = 1, U = Z, V = W and
W = g(Z) = Z3. Notice that the inverse transformation of g is /(w) = vw and its Jacobian is
given by #'(w) = 1/3w™?3. Tt is well-defined because Z(w) # 0 w.p. 1, by hypothesis. Then,
applying (3) one obtains directly expression (5). This proves the result. [
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3. Study of the Bernoulli random differential equation

In this section, the 1-p.d.f., fi(x, ), of the solution s.p. X(¢#) to the Bernoulli random IVP (1)
will be determined. First, it is important to point out that the following cases have been treated
in earlier contributions:

e The case where coefficient D is zero w.p. 1, i.e., P[fw € Q : D(w) = 0}]] = 1, 0or A is
one w.p. 1,1ie., P{w € Q : A(w) = 1}] = 1, which correspond to the random first-order
homogeneous linear differential equation, has been studied in [11].

e The case where coeflicient A is zero w.p. 1, i.e., Pl{w € Q : A(w) = 0}] = 1, which
corresponds to the random first-order non-homogeneous linear differential equation, has
been studied in [11].

e The case where coefficient A is two w.p. 1, i.e., P{w € Q : A(w) = 2}] = 1, which
corresponds to the Riccati random homogeneous differential equation, has been studied in
[19].

Notice that a comprehensive analysis, similar to one exhibited in [11], of all the possible
casuistries depending on the deterministic and random nature of the four input parameters, Xo,
D, C and A, will involve 15 cases (obviously, excluding the full deterministic case where all
inputs are constants). In this paper we will focus on the case where all inputs parameters are
r.v.’s with a joint p.d.f. fx, p.ca(xo,d,c,a). In order to conduct the analysis of the Bernoulli
random IVP (1) it is convenient to distinguish the Cases I-II listed in Table 1. The distinction
between these two cases helps to apply RVT technique as it will apparent later (see Eq. (8)).
Hereinafter, it is assumed that

PlweQ: Aw)# 1)]=1, PlweQ : Xow)#0}]=1. (6)

Case I PlweQ : Clw)#0}]=1
Casell || PfweQ : C(w)=0}]=1

Table 1: List of the two cases considered to compute the 1-p.d.f. of the solution s.p. to the Bernoulli random IVP (1)
under assumptions (6).

Notice that in the case Xy = 0 w.p. 1, X(¢¥) = O is clearly the unique solution of IVP (1).

Before presenting the study, it is important to emphasize that as the RVT method constitutes
the unifying technique to conduct our analysis in the two cases listed in Table 1. With the aim
of facilitating our exposition, in the subsequent subsections the results are presented following a
common structure.

In each one of the Cases I-1I, we will present a numerical example to illustrate the theoretical
results established. In these examples statistical independence among inputs will be assumed to
facilitate computations. Nevertheless, in the next section a full example involving statistical
dependence will be exhibited.



3.1. Casel

Let us assume that the linear coefficient C is different from zero w.p. 1. In the following,
Jxo.0.c.A(x0,d, ¢, a) will denote the joint p.d.f. of random vector (X, D, C, A).

In order to determine the 1-p.d.f. of the solution s.p., X(#), of the IVP (1), it is convenient to
consider the following change of variable

X() = (Z)™. 0
This permits the transformation of (1) into the following linear [IVP
Zt) = (1-A)CZH+(1-AD, t>t, }
Z(t) = (Xo)'™,
whose exact closed form solution s.p. is given by
Z(1) = (Xo)! ™ elI-A)C00) +§ e1-AC=10) —g. ®)

Let us fix t > #, and denote Z = Z(#). Let us consider the mapping » : R* — R* such that
r(xo,d, c,a) = (ri(xo,d, c,a), r2(xo,d, ¢, a), r3(xo0, d, ¢, a), ra(xo, d, ¢, a)) being

21 =ri(xg,d,c,a) =z, 220 =n(xy,d,c,a)=d, z3 =r3(xo,d,c,a) =c, z4 =r4(xp,d,c,a)=a.

