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Abstract

Computational electromagnetics applications based on the solution of the in-

tegral form of Maxwell’s equations with boundary element methods require

the solution of large and dense linear systems. For large-scale problems the

solution is obtained by using iterative Krylov-type methods provided that a

fast method for performing matrix-vector products is available. In addition,

for ill-conditioned problems some kind of preconditioning technique must be

applied to the linear system in order to accelerate the convergence of the iter-

ative method and improve its performance. For many applications it has been

reported that incomplete factorizations often suffer from numerical instability

due to the indefiniteness of the coefficient matrix. In this context, approximate

inverse preconditioners based on Frobenious-norm minimization have emerged

as a robust and highly parallel alternative. In this work we propose a two-level

ILU preconditioner for the preconditioned GMRES method. The computation

and application of the preconditioner is based on graph partitioning techniques.

Numerical experiments are presented for different problems and show that with

this technique it is possible to obtain robust ILU preconditioners that perform

competitively compared with Frobenious-norm minimization preconditioners.
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1. Introduction

The numerical solution of the Maxwell’s equations [1] plays a crucial role

in numerous large scale industrial and scientific applications related with elec-

tromagnetism phenomena. To name a few, the computation of the antenna

radiation pattern, electromagnetic interference and compatibility studies of an5

electrical device with their environment, and scattering problems as the com-

putation of the radar cross-section of a 3D body are important for aerospace

industry. The performance of a computational electromagnetism (CEM) code is

associated with the strengths and weaknesses of underlying numerical methods

chosen for its implementation. Overall, for real-life applications the computation10

of an approximate solution of the linear systems arising from the discretization

of the Maxwell’s equations is the most demanding part in terms of computer

resources. Thus, devising efficient numerical algorithms for solving these linear

systems is key to develop codes capable to run with a good performance in

modern computer architectures.15

The most common techniques for obtaining a numerical solution of Maxwell’s

equations can be classified either into methods that solve the differential equa-

tions or methods that consider their integral formulation. Partial differential

equations methods (PDEMs) use classical techniques like the finite-element or

the finite-difference method to discretize directly the Maxwell’s equations [2, 3].20

An advantage of these methods is that they allow the simulation of complex

electrical structures. By contrast, the study of electrical phenomena in open

domains is rather difficult and artificial boundary conditions must be imposed

to simulate an infinite volume. With the rise of modern computer architectures

and the sustained increment of the computational resources available, integral25

equations methods (IEMs) have emerged as an attractive alternative for CEM

applications. These methods solve the problem by reformulating the Maxwell’s
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equations as a set of integral equations with equivalent sources [4, 5]. The inte-

gral equations relate the electric and magnetic fields to the equivalent electric

and magnetic currents on the surface of the object. This leads to a reduction30

on the dimensionality of the problem by one, and therefore allows significant

reduction on the number of unknowns of the associated linear systems. Because

the boundary conditions are incorporated into the surface integral equations,

IEMs can handle general geometries in open domains without formulating any

artificial boundary. Thus, they are attractive for a wide range of industrial35

simulations in open geometries.

The integral equations are usually discretized by means of the boundary ele-

ment method (BEM) or the Method of Moments (MoM) [6, 7]. Unlike PDEMs,

the matrices arising from IEMs are dense and expensive to solve. Since in

large-scale industrial applications the size of the matrices can be very large the40

application of direct gaussian elimination methods is out of context, leaving the

use of Krylov-type iterative methods as the only practical alternative. The arith-

metic complexity of these methods resides on the computation of matrix-vector

products, operation that has a complexity of order O(n2). This complexity can

be reduced to O(n log n) by applying optimized methods as the Fast Multipole45

Method [8]. An additional difficulty is that in many applications IEMs have

to deal with ill-conditioned matrices that are challenging to solve, as it is the

case of the matrices arising from the discretization of the electric field integral

equations (EFIE).

