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ON THE CONVERGENCE OF A HIGHER ORDER FAMILY OF

METHODS AND ITS DYNAMICS

IOANNIS K. ARGYROS, ALICIA CORDERO, ÁNGEL A. MAGREÑÁN,

AND JUAN R. TORREGROSA

Abstract. In this paper, we present the study of the local convergence of

a higher-order family of methods. Moreover, the dynamical behavior of this

family of iterative methods applied to quadratic polynomials is studied. Some
anomalies are found in this family be means of studying the dynamical behav-

ior. Parameter spaces are shown and the study of the stability of all the fixed

points is presented.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) = 0, (1.1)

where F is a differentiable function defined on a convex subset D of S with values
in S, where S is R or C.

Many problems from Applied Sciences including engineering can be solved by
means of finding the solutions to equations in a form like (1.1) using Mathematical
Modelling [9, 12]. For example, dynamic systems are mathematically modeled
by difference or differential equations, and their solutions usually represent the
states of the systems. Except in special cases, the solutions of these equations
can be found in closed form. This is the main reason why the most commonly
used solution methods are usually iterative. The convergence analysis of iterative
methods is usually divided into two categories: semilocal and local convergence
analysis. The semilocal convergence matter is, based on the information around
an initial point, to give criteria ensuring the convergence of iteration procedures.
A very important problem in the study of iterative procedures is the convergence
domain. In general the convergence domain is small. Therefore, it is important to
enlarge the convergence domain without additional hypothesis. Another important
problem is to find more precise error estimates on the distances ‖xn+1−xn‖, ‖xn−
x∗‖. These are with the study of the dynamical behavior our objectives in this
paper.

The dynamical properties related to an iterative method applied to polynomials
give important information about its stability and reliability. In recently studies,
authors such us Cordero et al. [11, 12, 13, 14], Amat et al [1, 2, 3], Gutiérrez
et al. [17], Chun et al. [10] and many others [6, 12, 10] have found interesting
dynamical planes, including periodical behavior and others anomalies. One of our
main interests in this paper is the study of the parameter spaces associated to a
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family of iterative methods, which allow us to distinguish between the good and
bad methods in terms of its numerical properties.

In this work, we consider the following optimal fourth-order family of methods
defined by Sharma in [24] for each n = 0, 1, 2, . . . by

yn = xn −
2

3

F (xn)

F ′(xn)

zn = xn −
F ′(xn) + 3F ′(yn)

−2F ′(xn) + 6F ′(yn)

F (xn)

F ′(xn)

xn+1 = xn −
F ′(xn) + aF ′(yn)

bF ′(xn) + cF ′(yn)

F (zn)

F ′(xn)

(1.2)

where a, b, c are parameters. In this paper, the dynamics of this family applied
to an arbitrary quadratic polynomial p(z) = (z − A)(z − B) will be analyzed,
characterizing the stability of all the fixed points. The graphic tool used to obtain
the parameter space and the different dynamical planes have been introduced by
Magreñán in [18, 19], but there exist other techniques such us the one given by
Chicharro et al in [9].

The rest of the paper is organized as follows: in Section 2 the study of the
local convergence is studied and in Section 3 some of the basic dynamical concepts
related to the complex plane are presented, the stability of the fixed points of the
family and the dynamical behavior of the family is analyzed, where the parameter
space and some selected dynamical planes are presented. Finally, the conclusions
drawn to this study are presented in the concluding Section 4.

2. Local convergence

In this Section F : D ⊆ X → Y is a Fréchet-differentiable operator, where X, Y
are Banach spaces and D is a convex set. Let U(v, ρ), Ū(v, ρ) stand for the open
and closed balls in X respectively with center v ∈ X and of radius ρ > 0. We shall
study the local convergence analysis of method defined for each x = 0, 1, 2 . . .

yn = xn − ξF ′(xn)−1F (xn)
zn = xn − λA−1

n F ′(xn)−1F (xn)
xn+1 = zn − µB−1

n F ′(xn)−1F (zn)
(2.1)

where x0 is an initial point, ξ, λ, µ are parameters,

An = 2(F ′(xn) + 3F ′(yn))−1(F ′(xn)− 3F ′(yn))

and

Bn = (F ′(xn) + aF ′(yn))−1(bF ′(xn) + cF ′(yn)).

Notice that if ξ = 2
3 , λ = −1 and µ = 1 method (2.1) reduces to Newton’s

method [4, 5]. Furthermore, if ξ = 2
3 , λ = −1 and µ = 0, we get the Jarratt’s

method [1, ?]. Many other choices of the parameters ξ, λ, µ are possible [4, 5].
The convergence of method (1.2) was shown in [25] under hypotheses up to the

seventh derivative of function F . These hypotheses limit the applicability of method
(1.2). For a motivational example, define function F on X = Y = R, D = Ū(0, 1)
by

F (x) =

{
c1x

3lnx2 + c2x
5 + c3x

4, x 6= 0
0, x = 0

where c1 6= 0, c2 and c3 are real parameters. Then, we have that

F ′(x) = 3c1x
2lnx2 + 5c2x

4 + 4c3x
3 + 2c1x

2,

F ′′(x) = 12c1xlnx
2 + 20c2x

3 + 12c3x
2 + 10c1x
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and

F ′′′(x) = 12c1lnx
2 + 60c2x

2 + 12c3x+ 22c1.