It is straightforward to check that the inverse mapping of r is defined by s : R* — R?,
s(z1,22,23,24) = (51(21, 22,23, 24), $2(21, 22, 23, 24), $3(21, 22, 23, Z4), 84(21, 22, 23, 24)), Where

1
(—Zz + e—Za(I—lo)(l—ZzO(ZlZ3 + ZZ))I—;4 p

X0 = $1(21,22,23,24) = . = 52(21,22,23,24) = 22,
3
c = s3(21,22,23,24) = 23, a = 54(21,22,23,4) = .
Moreover, the Jacobian of s mapping is given by
e (o 4 =012 (2 20 4 7))\ 75
J = . )
1-—z4 23

Therefore, by Theorem 1, the joint p.d.f. of random vector (Z;, Z,, Z3, Z4) can be written as

1

-0+ e—Zs(f—fo)(l—Z4)(Z1Z3 +22) |\

522523524
13

f2.2,2,2,(21,22,23,24) =  fxo.pcA [(

X

e~ u(t=10)(1-z) (_Z2 + 6*23(t*fr1)(1*14)(zlz3 + Zz))]ﬁi“

1-z4 23

Taking into account (7), Z = Z;, A = Z4, hence the p.d.f. of random vector (Z, A) is obtained as
the marginal p.d.f. of f7, 7,7 7.(21, 22,23, 24) with respect to Z, = D and Z3 = C, that is,

1
—d+e¢ (t—to)(l—a)(zc + d) T
fzalz,a) = f f fxo.0.CA ( ,d,c,a
D(D) JD(C) c

g—ci—)(1-a) (—d + e t-0)(1-a) (70 4 d))l“u

X dc dd.

1-a c
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Now, using the change of variable (7), applying Lemma 2 with the following identification:
U, =2Z,U, =Aand W = X, and considering ¢ > #, arbitrary, the 1-p.d.f. of the solution s.p.
X(t) = (Z(1))™ is given by

1
_d+efc(tftn)(lfa)(xlfac+d) T2
filx,n = f f f Sxo.n.cA ( ,d,c,a
D) Jow) I ¢

e=CU—)(1=a) [ _ g 4 e~et=i)(1-a)(yl=ac. 4 ) %
xa

(10)

X dcddda.

c

Example 1. Let us consider the random IVP (1) with ty = 0 and assume the following probability
distributions for its inputs parameters: the nonlinear coefficient, D, is a uniform r.v. on the
interval [0,1], D ~ U([0, 1]); the linear coefficient, C, is an exponential r.v. of mean 1/35,
C ~ Exp(35), the exponent A is a beta r.v. with parameters (2,3), A ~ Be(2;3), and the initial
condition is an exponential r.v. with mean 2.5, Xo ~ Exp(1/2.5). In Figure 1, the I-p.d.f. fi(x,1)
of the solution s.p. to the random IVP (1) has been plotted. Computations to perform this
graphical representation have been carried out using expression (10) on the time interval [0, 5].
Notice that the joint p.d.f. of the input data (Xy, D, C, A) is given by

Jxo(x0) fp(d) fc(c) fala)
1 —LX() —3J¢C
(E e 13 )x (1) (35¢7) x (12d(1 - a)?)
168~ 4039 g1 —dy’ if (x0.d.c,a) € D(Xo) X D(D) x D(C) X D(A),

being D(Xp) = D(C) =10, +oo[, D(D) = D(A) =]0, 1[, and fx,p,ca(x0.d,c,a) = 0 otherwise.
Notice that the hypothesis of pairwise independence of r.v.’s Xy, A, C and D has been used in the
above expression for fx, p.ca(xo,d, c,a) (see comment before Section 3.1). From a computational
point of view it is worth pointing out that the graphical representation shown in Figure 1 has
been built fixing a value of time t = t € {0,0.5,1,1.5,2,...,5} and then, first checking that
f_ 0; fitx,Hdx ~ 1, and secondly, using the software Mathematica® [20] to calculate the three-
dimensional integral given by (10). From this graph one observes that the variability of the
solution X = X(t) increases rapidly over the time.

fxoncalxo,d, c,a)

3.2. Casell
Now, we address the case where C is O w.p. 1. This corresponds to the following particular

case of IVP (1)
X(0)
X(to)

A
DX()*, t=1, } (11)

