

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1016/j.cam.2015.12.006

http://hdl.handle.net/10251/105525

Elsevier

Cordero Barbero, A.; Torregrosa Sánchez, JR. (2017). A sixth-order iterative method for
approximating the polar decomposition of an arbitrary matrix. Journal of Computational and
Applied Mathematics. 318:591-598. doi:10.1016/j.cam.2015.12.006

A sixth-order iterative method for approximating the polar decomposition of an
arbitrary matrix I

Alicia Corderoa, Juan R. Torregrosaa,∗

aInstituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain

Abstract

A new iterative method for computing the polar decomposition of any rectangular complex matrix is presented
and analyzed. The study of the convergence shows that this method has order of convergence six. Some
numerical tests confirm the theoretical results and allow us to compare the proposed iterative scheme with other
known ones.

Keywords: Polar decomposition, singular value decomposition, matrix iteration, unitary factor, Hermitian
matrix, iterative method
AMS Subject Classification: 65F25, 65F30.

1. Introduction

The polar decomposition is a generalization to complex matrices of the trigonometric representation of a
complex number. Specifically, let A be a complex matrix of size m×n, m ≥ n (in other case, we work with the
transpose matrix). Then there exist a matrix U ∈ Cm×n, with orthonormal columns and a Hermitian positive
semi-definite H ∈ Cn×n such that

A = UH, U∗U = In, (1)

where U∗ denotes the conjugate transpose of U and In is the identity matrix of size n × n. The Hermitian
factor H is always unique and can be expressed as H = (A∗A)1/2. If matrix A has full rank, then H is positive
definite and the unitary factor U is uniquely determined.

Let us observe that, once the unitary factor U is calculated, the other factor is obtained in a simple way,
H = U∗A. So, our goal in this work is to obtain factor U .

The polar decomposition is well known and can be found in many textbooks, for example, [1] and [2]. An
early reference is [3]. This decomposition has many applications in several fields. In [4] the author describes
different applications of the polar decomposition to factor analysis, aerospace computations and optimization.
For example, the optimization method called Conjugate Gradient, for the minimization of F (x), F : Rn → R,
is more stable when the Hessian matrix is replaced by the Hermitian factor of its polar decomposition. On the
other hand, the square root of a positive definite matrix A is the Hermitian factor of the polar decomposition
of LT , where A = LLT is the Choleski decomposition of A. In addition, polar decomposition has many
advantages in front of other decompositions in the context of computer graphics.

It is well known that the unitary factor U possesses a best approximation property and in [4] the author
describes, under some conditions, good approximation properties of the Hermitian factor H . Other interesting

IThis research was partially supported by Ministerio de Economı́a y Competitividad MTM2014-52016-C02-02.
∗Corresponding author
Email addresses: acordero@mat.upv.es (Alicia Cordero), jrtorre@mat.upv.es (Juan R. Torregrosa)

Preprint submitted to Elsevier July 20, 2015

properties of the polar decomposition appear in the literature (see, for instance, [1] and [2]) . For example,
the eigenvalues of matrix H and the singular values of matrix A are the same, as well as the 2-norm condition
number. These matrices also have a common set of eigenvectors.

The polar decomposition of A can be computed using the singular value decomposition (SVD) [1]. Let us
suppose that matrix A ∈ Cm×n, m ≥ n, has the singular value decomposition

A = P

(
Σ
0

)
Q∗, (2)

where P ∈ Cm×m and Q ∈ Cn×n are unitary matrices and Σ = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥
0.

If we partition matrix P in the form P = [P1, P2], where P1 is an m × n matrix such that P ∗
1P1 = In, it

follows that A has the polar decomposition A = UH , where U = P1Q
∗ and H = QΣQ∗.

On the other hand, let A be an m × n complex matrix with full rank and A = QR its QR-factorization,
where Q is an m× n matrix with orthonormal columns and R is an n× n upper triangular nonsingular matrix.
The polar decomposition of A is given in terms of that of R by

A = QR = Q(URHR) = (QUR)HR = UH.