As it is well known, the success of an iterative method for ill-conditioned50

problems depends on applying a suitable preconditioning technique to the sys-

tem matrix. In the case of EFIE most algebraic factorized preconditioners fail to

produce good converge rates or even fail to converge, see [9, 10, 11, 12]. The best

results on medium size problems were obtained with sparse approximate inverse

preconditioners based on Frobenious norm minimization [13]. Nevertheless, for55

large problems the relative nonzero density of the preconditioner is too small

with a negative effect on the performance of this class of preconditioners. These

problems may be overcome by performing spectral low-rank updates (SLRU) of
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the preconditioned matrix [14, 15, 16]. This technique consists in shifting by

one a subset of the smallest eigenvalues that play a key role in slowing down the60

convergence of Krylov methods. The results of the numerical experiments show

that the SLRU technique can improve considerably the performance, specially

when multiple right hand sides have to be solved as is the case for scattering

problems. Alternative techniques implement flexible variants of the GMRES

method [17].65

Our aim in this work is to present a technique for the computation of ILU-

type preconditioners for ill-conditioned CEM applications. The method is based

on graph partitioning techniques applied to the near field matrix of the linear

systems. The paper is organized as follows. In Sections 2 and 3 we review

the main ideas of graph partitioning and the algorithm for computing a two-70

level ILU for CEM applications is presented. Then, the numerical results are

presented in Section 4. Finally, the main conclusions are outlined in Section 5.

2. Graph partitioning

Graph partitioning is a widely used technique in parallel processing as it

provides an effective way to distribute unstructured computations among pro-75

cessors. This decomposition is achieved by splitting the adjacency graph of a

matrix into p parts subject to some constraints. Here we will describe how it

can be used to compute a two-level ILU preconditioner. Although a number

of different methods have been proposed in the literature [18], the idea behind

graph partitioning is the computation of a p−way partitioning of the graph80

keeping the size of the p subgraphs balanced while minimizing to some extent

the number of edges that are cut. Let us describe briefly the technique.

Let A be a sparse structurally symmetric matrix. The associated undirected

adjacency graph G = (V,E) consists of a set nodes V = {1, . . . , n}, one node for

each row or column of the matrix, and the edge set E. There is an edge 〈i, j〉85

for any matrix entry aij 6= 0. Note that there is not distinction between 〈i, j〉

and 〈j, i〉. For nonsymmetric sparse patterns the adjacency graph of A + AT
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is considered instead. We define the separator set as the group of nodes which

are connected by edges that are cut in the graph partition. We also define the

group of interior nodes as the nodes which are connected with the separator90

set. Thus, there are p groups of interior nodes, one for each subgraph of the

partition.

By numbering first the interior nodes and taking the separator set last, the

matrix is permuted into the following block angular form:

PTAP =



A1 B1

A2 B2

. . .
...

Ap Bp

C1 C2 . . . Cp AS


(1)

where P is a permutation matrix. The diagonal blocks A1, ..., Ap correspond to95

subgraphs induced by the interior nodes in the graph decomposition, the off-

diagonal blocks Bi y Ci represent the connections between interior nodes and

the separator set, and As correspond to the subgraph induced by the separator

set. By computing an incomplete factorization for a matrix structured as in (1)

one may obtain an efficient preconditioner for solving linear systems iteratively.100

3. Two-level ILU preconditioner

Consider a linear system of n equations with n unknowns given by

Ax = b (2)

obtained after the discretization of the integral form of the Maxwell’s equations

using the Method of Moments. The matrix A is called the impedance matrix and

it is dense, non-hermitian and with complex elements. Moreover, the impedance105

matrix is often characterized by a large condition number which results in a

slow convergence of iterative methods. A preconditioning technique consists in

finding a matrix M for which an approximate solution of the equivalent linear
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systems

M−1Ax = M−1b , or AM−1y = b , x = M−1y (3)

is obtained more efficiently. The matrix M is called the preconditioner. If the110

preconditioned matrix M−1A (or AM−1) has a better condition number than A

or its eigenvalues have a favorable distribution, one can expect an improvement

of the convergence rate of the iterative method [19].