Then, obviously, function F ′′′(x) is unbounded on D. Hence, the results in [24],
cannot apply to show the convergence of method (2.1) or its special cases requiring
hypotheses on the third derivative of function F or higher. In this Section we
present the local convergence analysis of method (2.1) using hypotheses only on
the first derivative of function F . Hence, the applicability of these methods is
expanded under less restrictive conditions. Moreover, the radius of convergence
and computable error bounds on the distances ‖xn − x∗‖ (not given in [25]) are
also given in this Section.

Let L0 > 0, L > 0, M0 > 0, M ≥ 1, α > 0, a ∈ S \ {−1},b, c, ξ, λ, µ ∈ S with
L0 ≤ L be given parameters. It is convenient for the local convergence analysis
that follows to introduce some functions and parameters. Define function on the
interval [0, 1

L0
) by

g1(t) =
1

2(1− L0t)
[Lt+ 2M |1− ξ|]

and parameters by

r1 =
2(1−M |1− ξ|)

2L0 + L
and rA =

2

L0 + L
. (2.2)

Suppose that

M |1− ξ| < 1. (2.3)

Then, we have that

0 < r1 < rA <
1

L0
(2.4)

and

0 ≤ g1(t) < 0 for each t ∈ [0, r1).

Define function on the interval [0, 1
L0

) by

g0(t) =
L0

4
(1 + 3g1(t))

and set

h0(t) = g0(t)t− 1.

We have that h0(0) = −1 < 0 and h0(t)→ +∞ when t→ 1
L0

−
. It follows from

the Intermediate Value Theorem that function h0 has zeros in the interval (0, 1
L0

).
Denote by r0 the smallest such zero. Then, we have that

0 ≤ g0(t) < 1 for each t ∈ [0, r0).

We have that h0(r1) = L0r1 − 1 < 0, so r1 < r0.
Define functions on the interval [0, 1

L0
) by

p(t) = 2L0t+ 3L0g1(t)t+ 4 + α|λ|(L0t+ 3L0g1(t)t+ 4)(1 + L0t), if λ 6= 0

or

p(t) = 4M(2 +M0|λ|), if λ 6= 0

or

p(t) = 0, if λ = 0,

γ(t) =
3L0(1 + g1(t))t

4(1− g0(t)t)

and

δ(t) = 3L0(1 + g1(t))t+ 4g0(t)t− 4.
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We have that δ(0) = −4 < 0 and δ(t) → ∞ as t → 1
L0

−
. Hence, function δ has

zeros in the interval (0, 1
L0

). Denote by rδ the smallest such zero. Then, we have
that

0 ≤ γ(t) < 1 for each t ∈ [0, rδ).

Define function on the interval [0, 1
L0

) by

g2(t) =
1

2(1− L0t)

[
Lt+

M0p(t)

2(1− g0(t)t)(1− γ(t))

]
and set

h2(t) = g2(t)− 1.

Suppose that
p(0)M0 < 4.

Then, we have that h2(0) = p(0)M0

4 − 1 < 0 as h2(t)→ +∞ as t→ 1
L0

−
. Hence,

function h2 has zeros in the interval (0, 1
L0

). Denote by r2 the smallest such zero.
Then, we have that

0 ≤ g2(t) < 1 for each t ∈ [0, r2).

Define function on the interval (0, 1
L0

) by

g(t) =
L0

|1 + a|
(1 + |a|g1(t))t

and set
h(t) = g(t)− 1.

We have that h(0) = −1 < 0 and h(t) → +∞ as t → 1
L0

−
. Hence, function h

has zeros in the interval (0, 1
L0

). Denote by rh the smallest such zero.
Then, we have that

0 ≤ g(t) < 1 for each t ∈ [0, rh).

Define function on the interval [0, 1
L0

) by

ϕ(t) =
|1 + b|L0(1 + g1(t))t

|1 + a|(1− g(t)t)
, if a+ b+ c+ 1 = 0

or

ϕ(t) =
(|1 + b|+ |a+ c|)M
|1 + a|(1− g(t)t)

, if (|1 + b|+ |a+ c|)M < |1 + a|

and set
ψ(t) = |1 + b|L0(1 + g1(t))t+ |1 + a|g(t)t− |1 + a|.

We have that ψ(0) = −|1 + a| < 0 and ψ(t) → +∞ as t → 1
L0

−
. Similarly for the

second definition of function ψ.
Hence, function ψ has zeros in the interval (0, 1

L0
). Denote by rψ the smallest

such zero. Then, we have that

0 ≤ ϕ(t) < 1 for each t ∈ [0, rψ).

Finally, define function on the interval (0, 1
L0

) by

g3(t) = g2(t)

[
1 +

|µ|M
(1− L0t)(1− ϕ(t))

]
and set

h3(t) = g3(t)− 1.

Suppose that
p(0)M0

4
(1 + |µ|M) < 1. (2.5)
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Then, we have that h3(0) = p(0)M0

4 + |µ|M−1 < 0 and h3(t)→ +∞ as t→ 1
L0

−
.

Hence, function h3 has zeros in the (0, 1
L0

). Denote by r3 the smallest such zero.
Then, we have that

0 ≤ g3(t) < 1 for each t ∈ [0, r3).