As some authors show in their works, these approaches are not always the most efficient or the most conve-
nient. So, we are going to present iterative schemes for approximating the polar decomposition of a rectangular
complex matrix.

In this paper, we are interested in computing the polar decomposition by means of an iterative method of
the fixed-point form Uk+1 = G(Uk), provided that the initial guess matrix U0 is given. Let us remember that
from the unitary factor U the other factor of the polar decomposition is obtained easily. In [4] Higham proposed
a fixed-point algorithm based on Newton’s method to compute the square root of a number, for obtaining the
unitary factor U of a nonsingular n× n matrix A. Starting with U0 = A, the sequence Uk is computed by

Uk+1 =
1

2
(Uk + U−∗

k), (3)

where U−∗
k denotes (U−1

k)∗. The quadratic convergence of sequence {Uk}k≥0 was proved.
Fifteen years later, Du in [5] generalized Higham’s algorithm for rectangular matrices by means of the

iterative expression

Uk+1 =
1

2
(Uk + U †∗

k), (4)

where U †
k denotes the Moore-Penrose pseudoinverse of Uk. This scheme keeps the order of convergence of the

previous one.
In a similar way as Hihgam with Newton’s method, Gander in [6] used Halley’s scheme for scalar equations

for designing the following algorithm that converges to the unitary factor with order of convergence three for
nonsingular matrices.

Uk+1 = [Uk(3I + U∗
kUk)] [I + 3U∗

kUk]
−1 . (5)

Recently, a fourth-order iterative method for computing the polar decomposition was developed by Khaksar
and Soleymani in [7] from a fourth-order method for solving nonlinear equations. The iterative expression of
this scheme is

Uk+1 = [Uk(7I + Yk)(I + 3Yk)] [I + 18Yk + 13Zk]
−1 , (6)

2

where Yk = U∗
kUk, Zk = YkYk and U0 = A.

The rest of the paper is organized as follows: in Section 2, a new root-finding scheme for scalar equations
is designed and, from it, an iterative scheme for computing the polar decomposition of any rectangular matrix
is derived. Section 3 is devoted to analyze the convergence of the proposed scheme under some conditions.
Moreover, we prove that the new scheme has order six for a proper initial matrix. Some numerical test are
presented in Section 4 to confirm the theoretical results and for comparing our scheme with other known ones.
This paper finishes with several conclusions and some of the references used in it.

2. The proposed iterative scheme

Many multi-point iterative schemes for solving nonlinear scalar equations f(x) = 0 have been designed
in the last years. The main interest of these fixed-point methods is the possibility to reach any order of con-
vergence. The connection between the matrix iterations for computing polar decomposition, or in general for
approximating the solution of a nonlinear matrix equation, and iterative methods for nonlinear scalar equations
were described by Iannazzo in [8].

In fact, the matrix form of fixed-point type methods for polar decomposition is the generalization of apply-
ing the nonlinear equation solvers to the matrix equation

F (U) := U∗U − I = 0,

where I is the identity matrix of the appropriate size. This reveals the relation between the polar decomposition
and matrix sign function (see, for example, the papers of Higham [9], Kenney and Laub [10], Sharifi et al. [11]
and the references therein).

Let us consider the following iterative expression for finding the simple zeros of a nonlinear equation
f(x) = 0

yk = xk −
10− 4Lf (xk)

10− 9Lf (xk)

f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(yk)
,

(7)

where Lf (xk) =
f(xk)f

′′(xk)

f ′(xk)2
is the degree of logarithmic convexity. This scheme is the composition of the

scheme proposed in [11] for finding matrix sign functions and Newton’s method. By using Taylor expansion of
the different elements of the iterative expression (7), we can prove the following result.

Theorem 1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R for an open
interval I , and x0 ∈ I an initial guess close enough to α. Then, iterative expression (7) converge to α with
order of convergence six, being its error equation

ek+1 =
1

25
c2(c

2
2 − 5c3)

2e6k +O(e7k),

where cj =
1

j!

f (j)(α)

f ′(α)
, j = 2, 3, . . ., and ek = xk − α.