Xo,

whose solution is given by

X(@) = (D(t— to)(1 —A) + (Xo)l—A)m _

Let us fix t > ty. Unlike Case I, now transformation (7), involving r.v. Z, is not needed to
compute the solution of IVP (11). Hence, we will compute directly the 1-p.d.f. of X(#) without
computing previously the p.d.f. of r.v. Z. With this end, let us define the mapping r : R} — R3
such that r(xg,d, a) = (r1(xg,d, a), r»(x9,d, a), r3(xg,d, a)) where

x1 = ri(xo,d,a) = (d(f— o)1 —a)+ (xo)l_a)m , X =n(x,d,a) =d, x3=r(x,d,a)=a.
7



Figure 1: Plot of the 1-p.d.f. fi(x,?) given by (10) in the Example 1 at the following values of € {0,0.5,1,1.5,...,5}.

The inverse mapping s of is given by s : R? — R3, whose components s;(x;, X2, x3), | <i <3
are

1
I- e
xp = s1(x1, X2, X3) = ((Xl) B — 0t — 19) + x0x3(t — to)>l >, d = 5(x1, X2, x3) = X2, a = s3(x1,X2,X3) = X3.

In accordance with Theorem 1, the joint p.d.f. of random vector (X;, X», X3) is given by

1

1- —X
fxxx (X1, %2, %3) = fxona (((Xl) B =2t = 1o) + xpx3(1 - fo))] ’ ,xz,x3)
3

. (12)
x | (x1)™ ()™ = xa(t = 10) + X2x3(1 — 19)) ™5

>

where the factor in absolute value corresponds to the Jacobian of s mapping.
Finally considering ¢ > ¢, arbitrary, the 1-p.d.f. of the solution s.p. X(#) to IVP (11) is
obtained as the (X3, X3)-marginal of the p.d.f. (12)

dadd.

A = f frpa (6177 = dt = 0) + ad(e = 1)) da) 1 = dt = 0) + ade = 1)

Remark 1. Notice that expression (13) is not a particular case of expression (10) since in the
context of Case II we are assuming that C = 0 w.p. 1. If we revise carefully the application of
Theorem 2 within our discussion of Case I, the hypothesis C = 0 w.p. 1 is required to guarantee
the jacobian J # 0 (see expression (9) where z3 = ¢). Moreover, expression (13) cannot be
obtained as a limit of expression (10) as ¢ — 0. These facts have motivated the distinction of the
two cases listed in Table 1.

Example 2. In order to illustrate the theoretical results previously established, let us consider

the random IVP (11) being the initial condition Xy an exponential r.v. of mean 1, Xy ~ Exp(1) at

the initial time ty = 0; the nonlinear coefficient D a beta r.v. D ~ Be(2;3) and the exponent A a
8



standard Gaussian r.v., A ~ N(0; 1), truncated at the domain | —oo, 1]. Figure 2 shows the 1-p.d.f.
of the solution s.p. to IVP (11) on the time interval [0, 6). It has been computed according to
expression (13) and taking into account that

Sxopa(xo,d,a) = fx,(x0) fp(d) fala)
(e™) x (12d(1 - d)*) x

%

(S

1 2
L€ 7dz

= \/EL e_(X°+§) d(1 -d?* if (x.d,a) € D(Xy) X D(D) x D(A),
T+ erf(#)

being D(Xp) =10, +oo[, D(D) =10, 1[, D(A) =] — oo, 1[, and fx, p.a(x0,d,a) = 0 otherwise. Here
erf(t) =2/ \r fot e~ dz stands for the error function. Similar comments to the ones exhibited in
Example 1 regarding the computations carried out using the software Mathematica® to plot the
1-p.d.f. fi(x,t) can be made. From this representation, one observes that variance increases as
time goes on.

Figure 2: Plot of the 1-p.d.f. fi(x,?) given by (13) in the Example 2 at the following values of # € {0,0.5.1,1.5,...,6}.

4. An application of the Bernoulli random differential equation to modelling

On the one hand, so far closed expressions for the 1-p.d.f. of the solution s.p. to the Bernoulli
random IVP (1) have been provided for the two cases listed in Table 1. On the other hand, as it has
been highlighted in Section 1, random differential equations are very useful in modelling. Next,
we will illustrate this claim by considering a deterministic model, formulated by a Bernoulli dif-
ferential equation, that describes the fish weight growth over the time. In a first step, we assume
that input parameters (coefficients and initial condition) are r.v.’s rather than deterministic con-
stants. Secondly, using real data we will assign a reliable probabilistic distribution to random
inputs using an inverse frequentist technique. Then, we will take advantage of RVT technique to
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determine the 1-p.d.f. of the solution s.p. to the model. Finally, from this important determin-
istic function, both punctual and probabilistic predictions based on confidence intervals will be
constructed.