Set
r = min{r1, rδ, r2, rh, rψ, r3}. (2.6)

Then, we have that for each t ∈ [0, r)

0 ≤ g1(t) < 1, (2.7)

0 ≤ g0(t)t < 1, (2.8)

0 ≤ γ(t) < 1, (2.9)

0 ≤ g2(t) < 1, (2.10)

0 ≤ g(t) < 1, (2.11)

0 ≤ ϕ(t) < 1 (2.12)

and
0 ≤ g3(t) < 1. (2.13)

Next, using the preceding notation we can show the main local convergence result
for method (2.1).

Theorem 1. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D, L0 > 0, L > 0, M0 > 0, M ≥ 1, α > 0, a ∈ S \ {−1},b, c,
ξ, λ, µ ∈ S such that for all x, y ∈ D the following conditions hold:

M |1− ξ| < 1,

p(0)M0

4
(1 + |µ|M) < 1,

a+ b+ c+1 = 0, if the first definition of function ϕ is used or M(|1+ b|+ |a+ c|) <
|1 + a|, if the second definition of function ϕ is used,

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), ‖F ′(x∗)‖ ≤ α, (2.14)

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ L0‖x− x∗‖, (2.15)

‖F ′(x∗)−1(F ′(x)− F ′(y)‖ ≤ L‖x− y‖, (2.16)

‖F ′(x)‖ ≤M0, (2.17)

‖F ′(x∗)−1F ′(x)‖ ≤M, (2.18)

and
Ū(x∗, r) ⊆ D, (2.19)

where functions p and ϕ are defined previously and r is given by (2.6). Then,
sequence {xn} generated for x0 ∈ U(x∗, r) \ {x∗} by method (2.1) is well defined,
remains in Ū(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the
following estimates hold

‖F ′(xn)−1F ′(x∗)‖ ≤ 1

1− L0‖xn − x∗‖
, (2.20)

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.21)

‖(F ′(xn) + 3F ′(yn))−1F ′(x∗)‖ ≤ 1

4(1− g0(‖xn − x∗‖)‖xn − x∗‖)
, (2.22)

‖(F ′(x∗)−1(An + λF ′(xn)‖ ≤ p(‖xn − x∗‖)
4(1− g0(‖xn − x∗‖)‖xn − x∗‖)

, (2.23)

‖A−1
n ‖ ≤

1

1− γ(‖xn − x∗‖)
, (2.24)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.25)
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‖(F ′(xn) + aF ′(yn))−1F ′(x∗)‖ ≤ 1

|1 + a|(1− g(‖xn − x∗‖)‖xn − x∗‖)
, (2.26)

‖B−1
n ‖ ≤

1

1− ϕ(‖xn − x∗‖)
, (2.27)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.28)

where the functions “g”, γ and ϕ are defined above Theorem 2.1. Furthermore,
for T ∈ [r, 2

L0
) the limit point x∗ is the only solution of equation F (x) = 0 in

Ū(x∗, T ) ∩D.

Proof. We shall use induction to show estimates (2.20)–(2.28). Using (2.6), (2.15)
and the hypothesis x0 ∈ U(x∗, r), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1., (2.29)

It follows from (2.29) and the Banach lemma on invertible operators [] that F ′(x0)−1 ∈
L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L‖x0 − x∗‖ − l
<

1

1− L0r
, (2.30)

which shows (2.20) for n = 0. Hence, y0 is well defined by the first substep of
method (2.1) for n = 0. Using the first substep of method (2.1) for n = 0 and
(2.14), we get the identity

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (1− ξ)F ′(x0)F (x0)

= −F ′(x0)−1F ′(x∗)
∫ 1

0
F ′(x∗)[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ

+(1− ξ)F ′(x0)−1F ′(x∗)F ′(x∗)−1F (x0)

(2.31)

We also have that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.32)

Using (2.6), (2.7), (2.16), (2.18), (2.30)–(2.32), we get that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)[F ′(x∗ + θ(x0 − x∗))− F ′(x0)]‖dθ‖x0 − x∗‖

+|1− ξ|‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)[F ′(x∗ + θ(x0 − x∗))− F ′(x0)]‖dθ‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
+
|1− ξ|M‖x0 − x∗

1− L0‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.21) for n = 0 and y0 ∈ U(x∗, r).
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We must show that (2.22) holds for n = 0. Using (2.6), (2.8), (2.15), (2.21) (for
n = 0), we get that

‖(4F ′(x∗))−1(F ′(x0) + 3F ′(y0)− 4F ′(x∗))‖ ≤ 1

4
(‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖

+3‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖)

≤ 1

4
(L0‖x0 − x∗‖+ 3L0‖y0 − x∗‖)

≤ 1

4
(L0‖x0 − x∗‖+ g1(‖x0 − x∗‖)‖x0 − x∗‖)

= g0(‖x0 − x∗‖)‖x0 − x∗‖ < g0(r)r < 1.

(2.33)
It follows from (2.33) that (F ′(x0) + 3F ′(y0))−1 ∈ L(Y,X) and

‖(F ′(x0) + 3F ′(y0))−1F ′(x∗)‖ ≤ 1

4(1− g0(‖x0 − x∗‖)‖x0 − x∗‖)
,

which shows (2.22) for n = 0. By using a instead of “3” in the preceding estimate
(2.33) we also show estimate (2.26) for n = 0. We also need an estimate on
F ′(x∗)−1(A0 + λF ′(x0)).