Proof. Expanding f(xk), f ′(xk) and f ′′(xk) about x = α by Taylor series, we have

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k + c5e

5
k + c6e

6
k +O(e7k)

]
,

3

f ′(xk) = f ′(α)
[
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k + 5c5e

4
k + 6c6e

5
k +O(e6k)

]
and

f ′′(xk) = f ′(α)
[
2c2 + 6c3ek + 12c4e

2
k + 20c5e

3
k + 30c6e

4
k +O(e5k)

]
.

From these expressions, we get

Lf (xk) = 2c2ek + (−6c22 + 6c3)e
2
k + 4(4c32 − 7c2c3 + 3c4)e

3
k − 10(4c42 − 10c22c3 + 3c23 + 5c2c4 − 2c5)e

4
k

+6(16c52 − 52c32c3 + 28c22c4 − 17c3c4 + c2(33c
2
3 − 13c5) + 5c6)e

5
k +O(e6k).

Therefore, Taylor expansion of yk gives us the error of the first step of the multipoint method (7),

yk =
1

5
(c22 − 5c3)e

3
k +

(
9c32
25

+
6c2c3
5

− 3c4

)
e4k

− 6

125

(
59c42 − 105c22c3 − 50c2c4 + 25(c23 + 5c5)

)
e5k

+

(
1

625
(5399c52 − 17815c32c3 + 12200c2c

2
3 + 7175c22c4 − 6125c3c4) + 4c2c5 − 10c6

)
e6k +O(e7k).

In a similar way, expanding f(yk) and f ′(yk) about x = α and by replacing in the second step of (7), we obtain

ek+1 =
1

25
c2(c

2
2 − 5c3)

2e6k +O(e7k)

and the proof is finished.

Solving the equation u2 − 1 = 0 by (7), we have the iterative expression

uk+1 =
4 + 141u2k + 435u4k + 211u6k + 9u8k
36uk + 314u3k + 384u5k + 66u7k

, k = 0, 1, . . . (8)

and the associated fixed point operator is denoted by T , uk+1 = T (uk). We are going to analyze some
properties of this operator.

The unique attracting fixed points of operator T are the roots of the quadratic polynomial, that is, u = 1 and
u = −1. Drawing the dynamical plane of operator T in the complex plane, shows a global convergence of our
scheme on the quadratic polynomial u2−1 = 0 (see Figure 1a). For the representation of this dynamical planes
we have used the software described in [12]. We draw a mesh with four hundred points per axis; each point of
the mesh is a different initial estimation which we introduce in the procedure. When the method reaches one
root of the equation in less than two hundred iterations, this point is drawn in a different color for each root
(with a tolerance of 10−3). The color will be more intense when the number of iterations is lower. The roots of
the polynomial will be represented by white stars in the picture. Finally, if there is no convergence to any root,
after a maximum of 200 iterations, then the point of the mesh used as initial estimation is painted in black.

On the other hand, by applying Möbius transformation h(u) =
u+ 1

u− 1
, which sends one root to zero and

the other to infinity, operator T is conjugated to operator O

O(u) = (h ◦ T ◦ h−1)(u) = u6
(1 + 5u)2

(5 + u)2
,

whose dynamical plane we can see in Figure 1b, being the orange area the basin of attraction of zero and the
blue area the basin of infinity.

4

IRe{z}
−4 −3 −2 −1 0 1 2 3 4

(a) Dynamical plane of operator T

IRe{z}
−4 −3 −2 −1 0 1 2 3 4

(b) Dynamical plane of parameter O

Figure 1: Dynamical planes before and after using Möbius transformation

Taking into account that operator O is independent of the quadratic polynomial, we can assure that the
iterative scheme (7) has global convergence on any quadratic polynomial. In addition, operator O satisfies the
following property that we call reciprocal property

O

(
1

u

)
=

1

O(u)
.