The following IVP, usually referred to as Bertalanffy model [21, 22], has been applied exten-
sively to describe the fish weight growth, W(¢), at the time instant #, (see for example, [23, 24])

W)
W(to)

(14)

=AW () + n(W@)*3,  t>1,
W .

It is worth to point out that, recently, some authors have considered stochastic versions of
this model following an based on It6-type stochastic differential equations, [25, 26].

Under our approach, let us assume that the initial condition, W, and the coefficients, 1 and
A of IVP (14) are absolutely continuous r.v.’s defined on a common probability space (2, §, P),
being fw, 5.a(wo, 7, 1) their joint p.d.f. Moreover, let us suppose that

PlweQ: Wow)#01=1, PlweQ: Aw)#0}]=1.

Considering the identification X(r) = W(t), C = -4, D = n, A = 2/3 and Xy, = W, the
initial value problem (14) can be treated as a particular case of (1). Hence, one can obtain the
1-p.d.f. fi(w,1) of the solution s.p. W(¢) of (14) introducing the delta Dirac function, 6(a —2/3),
in expression (10). An alternative way to do that is to treat the problem (14) directly depending
on the three r.v.’s Wy, n, 4, in an similar way as in Case I. With this aim, let us consider the
following change of variable

W) = (Z@)*. (15)
This permits the transformation of (14) into the following random linear IVP
Z(t) —(1/3)AZ() + (1/3)n, t>19, }
Z(to)

whose solution s.p. is given by

(Wo)'73,

Z(t) = (W)'/3 e~ 1/9=10) _ % o (1/3)-10) g ' 6)

Following an analogous reasoning we have exhibited in Case I, based on the application of
RVT technique, we obtain the p.d.f. of r.v. Z = Z(¢) with ¢ > 1, fixed,

(1/3)A(1—10) — o(1/3)A-10) 1;\3
e Az+n—¢ n
f2(z) = 3f Swona [( p) 1, A
D) YD) 5
(1/3)A(t—19) (1/3)At—10)
e Az+n—-e _
X ( /;] 77) /=) 42 dp.

Now, using the change of variable (15), for every ¢ > t;, the 1-p.d.f. of the solution s.p.
W = W(r) that represents the fish weight growth is obtained by applying Lemma 3

)

e(/3A=10) Q113 4 gy — (1/3A=10) 1\
Jwona ;) 17,4 (17)
D) JDW)

(1/3)A(t—10) 1/3 (1/3)A0—19) 1)\ 2
e w2 +np—¢
X ( p n 77) eU/3A=10) 1317234 2 .

Siw, 1)
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Table 2 shows data about fish weights in 1bs for walleye species over the period 1-33 in years
[27]. Notice that the sample size is N = 33.

t; (years) 1 2 3 4 5 6 7 8 9 10 | 11
w;(bs) | 0204|0609 1 1.3 16 | 18] 23 |26]|29
t;(years) | 12 | 13 | 14 | 15 16 17 18 19 | 20 | 21 | 22
wi(lbs) | 3.1 |34 |37 |45| 52 |57| 62 |65]| 6.7 |68|72
t; (years) | 23 | 24 | 25 | 26 | 27 28 29 30 31 32 | 33
wi(bs) [ 82| 9 [ 95| 10 | 105 | 11 | 11.5| 12 | 125 | 13 | 14

Table 2: Fish weights w; for walleye species in 1bs every year #;, 1 <i <33 =N, [27].