We have that

A0+λF ′(x0) = (F (x0)+3F ′(y0))−1[2(F ′(x0)−3F ′(y0))+λ(F ′(x0)+3F ′(y0))F ′(x0)]
(2.34)

and

2(F ′(x0)− 3F ′(y0)) + λ(F ′(x0) + 3F ′(y0))F ′(x0)

= 2(F ′(x0)− F ′(x∗)− 3(F ′(y0)− F ′(x∗))− 2F ′(x∗))

+λ(F ′(x0)− F ′(x∗) + 3(F ′(y0)− F ′(x∗) + 4F ′(x∗)))

×F ′(x∗)F ′(x∗)−1(F ′(x0)− F ′(x∗) + F ′(x∗)).

(2.35)

Then, by (2.14), (2.15), (2.21) and (2.35) we get that

‖F ′(x∗)−1(2(F ′(x0)− 3F ′(y0))) + λ(F ′(x0) + 3F ′(y0))F ′(x0)‖

≤ 2‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ 3‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖+ 4

+|λ|
[
‖F ′(x∗)−1(F ′(x0)− F ′(x∗)‖+ 3‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖+ 4

]
‖F ′(x∗)‖[

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ 1
]

≤ 2L0‖x0 − x∗‖+ 3L0‖y0 − x∗‖+ 4

+α|λ|(L0‖x0 − x∗‖+ 3L0‖y0 − x∗‖+ 4)(1 + L0‖x0 − x∗‖)

≤ 2L0‖x0 − x∗‖+ 3L0g1(‖x0 − x∗‖)‖x0 − x∗‖+ 4

+α|λ|(L0‖x0 − x∗‖+ 3L0g1(‖x0 − x∗‖)‖x0 − x∗‖+ 4)(1 + L0‖x0 − x∗‖) = p(‖x0 − x∗‖),
(2.36)
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leading to the first definition of function p. Alternatively, from the first line of
(2.35), (2.17), (2.32) and (2.18) we get that

‖F ′(x∗)−1((2F ′(x0)− 3F ′(y0)‖) + λ(F ′(x0) + 3F ′(y0))F ′(x0))‖

≤ 2(‖F ′(x∗)−1F ′(x0)‖+ 3‖F ′(x∗)−1F ′(y0)‖)

+|λ|(‖F ′(x∗)−1F ′(x0)‖+ 3‖F ′(x∗)−1F ′(y0)‖)‖F ′(x0)‖

≤ 8M + 4|λ|MM0 = 4M(2 + |λ|M0) = p(t),

(2.37)

which is the second definition of function p. Clearly, if λ = 0, we obtain the third
definition of function p. Then, we have by (2.22), (2.34)–(2.37) that

‖F ′(x∗)−1(A0 + λF ′(x0)‖ ≤ ‖F ′(x0) + 3F ′(y0))−1F ′(x∗)‖‖F ′(x∗)−1(A0 + λF ′(x0))‖

≤ p(‖x0 − x∗‖)
4(1 + g0(‖x0 − x∗‖)‖x0 − x∗‖)

,

which shows (2.23) for n = 0. Next, we show (2.24) for n = 0. We can write

‖A0 + I‖ = 3‖(F ′(x0) + 3F ′(y0))−1F ′(x∗)F ′(x∗)−1(F ′(x0)− F ′(y0))‖. (2.38)

Using (2.6), (2.9), (2.15), (2.22) and (2.38), we get in turn that

‖A0 + I‖ ≤ 3‖(F ′(x0) + 3F ′(y0))−1F ′(x∗)‖‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ ‖F ′(x∗)(F ′(y0)− F ′(x∗))‖

≤ 3L0(‖x0 − x∗‖+ ‖y0 − x∗‖)
4(1− g0(‖x0 − x∗‖)‖x0 − x∗‖)

≤ 3L0(1 + g1(‖x0 − x∗‖))‖x0 − x∗‖
4(1− g0(‖x0 − x∗‖)‖x0 − x∗‖)

= γ(‖x0 − x∗‖) < γ(r) < 1.

(2.39)
It follows from (2.39) that A−1

0 ∈ L(Y,X) and

‖A−1
0 ‖ ≤

1

1− γ(‖x0 − x∗‖)
,

which shows (2.25) for n = 0. Hence, z0 is well defined by the second substep of
method (2.1) for n = 0. Then, we can write using method (2.1) for n = 0 that

z0 − x∗ = x0 − x∗ − F ′(x0)F (x0) + (F ′(x0)−1 + λA−1
0 )F (x0). (2.40)

We have that

F ′(x0)−1 + λA−1
0 = F ′(x0)−1(I + λF ′(x0)A−1

0 )

= F ′(x0)−1F ′(x∗)F ′(x∗)−1(I + λF ′(x0))A−1
0 .