From the reciprocal property and this global convergence behavior, we can use the iterative scheme (8) in
the reciprocal form

uk+1 =
36uk + 314u3k + 384u5k + 66u7k

4 + 141u2k + 435u4k + 211u6k + 9u8k
, k = 0, 1, . . .

and extend it in the matrix context

Uk+1 = [Uk(36I + 314Yk + 384Zk + 66Xk)] [4 + 141Yk + 435Zk + 211Xk + 9Wk]
−1 , (9)

where Yk = U∗
kUk, Zk = YkYk, Xk = YkZk and Wk = ZkZk.

Expression (9) is a new iterative fixed-point scheme for finding the polar decomposition via calculating the
unitary matrix U . This method is not a member of Padé family of iterations given in [10]. In the next section
we are going to analyze the convergence of sequence {Uk}k≥0 generated by the iterative scheme (9).

3. Convergence analysis

The next results establish the order of convergence of the method described by (9).

Theorem 2. Let A be an arbitrary m × n complex matrix of rank r. Then, the sequence of matrix iterates
{Uk}k≥0 obtained from (9) converges to the unitary factor U , for U0 = A.

5

Proof. In order to prove this, we make use of the singular value decomposition of matrix A,

A = P

(
Σ
0

)
Q∗,

where P ∈ Cm×m and Q ∈ Cn×n are unitary and Σ = diag(σ1, σ2, . . . , σn), being σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
the singular values of matrix A. Now, we define the following sequence of matrices

D̄k =

(
Dk

0

)
= P ∗UkQ.

Afterwards, from (9), we have

D0 = Σ

Dk+1 =
[
Dk(36I + 314D2

k + 384D4
k + 66D6

k)
] [

4I + 141D2
k + 435D4

k + 211D6
k + 9D8

k

]−1
.

(10)

As D0 is a diagonal matrix with nonnegative diagonal entries, it follows by induction that sequence {Dk}k≥0

is defined as
Dk = diag(d

(k)
1 , d

(k)
2 , . . . , d(k)r , 0, . . . , 0),

where r = rank(A). Note that (10) represents k uncoupled scalar iterations:

d
(0)
i = σi, 1 ≤ i ≤ r

d
(k+1)
i =

[
36d

(k)
i + 314d

(k)
i

3
+ 384d

(k)
i

5
+ 66d

(k)
i

7
] [

4 + 141d
(k)
i

2
+ 435d

(k)
i

4
+ 211d

(k)
i

6
+ 9d

(k)
i

8
]−1

.

Some algebraic manipulations give the relation between d
(k+1)
i and d

(k)
i

d
(k+1)
i − 1

d
(k+1)
i + 1

= −
(d

(k)
i − 1)6

(d
(k)
i + 1)6

(2− 3d
(k)
i)2

(2 + 3d
(k)
i)2

.

If we repeat this step until d(0)i , we have

d
(k+1)
i − 1

d
(k+1)
i + 1

= −

(
(d

(0)
i − 1)

(d
(0)
i + 1)

)6k+1

H(d
(k)
i , d

(k−1)
i , . . . , d

(0)
i).

Taking into account that d(0)i > 0, i = 1, 2, . . . , r, and H(d
(k)
i , d

(k−1)
i , . . . , d

(0)
i) < 1 we conclude∣∣∣∣∣d(k+1)

i − 1

d
(k+1)
i + 1

∣∣∣∣∣→ 0, as k → +∞,

for each i, that is

Dk → Ir and D̄k →
(

Ir 0
0 0

)
.

Therefore, as k → +∞, Uk → U and subsequently H = U∗A. This finishes the proof.

Theorem 3. Let A be an arbitrary m × n complex matrix of rank r. Then, the iterative scheme described by
(9) has sixth order of convergence for finding the unitary factor U .