Figure 1: A 3−partitioning for CETAF10

The impedance matrix relates the induced currents with the incident fields

on the surface of a 3D body. Each equation represents the interaction between an115

edge of the mesh and its neighborhood. In general, the magnitudes of its entries,

associated with the electric and magnetic field operators, decrease with the

distance between edges of the mesh. In addition, due to the rapid decay of the

discrete Green’s function, the number of entries with relative large magnitude

compared to the others can be very small. Thus, it is possible to obtain a sparse120

approximation of A by considering only the near-field entries that significantly

affect the spectral properties of the integral equation kernel. If we decompose

the impedance matrix into its near-field and far-field entries, equation (2) can
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Figure 2: An 8−partitioning for CETAF10

be rewritten as

(Anear +Afar)x = b , (4)

where the near-field matrix Anear contains only those entries representing the125

interactions between source and test basis functions lying within some threshold

distance.

A good preconditioner should approximate the inverse of A or, at least, its

near-field entries. Therefore, the preconditioner will be formulated using the

matrix Anear. After computing a p−way partitioning for the adjacency graph130

of Anear and permuting the matrix as described in the previous section, one ob-

tains the block angular form (1). Figures 1 and 2 show the sparse pattern of two

different permutations of a near-field matrix obtained from matrix CETAF10.

Notify that, for a fixed graph, the number of nodes in the separator set in-

creases with the number of partitions while the number of interior nodes in135

each partition decreases. As it will be discussed later, a larger size of the matrix

AS may lead to an increment of the preconditioner setup time. The block LU
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factorization of a matrix with block angular form (1) is

PTAnearP =



L1

L2

. . .
...

Lp

F1 F2 . . . Fp LS





U1 E1

U2 E2

. . .
...

Up Ep

. . . US


, (5)

where Ai = LiUi, Ei = L−1
i Bi, Fi = CiU

−1
i . The matrices LS and US are the

triangular factors of the Schur complement matrix140

S = AS −
p∑

i=1

CiA
−1
i Bi. (6)

From (5) an incomplete factorization PTAnearP is obtained by computing

an ILU decomposition for each diagonal block, i.e., Ai ≈ L̂iÛi. Moreover, since

A−1
i ≈ U−1

i L−1
i , it also follows from equation (6) that an approximation of

the Schur complement matrix S is computed and factorized as Ŝ ≈ L̂SÛS . This

double factorization and approximation characterizes the two-level nature of the145

algorithm. It is worth to note that fill-in produced in the factorization process

is located within the nonzero blocks of L̂ and Û . Thus, the preconditioner

M = L̂Û preserves a good deal of sparsity compared with the inverse of Anear

that is generally full. Moreover, additional sparsity can be obtained by applying

a fill-in reordering strategy to each diagonal block Ai as, for instance minimum150

degree, or a recursive application of graph partitioning [20]. The last option

is of particular interest in the context of parallel computations. With respect

to the computational complexity of the preconditioner computation, note that

it depends heavily on the dimension of the Schur complement matrix Ŝ since

it must be computed and factorized. Therefore, it is important to keep the155

separator set as small as possible. That is, for a fixed problem size there will be

a maximum number of partitions that can be used efficiently.

The ILU factorization described is used as a preconditioner for the iterative

solution of the permuted linear system

(PTAP )y = PT b, y = PTx,
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where A is the full matrix. Thus, each preconditioning step Ms = r consists160

in two triangular solves. Assuming that the vectors are partitioned conformally

to PTAnearP , it is first computed the solution of the lower triangular system

L̂y = r by forward substitution,

y1

y2
...

yp

yS


=



L̂−1
1 r1

L̂−1
2 r2
...

L̂−1
p rp

L̂−1
S (rS −

∑p
i=1 F̂iyi)


(7)

followed by the solution of the upper triangular system Ûs = y.

s1

s2
...

sp

sS


=



Û−1
1 (y1 − Ê1sS)

Û−1
2 (y2 − Ê2sS)

...

Û−1
p (yp − ÊpsS)

Û−1
S yS


(8)

Note that it is not necessary to compute and store explicitly the off-diagonal165

blocks Êi and F̂i since their application over a vector can be done with a matrix-

vector product and a triangular solve.