(2.41)

Then, by (2.6), (2.10), (2.17), (2.21)–(2.24) (for n = 0),(2.30), (2.31), (2.32),
(2.40) and (2.41) we get in turn that

‖z0 − x∗‖ = ‖x0 − x∗ − F ′(x0)F (x0)‖+ ‖F ′(x0)−1F ′(x∗)‖

×‖F ′(x∗)−1(A0 + λF ′(x0))‖‖A−1
0 ‖‖F (x0)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖+

M0p(‖x0 − x∗‖)‖x0 − x∗‖
4(1− L0‖x0 − x∗‖)(1− g0(‖x0 − x∗‖)‖x0 − x∗‖)(1− γ(‖x0 − x∗‖))

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < g2(r)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,
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which shows (2.25) for n = 0 and z0 ∈ U(x∗, r). We need an estimate on ‖B0+I‖.
If a+ b+ c+ 1 = 0, we get by the first definition of function ϕ, (2.6), (2.12), (2.15),
(2.21) and (2.26) that

‖B0 + I‖ = ‖(F ′(x0) + aF ′(y0))−1F ′(x∗)F ′(x∗)−1((b+ 1)F ′(x0) + (a+ c)F ′(y0))‖

≤ |1 + b|‖(F ′(x0) + aF ′(y0))−1F ′(x∗)‖+ ‖F ′(x∗)−1((F ′(x0)− F ′(x∗)) + (F ′(x∗)− F ′(y0)))‖

≤ |1 + b|(L0‖x0 − x∗‖+ L0‖y0 − x∗‖)
|1 + a|(1− g(‖x0 − x∗‖)‖x0 − x∗‖)

≤ |1 + b|L0(1 + g1(‖x0 − x∗‖))‖x0 − x∗‖
|1 + a|(1− g(‖x0 − x∗‖)‖x0 − x∗‖)

= ϕ‖x0 − x∗‖ < ϕ(r) < 1.
(2.42)

It follows from (2.42) that B−1
0 ∈ L(Y,X) and

‖B−1
0 ‖ ≤

1

1− ϕ(‖x0 − x∗‖)
,

which shows (2.27) for n = 0 if the first definition of function ϕ is used. However,
if the second definition of function ϕ is used we get instead from the first line of
(2.42) that

‖B0 + I‖ ≤ |1 + b|‖F ′(x∗)−1F ′(x0)‖+ |a+ c|‖F ′(x∗)−1F ′(y0)‖
|1 + a|(1− g(‖x0 − x∗‖)‖x0 − x∗‖)

≤ (|1 + b|+ |a+ c|)M
|1 + a|(1− g(‖x0 − x∗‖)‖x0 − x∗‖)

= ϕ‖x0 − x∗‖ < ϕ(r) < 1.

(2.43)

Then, again we arrive at estimate (2.27). Hence, x1 is well defined by the third
substep of method (2.1) for n = 0. We also have

x1 − x∗ = z0 − x∗ − µB−1
0 (F ′(x0)−1F ′(x∗))(F ′(x∗)−1F (z0)). (2.44)

Then, using (2.6), (2.13), (2.18), (2.21), (2.25), (2.27) (for n = 0), (2.30), (2.31),
(2.32) (for z0 = x0) and (2.44) we obtain that

‖x1 − x∗‖ = ‖z0 − x∗‖+ ‖B−1
0 ‖‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (z0)‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖+
M |µ|‖z0 − x∗‖

(1− L0‖x0 − x∗‖)(1− ϕ(‖x0 − x∗‖))

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < g3(r)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.28) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by
xk, yk, xk+1 in the preceding estimates we arrive at estimates (2.20)–(2.28). Using
the estimate ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, where c = g3(r) ∈ [0, 1) we deduce
that lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r). Finally, to show the uniqueness part, let

y∗ ∈ U(x∗, T ) be such that F (y∗) = 0. Let Q =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ. In view

of (2.15), we get in turn that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ ‖
∫ 1

0
L0‖y∗ + θ(x∗ − y∗)‖dθ

=
L0‖x∗ − y∗‖

2
=
L0

2
T < 1.

(2.45)
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It follows from (2.45) that Q−1 ∈ L(Y,X). Therefore, from the identity 0 = F (x∗)−
F (y∗) = Q(x∗ − y∗), we conclude that x∗ = y∗. �

Remark 1. (1) In view of (2.15) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖

≤ 1 + L0‖x0 − x∗‖

condition (2.18) can be dropped and M can be replaced by

M(t) = 1 + L0t or simply M(t) = M = 2, since t ∈ [0,
1

L0
).

(2) The results can be also be used to solve equations where the operator F ′

satisfies the autonomous differential equation

F ′(x) = P (F (x)),

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing the solution x∗. Let as an
example F (x) = ex − 1. Then, we can choose P (x) = x+ 1 and x∗ = 0.

(3) The local results can be used for projection methods such as Arnoldi’s method,
the generalized minimum residual method(GMRES), the generalized con-
jugate method(GCR) for combined Newton/finite projection methods and
in connection to the mesh independence principle in order to develop the
cheapest and most efficient mesh refinement strategy [4, 5].

(4) The radius rA defined in (2.2) was given by authors in [4, 5] as the conver-
gence radius for Newton’s method under condition (2.15) and (2.16)

xn+1 = xn − F ′(xn)−1F (xn), for each n = 0, 1, 2 . . . . (2.46)

It follows from (2.2) and (2.6) that the convergence radius r of the method
(2.1) cannot be larger than the convergence radius rA of the second order
Newton’s method (2.46). As already noted in rA is at least as the conver-
gence ball give by Rheinboldt [23]

rR = 2
3L . (2.47)

In particular, for L0 < L we have that

rR < rA

and
rR
rA
→ 1

3
extas

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rhein-
boldt’s. The same value for rR given by Traub [27].