6

Proof. By using the previous theorem, scheme (9) transforms the singular values of Uk according to

σ
(k+1)
i =

36σ
(k)
i + 314σ

(k)
i

3
+ 384σ

(k)
i

5
+ 66σ

(k)
i

7
)

4 + 141σ
(k)
i

2
+ 435σ

(k)
i

4
+ 211σ

(k)
i

6
+ 9σ

(k)
i

8 , 1 ≤ i ≤ r,

and leaves the singular vectors invariant. As in the previous theorem, algebraic manipulations of this expression
allow us to assure that

σ
(k+1)
i − 1

σ
(k+1)+1
i

= −
(σ

(k)
i − 1)6

(σ
(k)
i + 1)6

(2− 3σ
(k)
i)2

(2 + 3σ
(k)
i)2

.

Therefore, ∣∣∣∣∣σ(k+1)
i − 1

σ
(k+1)
i + 1

∣∣∣∣∣ ≤
∣∣∣∣∣σ(k)

i − 1

σ
(k)
i + 1

∣∣∣∣∣
6 ∣∣∣∣∣2− 3σ

(k)
i

2 + 3σ
(k)
i

∣∣∣∣∣
2

.

This confirms the sixth order of convergence of iterative scheme (9). The proof is completed.
In spite of this sixth-order, the speed of convergence can be slow at the beginning of the process, so it

is appropriate to scale matrix Uk before each iteration. There are different practical ways for producing the
scaling parameter, we can see two of them below. One is due to Du [5] and its expression is

γk =

(
∥U †

k∥1∥U
†
k∥∞

∥Uk∥1∥Uk∥∞

)1/4

(11)

and the other was developed by Kenney and Laub in [10] as

γk =

(
∥U †

k∥F
∥Uk∥F

)1/2

. (12)

By using each of them, our algorithm can be written the following form. From an initial guess, we calculate
iterates until a stopping criterion is satisfied.

Compute γk,
Mk = 4I + 141γ2kYk + 435γ4kZk + 211γ6kXk + 9γ8kWk,

Uk+1 =
[
γkUk(36I + 314γ2kYk + 384γ4kZk + 66γ6kXk)

]
M−1

k , k = 0, 1, 2, . . .

(13)

4. Numerical results

In this section we are going to present the numerical results. The numerical tests have been made in Matlab
in double precision or variable precision arithmetics, with 50 digits of mantissa, depending on the size of the
matrix. The computer specifications are Intel(R) Core(TM), i5-2500, CPU 3.30 GHz, with 16 GB of RAM.
We compare our scheme, denoted as CTM, with several known iterative methods such as (4) denoted by NM,
(5) denoted by HM and (6) denoted by KSM, of orders of convergence two, three and four, respectively, which
also require one inverse per iteration. We use two different stopping criterium: the difference between the last
iterates

∥Uk+1 − Uk∥M < tol

and this other one ∥∥U∗
k+1Uk+1 − I

∥∥
M

< tol,

7

where tol is the tolerance and ∥·∥M is a proper matrix norm. We also calculate the approximated computational
order of convergence (ACOC), (see [13]), according to

p ≈ ACOC =
ln (∥Uk+1 − Uk∥/∥Uk − Uk−1∥)
ln (∥Uk − Uk−1∥/∥Uk−1 − Uk−2∥)

,

which is an approach of the theoretical order of convergence p.
Let us remark that the value of ACOC that is presented in the different tables is the last coordinate of vector

ACOC when the variation between its values is small. In other case, it is denoted by −. We present four
examples, in each of them matrix A has particular characteristics.

Example 1. In this experiment, we analyze the behavior of the different methods on a random rectangular
matrix of size 510×500 generated in Matlab by A = rand(510, 500), working in double precision arithmetics.

In Table 1 we show the results obtained by applying the different methods on matrix A, with tolerance tol =
10−10 and initial estimation U0 = A. Specifically, we present the values of ∥Uk+1 − Uk∥2 and ∥UT

k+1Uk+1 −
I500∥2 in the last iteration, where I500 is the identity matrix of order 500, the number of iterations, the ACOC
and the elapsed time, in seconds, being the mean execution time for 50 performances of each method (the
command cputime of Matlab has been used).