Next, we are going to apply the random Bertalanffy model (14) with 7y = 1 to describe the
evolution of fish weight over the time. For that purpose, we first need to assign a reliable prob-
abilistic distribution to input random vector Q = (Wy,n, 4). To this end, several methods and
techniques are available such as frequentist and bayessian techniques [28, 29, 30]. In this paper,
this will be done applying an inverse frequentist technique for parameter estimation, which is a
particular Inverse Uncertainty Quantification technique. As the results established in Section 3
are valid for dependent r.v.’s, and accounting for statistical dependence among input parameters
(Wo, n, A) is an important issue, we have chosen an inverse frequentist approach because it allows
us to consider statistical dependence in a very flexible manner. Under inverse frequentist tech-
nique, it is assumed that the measured quantity of interest, i.e., fish weights w; of our observations
(t;,wi), 1 <i < N = 33 are corrupted by measurement errors ¢;, i.e.,

wi=W(ti;q) = Wt wo,n, )+, 1<i<33=N. (18)

As usual, notice that we now use lower-case letters to emphasize that the model is being evaluated
at specific numerical values (¢;, w;).

The mathematical inverse problem associated with parameter estimation can then be stated
as follows: to quantify uncertainty associated with q = (wy, 17, 4) from the measurement errors ¢;,
and then assigning a probabilistic distribution to random vector Q = (Wy,n, 1). A basic tenet of
inverse frequentist approach, that will be checked later, is that errors are i.i.d. (independent and
identically distributed) and €; ~ N(O0; o), being o > 0 fixed but unknown. As a consequence
of this assignment of uncertainty to model parameters through measurement errors according to
formulation (18), the probabilistic distribution for the random vector Q = (W, i, 1) is assumed
to be a multivariate Gaussian distribution

Q = (Wo,n, 4) ~ N3(uq; Zq),

where the mean vector pg = (Wo, 1, A) is defined from appropriate estimates of (wy, 7, 1) and 29
represents the variance-covariance matrix that will be determined below.

In order to achieve this goal, first notice that from (15) and (16) , it is clear that the dependence
of the weight W(#; q) on q is nonlinear. A least squares fit to the data yields the following
parameter estimates

o = Obo. M A),  Wo=0.365934, #=0.305461, 1 =0.0880184. (19)

11



The residuals of the fitting are,
€ = Wt Wo, 1, A) —w;, 1<i<33=N, (20)

where, W(t;; Wo, 1, ;1) is the solution of IVP (14) with #, = 1 evaluated at every year t; = i €
{1,2,...,33} with model parameters given by (19) and, w; are the fish weight data collected in
Table 2. Notice that W(¢; Wy, 1, 1) = W(5) is obtained from (15) and (16). The model fitting
and the residuals are shown in Figure 3 (left) and Figure 3 (right), respectively. From this lat-
ter graphical representation, one observes that residuals do not exhibit discernible pattern, thus
motivating the assumption that errors are independent and identically distributed. To check that
errors are normally distributed (null hypothesis), a Shapiro-Walk test has been applied. Fixed a
confidence level, say «, null hypothesis is rejected when the p-value is smaller than a; otherwise
the normality of the residuals is accepted (i.e., cannot be rejected) [31]. In our case, Shapiro-
Walk test has been applied taking & = 0.05, showing the normality of the residuals (see Table 3).
This conclusion has been reinforced by means a Q-Q plot (see Figure 4).

W(t; g, 7, A) )
14 0.6+ °
12 °
04f
10 L]
8 0.2f o
L ] L
[ ] [ ] °
6 e o L °
Lo . . . t
4 o5 ® 104 $ 20 25 % 30
°® o®
) -0.2F °
e, o
t_oal °

Figure 3: Left: Model fitting to the fish weights using least mean squares method. Right: Residuals at the N = 33 fish
weights data.

Normality Test Statistic p-value
Shapiro-Walk Test || 0.958995  0.242077

Table 3: Shapiro-Walk test to check the normality of the residuals.

From the least mean square fitting, the error standard deviation estimate is given by

33
Z(e,-)z = 0.214435, 1)

i=1

where the residuals ¢;, are defined by (20).
According to frequentist parameter estimation method described in [30], to account for vari-
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Figure 4: Q-Q plot for the least mean squares residuals.

ability of the p = 3 model parameters, Q = (Wy, 15, 1), the N X p = 33 X 3 sensitivity matrix

W@ Q) W Q) 1

oWy oWy
Q) = aW(aﬁ Q) OW(3:Q) 22)
n on

W@;Q OW(33;Q)
oA oA

Q=001

has been computed. A graphical representation of the entries of this matrix by files has been
plotted in Figure 5. From these representations, and taking into account their vertical scales, one
deduces that the critical model input parameter with respect to the sensitivity analysis is A.