Remark. As mentioned in the Introduction, it is important for large-scale

problems to have at disposal highly parallel preconditioning algorithms. Al-

though it is not considered in this work, we want to comment some aspects about170

the parallel computation and application of the preconditioner, besides its po-

tential performance. Assuming that there are p computational nodes available,

the permuted near-field matrix in angular form (1) can be distributed among

them, each node storing a row-block and a column-block of the matrix, i.e., the

node Ni stores the blocks Ai, Bi and Ci for i = 1, . . . , p. With this distribution175

the ILU factorizations of the diagonal blocks Ai can be performed completely in

parallel. The Schur complement matrix S given in (6) is obtained after a fan-in

process with the final assembly taking place in one of the nodes, that also must
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hold the diagonal block AS . Then, the Schur complement matrix is factorized,

being this task the sequential part of the preconditioner computation and a po-180

tential bottleneck. The preconditioning step is also highly parallel. Assume that

the vectors are also distributed accordingly to the matrix. After a sequential

computation of the part of the solution vector that corresponds to the Schur

complement matrix and distributing this part among the computer nodes, the

solution of the upper triangular system (8) can be done completely in parallel.185

The lower triangular system (7) requires a final fan-in across the processors.

We refer to [21] where a similar technique was used to compute highly par-

allel factorized sparse approximate inverse preconditioners for large-scale PDE

problems with excellent scalability.

4. Numerical experiments190

In this section we show the results of the numerical experiments obtained for

a set of model problems which are listed in Table 1. All the matrices were kindly

provided to us by the EADS-CASA company. They correspond to the EFIE

formulation of the Maxwell’s equations for the CETAF problem with different

sizes, and other private test problems of the company. All the problems arise195

from the computation of a radar cross section and are challenging to solve by

an iterative method, specially the set CN which are highly indefinite matrices.

The company provided us the discretized impedance matrix, the right hand

side vector, a reference solution vector and a matrix with distances between

the elements of the mesh. This matrix was used to filter the impedance matrix200

with a threshold of 0.04 meters in all the cases. The table shows the matrix

dimension n, and the relative nonzero density of the near-field matrix used to

compute the two-level ILU preconditioner, ρ(Anear).

All codes developed for the tests were written in FORTRAN 95 in double

precision complex arithmetic, compiled with the Intel Fortran Composer XE205

2013 and linked with the Intel Math Kernel Library. The codes were run in

a Linux PC with an intel Core i5 processor and 8 Gb of RAM. The restarted
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Matrix n ρ(Anear)

CETAF3 3097 0.02

CETAF5 5021 0.02

CETAF10 10022 0.01

CN2 2038 0.02

CN3 3020 0.02

CN5 5005 0.02

Table 1: Tested matrices

GMRES(200) method with right preconditioning was used to solve each lin-

ear system [22]. That was equivalent in practice to the full GMRES since

convergence was attained before restarting, with the exception of the matrices210

CETAF10 and CN2. The iterative method was stopped when the initial residual

was reduced by at least six orders of magnitude which is more than enough to

obtain accurate radar cross section results. The initial guess is set to the zero

vector.

The METIS software package [23] was used to obtain a p−way partition-215

ing of the near-field adjacency graph. METIS is a set of serial programs for

partitioning graphs based on multilevel recursive-bisection and multilevel p-way

partitioning schemes. It produces high quality partitions in a very short time

relative to the overall solution time. Moreover, there exists also a parallel version

specially suited for computations in parallel architectures. The ILUT algorithm220

was used to compute incomplete factorizations [19]. ILUT performs an ILU

with threshold and also allows for restricting the maximum number of nonze-

ros by row. For simplicity, in our tests only the threshold option was used to

reduce the fill-in which is indicated in the caption of the tables. Some internal

experiments, not listed here, did not lead to any significant advantage that may225

justify to add an extra complexity to the analysis of the experimental results.

The numerical experiments were conducted to show the effect of the num-
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ber of partitions on the quality of the ILU preconditioner, the effect of applying

reorderings to the diagonal blocks of the permuted near-field matrix before com-

puting the incomplete factorization, and finally a comparison of the proposed230

two-level ILU preconditioner with SPAI, an approximate inverse preconditioner

which is widely used in CEM applications.