Newton Halley KSM CTM
iterations 13 9 7 6
∥Uk+1 − Uk∥2 1.70e-14 1.12e-15 1.64e-14 1.31e-15
∥UT

k+1Uk+1 − I500∥2 3.34e-15 1.50e-15 1.51e-15 1.31e-15
e-time 5.67 1.93 1.84 1.78
ACOC - - - -

Table 1: Numerical results for a random matrix of size 510× 500 in double precision aritmethics

Let us note that, in this case, ACOC is not stable, so it does not give us any information.
Now, we study the behavior of the different methods on the matrix A, using the acceleration via scaling

(12) and variable precision arithmetics for all of them. We consider again tol = 10−10 in ∥ · ∥2 and U0 = A.
We present the numerical results of this experiment in Table 2. We can observe a reduction in the number of
iterations, but the computational elapsed time increases, probably by the cost of variable precision arithmetics.
In this case, the ACOC is stable in many cases because we use a scaling parameter and variable precision
arithmetics.

Newton Halley KSM CTM
iterations 10 8 6 5
∥Uk+1 − Uk∥2 4.82e-14 1.16e-15 3.18e-15 1.12e-15
∥UT

k+1Uk+1 − I500∥2 3.87e-15 1.83e-15 1.44e-15 1.55e-15
e-time 8.65 4.37 3.70 3.12
ACOC 2.0018 2.9090 3.3436 5.6323

Table 2: Numerical results for a random matrix of size 510×500 with scaling parameter and variable precision
arithmetrics

8

Example 2. In this example, we analyze the behavior of the different methods on Hilbert matrix of size 75×75
generated in Matlab by B = hilb(75), working in double precision arithmetics and under the same conditions
as Example 1. Let us remember that it is an example of ill-conditioned matrix.

Newton Halley KSM CTM
iterations > 1000 46 26 22
∥Uk+1 − Uk∥2 - 8.88e-16 2.49e-11 4.26e-15
∥UT

k+1Uk+1 − I75∥2 - 1.11e-15 1.30e-15 8.41e-16
e-time - 0.16 0.11 0.10
ACOC - - - -

Table 3: Numerical results for a Hilbert’s matrix of size 75× 75

In this case, the number of iterations increases significantly, in fact Newton’s method is not convergent.
However, the elapsed time decreases because matrix B has a small size. ACOC is again unstable.

When we use the methods with scaling parameter, due to the numerical singularity of matrix B, we get
several warnings from Matlab and bad results in all cases. The stopping criterium is satisfied in a reasonable
number of iterations, but the last obtained matrix U does not satisfies ∥UTU − I75∥2 < 10−10. In addition, by
using variable precision arithmetics the results have not improved.

Example 3. In this experiment, we analyze the behavior of the different methods on a random rectangular
matrix of size 60 × 50 generated in Matlab by C = rand(60, 50), working in variable precision arithmetics
and under the same conditions as in the previous examples.

Newton Halley KSM CTM
iterations 10 7 6 4
∥Uk+1 − Uk∥2 1.31e-15 5.42e-23 7.61e-42 3.05e-14
∥UT

k+1Uk+1 − I50∥2 1.91e-15 3.28e-57 1.81e-57 2.68e-57
e-time 10.06 86.05 77.56 54.56
ACOC 1.8320 2.9999 4.0000 7.2160

Table 4: Numerical results for a random matrix of size 60× 50 in variable precision arithmetics

Variable precision arithmetics gives us the most stable results, but with high computational time. In fact,
for matrix A of Example 1 this precision does not work, in a reasonable time of computation. In this case, all
methods work perfectly and the values shown in Table 4 confirm the theoretical results.

Example 4. This example is devoted to a tridiagonal matrix D of size 200 × 200, with v = [2, 2, . . . , 2] as
main diagonal and u = [−1,−1, . . . ,−1] as sub and super-diagonal. This matrix appears frequently when
we discretize boundary problems by means of finite differences. Now, we use double precision arithmetics,
tol = 10−3 and U0 = A as initial guess. The obtained results are shown in Table 5.