(5) It is worth noticing that method (2.1) is not changing if we use the con-
ditions of Theorem 2.1 instead of the stronger conditions given in [24].
Moreover, for the error bounds in practice we can use the computational
order of convergence (COC) [17]

ξ = sup
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .
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or the approximate computational order of convergence (ACOC)

ξ∗ = sup
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates higher than the first Fréchet derivative.

(6) Let us define new method for each n = 0, 1, 2, . . . by

ȳn = x̄n − ξF ′(x̄n)−1F (x̄n)
z̄n = ȳn − λĀ−1

n F ′(x̄n)−1F (x̄n)
x̄n+1 = z̄n − µB−1

n F ′(x̄n)−1F (z̄n)
(2.48)

where x̄0 = x0 is an initial point, ξ, λ, µ are parameters, Ān = 2(F ′(x̄n) +
3F ′(ȳn))−1(F ′(x̄n)− 3F ′(ȳn)) and B̄n = 2(F ′(x̄n) + aF ′(ȳn))−1(bF ′(x̄n) +
cF ′(ȳn)). Method (2.48) can be better than method (2.1) since ȳn is used
instead of “x̄n” (i.e. “xn”) in the second substep. Let us define functions
ḡ2, h̄2, ḡ3 and h̄3 (instead of g2, h2, g3 and h3, respectively given above
Theorem 2.1) by

ḡ2(t) = g1(t) +
|λ|M

1− L0t)(1− γ(t))
,

h̄2(t) = ḡ2(t)− 1,

ḡ3(t) = ḡ2(t)

[
1 +

|µ|M
(1− L0t)(1− ϕ(t))

]
and

h̄3(t) = ḡ3(t)− 1.

Moreover, replace condition (2.5) by

M(|1− ξ|+ |λ|)(1 + |µ|M) < 1. (2.49)

h̄2(0) = M(|1− ξ|+ |λ|)− 1 < 0,

h̄3(0) = M(|1− ξ|+ |λ|)(1 + |µ|M)− 1 < 0,

Then, we have that h̄2(t)→ +∞, h̄3(t)→ +∞ as t→ 1
L0

−
.

Hence, functions h̄2, h̄3 has zeros in the interval (0, 1
L0

). Denote by r̄2,
r̄3 the minimal such zeros. Set

r̄ = min{r, rδ, r̄2, rh, rψ, r̄3}. (2.50)

Then, we have for each t ∈ [0, r̄)

0 ≤ g1(t) < 1,

0 ≤ g0(t)t < 1,

0 ≤ γ(t) < 1,

0 ≤ ḡ2(t) < 1,

0 ≤ g(t) < 1,

0 ≤ ϕ(t) < 1

and
0 ≤ ḡ3(t) < 1.

Then, we can show the following local convergence result for method (2.48).

Proposition 1. Let F : D ⊂ X→ Y be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D, L0 > 0, L > 0, M0 > 0, M ≥ 1, α > 0, a ∈ S \ {−1}, b, c,
ξ, λ, µ ∈ S such that for all x, y ∈ D the following hold:

• (2.14)–(2.18)
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• (2.49) and

Ū(x∗, r̄) ⊆ D, (2.51)

Then, sequence {x̄n} generated for x̄0 ∈ U(x∗, r̄) \ {x∗} by method (2.48) is well
defined, remains in Ū(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover,
the following estimates hold for each n = 0, 1, 2, . . .

‖F ′(x̄n)−1F ′(x∗)‖ ≤ 1

1− L0‖x̄n − x∗‖
,

‖ȳn)− x∗‖ ≤ g1(‖x̄n − x∗‖)‖x̄n − x∗‖ < ‖x̄n − x∗‖ < r̄,

‖(F ′(x̄n) + 3F ′(ȳn))−1F ′(x∗)‖ ≤ 1

4(1− g0(‖x̄n − x∗‖)‖x̄n − x∗‖)
,

‖Ā−1
n ‖ ≤

1

1− γ(‖x̄n − x∗‖)
,

‖z̄n − x∗‖ ≤ ḡ2(‖x̄n − x∗‖)‖x̄n − x∗‖ < ‖x̄n − x∗‖,

‖(F ′(x̄n) + aF ′(ȳn))−1F ′(x∗)‖ ≤ 1

|1 + a|(1− g(‖x̄n − x∗‖)‖x̄n − x∗‖)
,

‖B̄−1
n ‖ ≤

1

1− ϕ(‖x̄n − x∗‖)
,

and

‖x̄n+1 − x∗‖ ≤ ḡ3(‖x̄n − x∗‖)‖x̄n − x∗‖ < ‖x̄n − x∗‖.
Furthermore, for T ∈ [r̄, 2

L0
) the limit point x∗ is the only solution of equation

F (x) = 0 in Ū(x∗, T ) ∩D.