It is well known that incomplete factorizations for nonsymmetric matrices

can benefit from symmetric reorderings applied to the coefficient matrix, such

as fill-in reducing orderings and level set reorderings. While level set reorderings235

are in general better for incomplete factorizations (see [24]), minimum degree

results in incomplete factors which are sparser. This can be a deciding factor

in CEM applications that usually demand large amount of computer memory.

Therefore, we tested the effect of the multiple minimum degree, quotient min-

imum degree, reverse Cuthill-McKee and nested dissection [25, 26]. In tables240

we refer to them as mmd, qmd, rcm and nd, respectively, whereas no indicates

natural ordering. Moreover, as reported in [27], the robustness and performance

of Krylov subspace methods preconditioned with incomplete factorizations for

highly indefinite and nonsymmetric matrices can be improved by moving large

entries to the diagonal of the matrix. This task can be accomplished with non-245

symmetric reorderings such as the maximum sum transversal and the maximum

product transversal algorithms [28].

Tables 2 and 3 show the effect of the symmetric reorderings for the matrices

CETAF3 and CN3, respectively. For the rest of matrices similar behavior was

observed. In this table, p indicates the number of partitions of the adjacency250

graph of Anear, Symm indicates the symmetric reordering method applied to the

diagonal blocks and Schur complement matrix, Tr is the time spent to compute

these reorderings, ρ is the density of the preconditioner with respect the number

of nonzeros of Anear, iter is the number of iterations, Tp and Tsol are the

preconditioner computation time and iterative solution time, respectively. All255

timings correspond to the CPU time in seconds.

First, we observe that sparser preconditioners are computed as result of per-

muting the near-field matrix and, at the same time, the number of iterations
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needed to converge decreased considerably. And this was observed for any num-

ber of partitions of the adjacency graph. In fact, the application of the multiple260

minimum degree alone, i.e. p = 1, was enough to reach convergence for the set

of matrices CN. In general we found that multiple minimum degree performed

slightly better than the others since with less fill-in the convergence rate was

on a par, although no big differences with quotient minimum degree and re-

verse Cuthill-Mckee were found. Nested dissection also produced good results265

but to a less extent. Moreover, the time needed to compute and apply a sym-

metric reordering is very small compared with the overall solution time. Thus,

we strongly recommend the application of symmetric reorderings, specially a

minimum degree type algorithm.

With respect to nonsymmetric reorderings, some representative results for270

the matrices CETAF3, CETAF5, CN3 and CN5 are shown in Tables 4 to 7.

Unlike symmetric reorderings, we did not find big benefits applying this kind

of reorderings for the matrices tested. The results were always pretty similar.

Sometimes one of them performed slightly better than the others and sometimes

the opposite, with no recognizable trend. Nevertheless, since this preprocessing275

may have a stabilizing effect on the computation of the preconditioner and its

applications is inexpensive, it can be worth to test them in case of preconditioner

computation failure or instabilities.

Let us analyze the two-level ILU preconditioner proposed. From Tables 2,

3 and 8 one observes immediately that the application of the graph partition-280

ing technique first reduces the number of iterations, and second allows for the

computation of sparser preconditioners. These observations can be made even

without applying symmetric reorderings, although its application helps to obtain

improved preconditioners. Moreover, a nice feature is that the number of itera-

tions remain quite stable with the number of partitions. The approximate Schur285

complement contribution to the preconditioner that works as a coarse grid cor-

rection between the computational subdomains explains this effect. Since IEMs

lead to a reduction on the dimensionality of the problem by one, the observed

behaviour may be in line with [21], where specially good results for 2D PDE
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problems were obtained with a two-level approximate inverse preconditioner.290

Table 9 shows the results obtained with SPAI. A standard implementation

of the SPAI preconditioner with an a priory sparsity pattern obtained from

the near-field matrices filtered with a 0.6 meters threshold was used. With this

threshold both, the two-level ILU and SPAI preconditioners, had similar nonzero

densities. That is, the two-level ILU preconditioner and near-field matrix used to295

compute SPAI had a roughly equal amount of nonzeros. Sparser preconditioners

lead to lower convergence rates for both preconditioners with restarted GMRES,

situation that may be present for large-scale applications where the available

computer memory may be a limiting factor. In those scenarios a combination of

techniques based on spectral low-rank updates or flexible variants of the GMRES300

must be applied in order to regain satisfactory convergence rates. The study

of these and other refined techniques are out of the scope of this paper. Thus,

to fully understand the possibilities of the two-level preconditioner compared

with SPAI we do not think that it is necessary to show the results for very

sparse preconditioners. Nevertheless, the nonzero density with respect to the full305

impedance matrix A was about 2 to 4 percent, in line with studies that appear in

the bibliography for similar size problems. The sparser preconditioners relative

to the size of the problem were the corresponding ones used with the matrix

CETAF10.