Let us observe that ACOC is again unstable. For big matrices, this always happens if we do not use variable
precision arithmetics.

9

Newton Halley KSM CTM
iterations 15 10 7 6
∥Uk+1 − Uk∥2 3.43e-14 2.89e-15 2.22e-16 5.00e-15
∥UT

k+1Uk+1 − I50∥2 2.14e-15 4.49e-16 4.44e-16 6.66e-16
e-time 0.1881 0.0830 0.0996 0.0749
ACOC 1.9993 2.5421 - -

Table 5: Numerical results for a tridiagonal matrix of size 200× 200 in double precision arithmetics

Newton Halley KSM CTM
iterations 17 12 8 7
∥Uk+1 − Uk∥2 3.39e-14 4.44e-16 4.44e-16 2.22e-16
∥UT

k+1Uk+1 − I50∥2 3.12e-15 4.44e-16 4.45e-16 9.89e-31
e-time 0.2044 0.0977 0.0999 0.0861
ACOC 1.9993 - - -

Table 6: Numerical results for a tridiagonal matrix of size 200 × 200 and U0 = D/∥D∥2, in double precision
arithmetics

Although in the convergence theorem we assume matrix A as initial guess, we want to analyze what does
happen if we use other initial estimation. The results that we present in Table 6 correspond to the tridiagonal
matrix D, with initial guess U0 = D/∥D∥2 in double precision arithmetics.

For many multiples of matrix A, we obtain similar results, but for any multiple of the identity matrix all
methods are not convergent.

The numerical tests shown in Tables 1 to 6 confirm the theoretical results and we can state that the new
algorithm reduces the number of iterations and the computational time in finding the polar decomposition,
respect to the rest of schemes.

5. Conclusions

The polar decomposition of a matrix is an important theoretical and computational tool, so techniques for
computing it are of interest. In this paper, we have proposed and iterative method, for approximating the polar
decomposition of an arbitrary complex matrix, with order of convergence six. Many numerical tests (with
matrices of different dimensions) have been presented to show the performance of the new method and to
confirm the theoretical results. The proposed new method is competitive in relation to the known ones and it is
not a member of Padé family.

References

[1] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983.

[2] R.A. Horn, C.A. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.

[3] L. Autonne, Sur les groupes lineaires, reels et orthogonaux, Bull. Sot. Math. France 30 (1902) 121–134.

[4] N.J. Higham, Computing the polar decomposition - With applications, SIAM J. Sci. Statist. Comput. 7
(1986) 1160–1174.

10

[5] K. Du, The iterative methods for computing the polar decomposition of rank-deficient matrix, Appl. Math.
Comput. 162 (2005) 95–102.

[6] W. Gander, Algorithms for the polar decomposition, SIAM J. Sci. Statist. Comput. 11(6) (1990) 1102–
1115.

[7] F. Khaksar, F. Soleymani, On a fourth-order matrix method for computing polar decomposition, Comp.
Appl. Math. 34 (2015) 389–399.

[8] B. Iannazzo, A family of rational iterations and its application to the computation of the matrix P th root,
SIAM J. Matrix Analysis and Applications 30 (2008) 1445–1462.

[9] N.J. Higham, The matrix sign decomposition and its relation to the polar decomposition, Linear Algebra
and Appl. 212/213 (1994) 3–20.

[10] C. Kenney, A.J. Laub, On scaling Newton’s method for polar decomposition and the matrix sign function,
SIAM J. Matrix Analysis and Applications 13 (1992) 688–706.

[11] M. Sharifi, S. Karimi, F. Khaksar, M. Arab, S. Shateyi, On a cubically convergent iterative method for
matrix sign, The Scientific World Journal, Volume 2015 (2015), Article ID 964257, 6 pages.

[12] F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families
and methods, The Scientific World Journal, Volume 2013 (2013), Article ID 780153.

[13] A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas, Applied
Mathematics and Computation 190 (2007) 686–698.

11