Proof. Simply replace function g2, g3 by ḡ2, ḡ3, respectively in the proof of Theorem
2.1 and notice that instead of the old estimates on ‖z0 − z∗‖, ‖x1 − x∗‖ we have
from

z̄0 = ȳ0 − λĀ−1
0 F ′(x̄0)−1F (x̄0)

that

‖z̄0 − x∗‖ ≤ ‖ȳ0 − x∗‖+ |λ|‖Ā−1
0 ‖‖F ′(x̄0)−1F ′(x∗)‖‖F ′(x∗)−1F (x̄0)‖

≤ [g1(‖x̄0 − x∗‖)] +
|λ|M

(1− L0‖x̄0 − x∗‖)(1− γ(‖x̄0 − x∗‖))
‖x̄0 − x∗‖

= ḡ2(‖x̄0 − x∗‖)‖x̄0 − x∗‖ < ‖x̄0 − x∗‖ < r̄,

and from

x̄1 = z̄0 − B̄−1
0 F ′(x̄0)−1F (z̄0),

we have that

‖x̄1 − x∗‖ ≤ ‖z̄0 − x∗‖+ ‖B̄−1
0 ‖‖F ′(x̄0)−1F ′(x∗‖‖F ′(x∗)−1F (z̄0)‖

≤ ḡ2(‖z̄0 − x∗‖)‖x̄0 − x∗‖+
|µ|M‖z̄0 − x∗‖

(1− L0‖x̄0 − x∗‖)(1− ϕ(‖x̄0 − x∗‖))

≤ ḡ2(‖x̄0 − x∗‖)‖x̄0 − x∗‖+
|µ|Mḡ2(‖x̄0 − x∗‖)‖x̄0 − x∗‖

(1− L0‖x̄0 − x∗‖)(1− ϕ(‖x̄0 − x∗‖))

= ḡ3(‖x̄0 − x∗‖)‖x̄0 − x∗‖ < ‖x̄0 − x∗‖ < r̄.

�
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3. Dynamical study of a special case of the method (1.2)

In this section we are going to study the complex dynamics of a special case of
the method (1.2) in which we will fix two parameters as it appears in [24]:

b = −3a+ 1

2
,

and

c =
5a+ 3

2
.

With this values method (1.2) has the following form:

yn = xn −
2

3

F (xn)

F ′(xn)

zn = xn −
F ′(xn) + 3F ′(yn)

−2F ′(xn) + 6F ′(yn)

F (xn)

F ′(xn)

xn+1 = xn −
F ′(xn) + F ′(yn)

− 3a+1
2 F ′(xn) + 5a+3

2 F ′(yn)

F (zn)

F ′(xn)

(3.1)

By applying this operator on a quadratic polynomial with two different roots A
and B, p(z) = (z −A)(z −B). Using the Möebius map h(z) = z−A

z−B , which carries
root A to 0, root B to ∞ and ∞ to 1, we obtain the rational operator associated
to the family of iterative schemes is finally

G(z, α) = −
z6
(
6− 2a+ 12z + 4az + 9z2 + az2 + 6z3 + 2az3 + 3z4 + 3az4

)
−3− 3a− 6z − 2az − 9z2 − az2 − 12z3 − 4az3 − 6z4 + 2az4

.

(3.2)

3.1. Study of the fixed points and their stability. It is clear that z = 0 and
z =∞ are fixed points of G(z, α). Moreover, there exist some strange fixed which
are:

• z = 1 related to divergence to ∞
• The roots of

p(z) = 3 + 3a+ 9z + 5az + 18z2 + 6az2 + 30z3 + 10az3 + 36z4 + 8az4 + 30z5 + 10az5

+18z6 + 6az6 + 9z7 + 5az7 + 3z8 + 3az8

These solutions of this polynomial depend on the value of the parameter α.
In Figure 2 the bifurcation diagram of the fixed points is shown

Figure 1. Bifurcation diagram of the fixed points.
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3.2. Study of the critical points and parameter spaces. It is a well-known
fact that there is at least one critical point associated with each invariant Fatou
component. The critical points of the family are the solutions of is G′(z, α) = 0,
where

G′(z, α) =

− 4z5(1+z)2(1+z2)
(−3−3a−6z−2az−9z2−az2−12z3−4az3−6z4+2az4)2

×−27−18a+9a2−54z−48az−34a2z−54z2+12az2+34a2z2−54z3−48az3−34a2z3−27z4−18az4+9a2z4

(−3−3a−6z−2az−9z2−az2−12z3−4az3−6z4+2az4)2
.

It is clear that z = 0 and z =∞ are critical points. Furthermore, the free critical
points are the roots of the polynomial:

q(z) = −27− 18a+ 9a2 − 54z − 48az − 34a2z − 54z2 + 12az2 + 34a2z2 − 54z3 − 48az3

−34a2z3 − 27z4 − 18az4 + 9a2z4

which will be called cri(a) for i = 1, 2, 3, 4 and

cr5(a) = −1
cr6(a) = i

In Figure ?? the bifurcation diagram of the critical points is shown

Figure 2. Bifurcation diagram of the critical points.

So, there are four independent free critical points, without loss of generality, we
consider in this paper the free critical point cr3(a), since it behavior is representa-
tive. Now, we are going to look for the best members of the family by means of
using the parameter space associated to the free critical points.