We found that for the matrices tested the two-level ILU preconditioner al-310

ways converged faster both in time and in number of iterations. Taking into ac-

count that computing and incomplete LU is also considerably cheaper, we think

that the two-level ILU preconditioner proposed is a competitive alternative for

CEM applications. Indeed, we think that the increment of the preconditioner

computation time with the size of the preconditioner is a limiting factor for SPAI315

preconditioners that is somehow relieved with the two-level ILU preconditioner,

at least in sequential computations.

Table 10 and Figures 3 to 5 show a summary of the results obtained for the

two-level preconditioner related to the Schur complement block size. The re-

sults correspond to the preconditioner computed with symmetric mmd ordering320
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and without nonsymmetric reordering applied. Ratio represents the quotient

between the average diagonal block size and the Schur complement size. The

iterations and total CPU time in seconds are also listed. One can observe the

behavior on the number of iterations and time with respect to the number of

partitions highlighted above. Finally, let us discuss the potential degree of par-325

allelism of the algorithm using these figures. In Section 3 we pointed out some

ideas about how to develope an efficient implementation of the two-level precon-

ditioner. We observe that the Schur complement size increases with the number

of partitions since, for a fixed size matrix, the number of cut edges increases.

Since the computation of the ILU factorization of the Schur complement matrix330

is sequential, keeping a separator set as small as possible is important for the

parallel efficiency of the algorithm. Based on the results from [21] the parallel

efficiency of the algorithm should start to decrease when the Schur complement

size surpasses the size of the diagonal blocks, that is, when the parameter Ratio

becomes smaller than one. Above this value an improvement on the overall335

solution time and a good scalability of the algorithm may be expected.

5. Conclusions

We have presented a method for computing two-level incomplete LU fac-

torizations for CEM problems that are solved by means of an integral equation

method. The algorithm obtains a block LU factorization of the near-field matrix340

that has been previously permuted to block angular form. The permutation is

based on finding a p−way partitioning of the adjacency graph of the matrix.

The numerical experiments obtained for some EFIE test problems show that

the two-level LU preconditioners computed with this strategy accelerate consid-

erably the convergence rate of the GMRES method. It has been observed that345

the proposed algorithm not only reduces the number of iterations and time, but

also allows for the computation of sparser preconditioners. Moreover, it has

been shown that the combination of the two-level ILU preconditioner with sym-

metric reorderings, specially multiple minimum degree, helps to obtain robust
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Figure 3: Average diagonal block size to Schur complement size ratio (dashed lines), and

iterations count with respect to the number of partitions of the adjacency graph for the

matrices tested except CETAF10.

preconditioners while at the same time the amount of fill-in is reduced.350
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p Symm Tr ρ Tp Tsol iter

1 no - 5.5 †

mmd 0.4 1.90 1.95 33.4 370

2 no - 4.4 5.2 38.9 378

mmd 0.5 1.88 2.2 16.8 187

qmd 0.5 1.88 2.6 17.8 195

rcm 0.5 2.04 2.23 17.2 188

nd 0.5 2.6 2.7 32.3 348

3 no - 3.80 5.2 37.4 376

mmd 0.4 1.87 2.4 16.9 188

qmd 0.4 1.88 2.6 16.3 181

rcm 0.4 2.01 3.4 17.2 190

nd 0.4 2.3 3.1 18.5 199

4 no - 3.2 5.3 35.3 370

mmd 0.4 1.90 2.7 17.1 193

qmd 0.4 1.90 3.2 17.2 193

rcm 0.3 2.13 2.8 18.5 204

nd 0.4 2.2 2.9 30.4 338

5 no - 3.0 2.7 18.8 199

mmd 0.2 1.96 2.5 16.7 190

qmd 0.3 2.1 2.8 17.4 193

rcm 0.2 2.2 2.9 17.3 194

nd 0.3 2.4 2.8 28.9 315

Table 2: Effect of symmetric reorderings for the matrix CN3, ILUT(0.02).
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p Symm Tr ρ Tp Tsol iter