w aw

(t;:Q) (tpQ) w
aw on (t:Q)
120 !
PEYYTYT L t
YLl ® ""Q"o.w 15 20 25 30
o 100 . %oy
. .
o . IR
o . 0 .
3 80 . .
o’ o* ®e
.
o* 60 . -100 e
2 . o® .
o o* *e
. 40 . .
. ® 150 .
1le .
20 o° M
. .
.
. .
...... cense®’ . . . . | 2 .
10 1 20 2 30 5 10 1 20 2 30 M

Figure 5: Analytic sensibility values of matrix (22). Left: ngom; Q). Center: %’j(zi; Q). Right: ¥ (1;Q). f;=i,1<i<
33=N.
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Then, from (21) and (22), one obtains the covariance matrix of model parameters

0.0029288 —-0.000812275 -0.000400288

-1

Sq =0 (WQ)x(Q) " =| -0.00081227  0.000268075  0.000136915 |.  (23)

—-0.000400288  0.000136915  0.0000705259

It is worth nothing that A parameter has the smallest variability (0.0000705259). This is in
agreement with the fact that it is the most critical parameter regarding the sensibility of the
model.

Summarizing, based on inverse frequentist technique for parameter estimation approach the
following probabilistic distribution has been assigned to model parameters

Q = (Wo.7. 1) ~ N3(uq: Zo) (24)

where 1 and Xq are given by (19) and (23), respectively.

At this point, we are ready to take advantage of the theoretical results previously established
about the 1-p.d.f. of the solution s.p. to the random Bertalanffy model. In Figure 6 (left), the
I-p.d.f. is plotted for every time of the whole sample. As the 1-p.d.f. is leptokurtic and it has
little variance, we have plotted it only for values of w where it is greater than 1072, In Figure 6
(right), a more detailed plot for times values ¢ € {1.1,...,2} is shown.

Figure 6: Left: 1-p.d.f. of the solution stochastic process to random Bertalanffy model (14) given by (17) for all the times
of the sample, t € {2,..., 33 = N}. Model parameters are assumed to have the multinormal distribution defined by (24),
(19) and (23). Right: Detailed representation of the 1-p.d.f. for the times ¢ € {1.1,1.2,...,2}.

The mean and the variance functions of the fish weight over the time can be determined as
follows

o) = EWON = [ wfionnidw w0 =VIWOI= [ w200 - o)
-0 —00 (25)
where fi(w, ?) is defined by (17). In order to construct confidence intervals, first let us fix a time
value 7 > 1 and « € (0, 1), and secondly determine Ww; = wy(?) and W, = wy(f) such that

- 1
f fiw,Hdw = = = f fiw, D dw. (26)
0 W

DR

1

~



Then, (1 — @) x 100%-confidence interval is specified by

l—a=P(weQ: WEw) e [W, )]} = f fi(w, D dw. 7)

In Figure 7, both the mean function (solid line), 99%-—confidence intervals (dashed lines) and real
data (blue points) are shown. From this graphical representation one observes that the proposed
random Bertalanffy model captures satisfactorily the data uncertainty.

w(t)

hd real data
— expectation
-, ”‘

—————— 99% Confidence interval

Figure 7: Expectation (solid line) and 99%—confidence intervals (dotted lines). Points represent fish weigh.

5. Conclusions

In this paper the Random Variable Transformation (RVT) method has been successfully used
to determine a full probabilistic description of the Bernoulli random differential equation. This
description has been made through the computation of the first probability density function of
the solution stochastic process of that important equation. The study has been conducted in the
general case that all input parameters and the initial condition are absolutely continuous ran-
dom variables. Two important features are that neither probabilistic independence among ran-
dom variables nor specific probabilistic distributions have been assumed throughout our analysis.
These facts provide a generality to our study. Therefore, any joint probability density function
can be considered for the model input parameters. Furthermore, it has been shown the usefulness
of the theoretical results obtained to model satisfactorily a real problem. Finally, we want to point
out that the proposed technique can be applied to compute the first probability density function
of the solution stochastic process for other random (ordinary or partial) differential equations.
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