In Figures 5–9, the parameter spaces associated to cr3(a) are shown and in
Figures 3-4 and Figures 6-8 the parameter spaces associated to the other free critical
points are shown. A point is painted in cyan if the iteration of the method starting
in z0 = cr1(α) converges to the fixed point 0 (related to root A), in magenta if
it converges to ∞ (related to root B) and in yellow if the iteration converges to
1 (related to ∞). Moreover, it appears in red the convergence, after a maximum
of 2000 iterations and with a tolerance of 10−6, to any of the strange fixed points,
in orange the convergence to 2-cycles, in light green the convergence to 3-cycles,
in dark red to 4-cycles, in dark blue to 5-cycles, in dark green to 6-cycles, dark
yellow to 7-cycles, and in white the convergence to 8-cycles. The regions in black
correspond to zones of convergence to other cycles. As a consequence, every point
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Figure 3. Parameter space associated to the free critical point cr1(a).

Figure 4. Parameter space associated to the free critical point cr2(a).

of the plane which is neither cyan nor magenta is not a good choice of α in terms
of numerical behavior.

In these dynamical planes we have painted in magenta the convergence to 0, in
cyan the convergence to∞ and in black the zones with no convergence to the roots.

Then, focussing the attention in the region shown in Figure 5 it is evident that
there exist members of the family with complicated behavior. In Figure 10, the
dynamical planes of a member of the family with regions of convergence to any of
the strange fixed points is shown
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Figure 5. Parameter space associated to the free critical point cr3(a).

Figure 6. Parameter space associated to the free critical point cr4(a).

In Figures 11, 12 dynamical planes of members of the family with regions of
convergence to an attracting 2-cycle is shown.

On the other hand, in Figure 13, the dynamical plane of a member of the family
with regions of convergence to z = 1, related to ∞ is presented.

Other special cases are shown in Figures 14, 15 and 16.

4. Numerical example

We present numerical examples in this section.
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Figure 7. Parameter space associated to the free critical point cr5(a).

Figure 8. Parameter space associated to the free critical point cr6(a).

Example 4.1 Let S = R, D = [−2, 2], x∗ = 0 and define function F on D by

F (x) = x3 − 0.1. (4.1)

Then, choosing
λ = 0.025,

µ = 0.1,

ξ = 1,

and

a =
1

2
, b = c = −3

4
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Figure 9. Detail of the parameter space associated to the free
critical point cr3(a).

Figure 10. Basins of attraction associated to the method with
a = −2.65.

we get

L0 = 2.32079 . . . ,

L = 4.64159 . . .

M = 2,

α = 0.64633 . . . ,

M0 = 0.64633 . . . ,

Then, by the definition of the “g” functions we obtain

r1 = 0.215443 . . . , rδ = 0.193679 . . . , r2 = 0.158717 . . . ,
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Figure 11. Basins of attraction associated to the method with
a = −3.35.

Figure 12. Basins of attraction associated to the method with
a = −3.25.

rh = 0.270928 . . . , rψ = 0.205636 . . . and r3 = 0.156463 . . . .

and as a consequence

r = r3 = 0.156463 . . . .

So we can ensure the convergence of the method (1.2) by Theorem 1.
Example 4.2
Let X = [−1/2, 1/2], Y = R, x0 = 0 and F : X→ Y the polynomial:

F (x) =
1

6
x3 +

1

6
x2 − 5

6
x+

1

3
.
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Figure 13. Basins of attraction associated to the method with
a = −3.

Figure 14. Basins of attraction associated to the method with
a = 1.

Then, choosing
λ = 0.25,

µ = 0.25,

ξ = 0.75,

and

a = b = c = −1

3
we get

L0 = 1.86081 . . . ,
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Figure 15. Basins of attraction associated to the method with
a = −1.

Figure 16. Basins of attraction associated to the method with
a = i.

L = 2.33045 . . .

M = 2,

α = 0.572135 . . . ,

M0 = 0.541667 . . . ,

Then, by the definition of the “g” functions we obtain

r1 = 0.165233 . . . , rδ = 0.197013 . . . , r2 = 0.203915 . . . ,

rh = 0.242742 . . . , rψ = 0.297044 . . . and r3 = 0.194199 . . . .
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and as a consequence
r = r1 = 0.165233 . . . .

So we can ensure the convergence of the method (1.2) by Theorem 1.
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[19] Á. A. Magreñán, A new tool to study real dynamics: The convergence plane Applied Math-

ematics and Computation, 248 (2014), 215–224.

[20] S. K. Parhi, D.K. Gupta, Recurrence relations for a Newton-like method in Banach spaces,
J. Comput. Appl. Math. 206(2), 873-887(2007).

[21] L. B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New

York(1979).
[22] H. Ren, Q. Wu, W. Bi, New variants of Jarratt method with sixth-order convergence, Numer.

Algorithms 52(4), 585-603(2009).
[23] W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equa-

tions, Polish Academy of Science, Banach Ctr. Publ. 3 (1978) 129–142.

[24] R. Sharma, Iterative methods for the solution of nonlinear equations (PhD Thesis), Punjab
University, 2011.

[25] J. R. Sharma, Improved Chebyshev-Halley methods with six and eight order of convergence,

to appear in Applied Mathematics and Computation.
[26] J.F. Traub, Iterative methods for the solution of equations, Prentice- Hall Series in Automatic

Computation, Englewood Cliffs, N. J., 1964.

[27] X. Wang, J. Kou, C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach
spaces, Numer. Algorithms 57, 441-456(2011).



24IOANNIS K. ARGYROS, ALICIA CORDERO, ÁNGEL A. MAGREÑÁN, AND JUAN R. TORREGROSA
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