1 no - 4.7 4.4 81.2 796

mmd 0.4 3.2 1.9 53.8 570

2 no - 2.7 3.7 8.1 112

mmd 0.4 2.3 3.4 10.4 107

qmd 0.4 2.5 3.2 9.1 115

rcm 0.4 2.1 2.7 8.0 111

nd 0.4 2.6 2.5 10.1 117

3 no - 2.5 3.3 10.9 110

mmd 0.4 2.1 3.3 8.2 102

qmd 0.4 2.2 3.3 9.0 105

rcm 0.4 2.0 3.4 9.7 104

nd 0.4 2.4 3.8 9.9 116

4 no - 2.5 2.2 10.5 110

mmd 0.5 2.0 2.1 8.0 107

qmd 0.5 2.3 3.3 10.9 110

rcm 0.5 2.0 2.9 9.7 102

nd 0.5 2.4 2.1 11.7 112

5 no - 2.4 4.4 10.4 106

mmd 0.4 2.1 3.2 7.8 103

qmd 0.4 2.2 3.0 7.8 104

rcm 0.4 2.2 2.3 7.5 103

nd 0.4 2.3 3.4 11.2 112

Table 3: Effect of symmetric reorderings for the matrix CETAF3, ILUT(0.04).
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Non-Symm Symm Tr ρ Tp Tsol iter

no no - 2.5 3.3 10.9 110

mmd 0.4 2.1 3.3 8.2 102

qmd 0.4 2.2 3.3 9.0 105

rcm 0.4 2.0 3.4 9.7 104

mst no 0.1 2.5 4.5 9.7 110

mmd 0.3 2.1 3.1 9.7 104

qmd 0.4 2.2 3.7 10.4 104

rcm 0.4 2.1 3.6 11.4 103

mpt no 0.1 2.5 4.2 9.7 110

mmd 0.4 2.1 3.0 9.0 104

qmd 0.5 2.2 3.5 9.9 104

rcm 0.4 2.0 2.9 9.7 103

Table 4: Effect of nonsymmetric reorderings for the matrices CETAF3, p=3, ILUT(0.04).

Non-Symm Symm Tr ρ Tp Tsol iter

no no - 3.8 5.2 37.4 376

mmd 0.3 1.87 2.9 19.7 194

qmd 0.3 1.81 2.7 22.5 275

rcm 0.4 1.89 3.6 18.4 182

mst no 0.12 3.86 4.5 37.9 378

mmd 0.4 1.86 2.7 16.8 188

qmd 0.33 1.88 3.7 15.3 181

rcm 0.27 1.89 2.3 18.3 192

mpt no 0.12 3.83 5.4 38.0 380

mmd 0.4 1.87 2.4 16.9 188

qmd 0.4 1.88 2.6 16.3 181

rcm 0.4 2.01 3.4 17.2 190

Table 5: Effect of nonsymmetric reorderings for the matrices CN3, p=3, ILUT(0.02).
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Non-Symm Symm Tr ρ Tp Tsol iter

no no - 2.4 9.9 35.1 156

mmd 0.7 2.0 8.7 25.7 118

qmd 1.0 2.1 10.3 28.6 130

rcm 0.7 2.1 10.8 31.8 143

mst no 0.3 2.5 10.9 36.8 162

mmd 1.0 2.1 9.8 26.6 122

qmd 1.1 2.2 10.6 30.5 138

rcm 1.1 2.1 7.5 31.4 142

mpt no 0.3 2.5 11.5 36.7 162

mmd 1.0 2.1 10.4 26.6 122

qmd 1.1 2.2 8.1 30.5 138

rcm 1.0 2.1 7.5 31.4 142

Table 6: Effect of nonsymmetric reorderings for the matrices CETAF5, p= 3, ILUT(0.05).

Non-Symm Symm Tr ρ Tp Tsol iter

no no - 3.16 12.2 129.2 555

mmd 0.8 1.62 6.4 33.3 153

qmd 1.3 1.85 7.7 33.4 125

rcm 1.0 1.87 7.9 43.8 189

mst no 0.3 3.47 9.0 301.4 1199

mmd 1.1 1.67 5.1 29.3 135

qmd 1.7 1.73 5.2 33.8 154

rcm 1.1 1.85 5.3 41.3 185

mpt no 0.3 3.40 10.1 199.8 798

mmd 1.2 1.66 6.2 32.7 150

qmd 1.7 1.72 7.3 37.4 152

rcm 1.2 1.86 7.8 44.7 182

Table 7: Effect of nonsymmetric reorderings for the matrices CN5, p= 3, ILUT(0.04).
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Matrix p τ Tr ρ Tp Tsol iter

CN2 1 0.001 0.2 2.4 1.9 14.1 325

2 0.001 0.2 1.8 1.6 10.9 253

3 0.001 0.2 1.8 1.7 10.9 253

4 0.001 0.2 1.8 2.0 10.9 245

5 0.001 0.2 1.8 2.1 10.9 238

CN5 1 0.04 0.9 2.0 4.8 39.5 168

2 0.04 0.8 1.8 6.4 31.8 157

3 0.04 0.8 1.6 6.6 30.3 153

4 0.04 0.8 1.7 7.1 28.5 133

5 0.04 0.7 1.6 7.1 29.8 140

CETAF5 1 0.06 0.98 3.1 3.8 82.5 346

2 0.06 0.8 2.2 7.2 31.3 140

3 0.05 0.7 2.0 8.7 25.7 118

4 0.05 0.8 2.1 8.3 26.3 121

5 0.05 0.6 2.1 8.6 25.7 119

CETAF10 1 0.05 5.5 3.3 20.9 813 935

2 0.05 5.1 2.6 20.4 475 589

3 0.05 4.3 2.4 24.0 318 398

4 0.05 3.7 2.5 30.5 362 455

5 0.05 3.5 2.4 40.3 344 432

6 0.05 3.4 2.4 43.9 364 461

Table 8: Effect of the number of partitions for the matrix CN2, CN5, CETAF5 and CETAF10.

τ indicates the ILUT dropping threshold. Matrices reordered only with multiple minimum

degree.
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matriz ρ Tp Tsol Total time iter

CETAF3 1.9 24.2 9.9 34.1 169

CETAF5 2.3 148.1 30.2 32.5 189

CETAF10 2.4 437.5 592.0 1029.5 689

CN2 1.8 12.8 8.0 20.8 197

CN3 1.9 23.6 14.9 38.5 186

CN5 1.7 94.1 84.0 178.1 399

Table 9: Results obtained with SPAI for the tested matrices.
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Matrix p Schur size Ratio iter Total time

CETAF3 2 241 5.9 107 14.2

3 425 2.1 102 11.6

4 641 1.0 107 10.6

5 714 0.7 103 11.4

CETAF5 2 560 3.1 140 39.3

3 776 1.8 118 35.1

4 1090 0.9 121 35.4

5 1278 0.6 119 34.9

CETAF10 2 719 6.5 589 500.5

3 1153 2.6 398 343.5

4 1736 1.2 455 396.2

5 1850 0.9 432 387.8

6 2326 0.6 461 411.3

CN2 2 95 10.2 253 12.7

3 186 3.3 253 12.8

4 246 1.8 245 13.0

5 304 1.1 238 13.1

CN3 2 177 8.0 187 19.5

3 260 3.5 188 19.7

4 470 1.4 193 20.2

5 592 0.8 190 19.9

CN5 2 176 13.7 157 39.0

3 333 4.7 153 37.7

4 700 1.5 133 35.4

5 889 0.9 140 37.6

Table 10: Schur complement block sizes of the p-way partitionings, iterations and total CPU

time in seconds for the matrices tested. Ratio indicates the average diagonal block size to

Schur block size ratio. Matrices reordered only with multiple minimum degree.
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